github.com/ltltlt/go-source-code@v0.0.0-20190830023027-95be009773aa/runtime/cgocall.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Cgo call and callback support. 6 // 7 // To call into the C function f from Go, the cgo-generated code calls 8 // runtime.cgocall(_cgo_Cfunc_f, frame), where _cgo_Cfunc_f is a 9 // gcc-compiled function written by cgo. 10 // 11 // runtime.cgocall (below) calls entersyscall so as not to block 12 // other goroutines or the garbage collector, and then calls 13 // runtime.asmcgocall(_cgo_Cfunc_f, frame). 14 // 15 // runtime.asmcgocall (in asm_$GOARCH.s) switches to the m->g0 stack 16 // (assumed to be an operating system-allocated stack, so safe to run 17 // gcc-compiled code on) and calls _cgo_Cfunc_f(frame). 18 // 19 // _cgo_Cfunc_f invokes the actual C function f with arguments 20 // taken from the frame structure, records the results in the frame, 21 // and returns to runtime.asmcgocall. 22 // 23 // After it regains control, runtime.asmcgocall switches back to the 24 // original g (m->curg)'s stack and returns to runtime.cgocall. 25 // 26 // After it regains control, runtime.cgocall calls exitsyscall, which blocks 27 // until this m can run Go code without violating the $GOMAXPROCS limit, 28 // and then unlocks g from m. 29 // 30 // The above description skipped over the possibility of the gcc-compiled 31 // function f calling back into Go. If that happens, we continue down 32 // the rabbit hole during the execution of f. 33 // 34 // To make it possible for gcc-compiled C code to call a Go function p.GoF, 35 // cgo writes a gcc-compiled function named GoF (not p.GoF, since gcc doesn't 36 // know about packages). The gcc-compiled C function f calls GoF. 37 // 38 // GoF calls crosscall2(_cgoexp_GoF, frame, framesize). Crosscall2 39 // (in cgo/gcc_$GOARCH.S, a gcc-compiled assembly file) is a two-argument 40 // adapter from the gcc function call ABI to the 6c function call ABI. 41 // It is called from gcc to call 6c functions. In this case it calls 42 // _cgoexp_GoF(frame, framesize), still running on m->g0's stack 43 // and outside the $GOMAXPROCS limit. Thus, this code cannot yet 44 // call arbitrary Go code directly and must be careful not to allocate 45 // memory or use up m->g0's stack. 46 // 47 // _cgoexp_GoF calls runtime.cgocallback(p.GoF, frame, framesize, ctxt). 48 // (The reason for having _cgoexp_GoF instead of writing a crosscall3 49 // to make this call directly is that _cgoexp_GoF, because it is compiled 50 // with 6c instead of gcc, can refer to dotted names like 51 // runtime.cgocallback and p.GoF.) 52 // 53 // runtime.cgocallback (in asm_$GOARCH.s) switches from m->g0's 54 // stack to the original g (m->curg)'s stack, on which it calls 55 // runtime.cgocallbackg(p.GoF, frame, framesize). 56 // As part of the stack switch, runtime.cgocallback saves the current 57 // SP as m->g0->sched.sp, so that any use of m->g0's stack during the 58 // execution of the callback will be done below the existing stack frames. 59 // Before overwriting m->g0->sched.sp, it pushes the old value on the 60 // m->g0 stack, so that it can be restored later. 61 // 62 // runtime.cgocallbackg (below) is now running on a real goroutine 63 // stack (not an m->g0 stack). First it calls runtime.exitsyscall, which will 64 // block until the $GOMAXPROCS limit allows running this goroutine. 65 // Once exitsyscall has returned, it is safe to do things like call the memory 66 // allocator or invoke the Go callback function p.GoF. runtime.cgocallbackg 67 // first defers a function to unwind m->g0.sched.sp, so that if p.GoF 68 // panics, m->g0.sched.sp will be restored to its old value: the m->g0 stack 69 // and the m->curg stack will be unwound in lock step. 70 // Then it calls p.GoF. Finally it pops but does not execute the deferred 71 // function, calls runtime.entersyscall, and returns to runtime.cgocallback. 72 // 73 // After it regains control, runtime.cgocallback switches back to 74 // m->g0's stack (the pointer is still in m->g0.sched.sp), restores the old 75 // m->g0.sched.sp value from the stack, and returns to _cgoexp_GoF. 76 // 77 // _cgoexp_GoF immediately returns to crosscall2, which restores the 78 // callee-save registers for gcc and returns to GoF, which returns to f. 79 80 package runtime 81 82 import ( 83 "runtime/internal/atomic" 84 "runtime/internal/sys" 85 "unsafe" 86 ) 87 88 // Addresses collected in a cgo backtrace when crashing. 89 // Length must match arg.Max in x_cgo_callers in runtime/cgo/gcc_traceback.c. 90 type cgoCallers [32]uintptr 91 92 // Call from Go to C. 93 //go:nosplit 94 func cgocall(fn, arg unsafe.Pointer) int32 { 95 if !iscgo && GOOS != "solaris" && GOOS != "windows" { 96 throw("cgocall unavailable") 97 } 98 99 if fn == nil { 100 throw("cgocall nil") 101 } 102 103 if raceenabled { 104 racereleasemerge(unsafe.Pointer(&racecgosync)) 105 } 106 107 mp := getg().m 108 mp.ncgocall++ 109 mp.ncgo++ 110 111 // Reset traceback. 112 mp.cgoCallers[0] = 0 113 114 // Announce we are entering a system call 115 // so that the scheduler knows to create another 116 // M to run goroutines while we are in the 117 // foreign code. 118 // 119 // The call to asmcgocall is guaranteed not to 120 // grow the stack and does not allocate memory, 121 // so it is safe to call while "in a system call", outside 122 // the $GOMAXPROCS accounting. 123 // 124 // fn may call back into Go code, in which case we'll exit the 125 // "system call", run the Go code (which may grow the stack), 126 // and then re-enter the "system call" reusing the PC and SP 127 // saved by entersyscall here. 128 entersyscall(0) 129 130 mp.incgo = true 131 errno := asmcgocall(fn, arg) 132 133 // Call endcgo before exitsyscall because exitsyscall may 134 // reschedule us on to a different M. 135 endcgo(mp) 136 137 exitsyscall(0) 138 139 // From the garbage collector's perspective, time can move 140 // backwards in the sequence above. If there's a callback into 141 // Go code, GC will see this function at the call to 142 // asmcgocall. When the Go call later returns to C, the 143 // syscall PC/SP is rolled back and the GC sees this function 144 // back at the call to entersyscall. Normally, fn and arg 145 // would be live at entersyscall and dead at asmcgocall, so if 146 // time moved backwards, GC would see these arguments as dead 147 // and then live. Prevent these undead arguments from crashing 148 // GC by forcing them to stay live across this time warp. 149 KeepAlive(fn) 150 KeepAlive(arg) 151 KeepAlive(mp) 152 153 return errno 154 } 155 156 //go:nosplit 157 func endcgo(mp *m) { 158 mp.incgo = false 159 mp.ncgo-- 160 161 if raceenabled { 162 raceacquire(unsafe.Pointer(&racecgosync)) 163 } 164 } 165 166 // Call from C back to Go. 167 //go:nosplit 168 func cgocallbackg(ctxt uintptr) { 169 gp := getg() 170 if gp != gp.m.curg { 171 println("runtime: bad g in cgocallback") 172 exit(2) 173 } 174 175 // The call from C is on gp.m's g0 stack, so we must ensure 176 // that we stay on that M. We have to do this before calling 177 // exitsyscall, since it would otherwise be free to move us to 178 // a different M. The call to unlockOSThread is in unwindm. 179 lockOSThread() 180 181 // Save current syscall parameters, so m.syscall can be 182 // used again if callback decide to make syscall. 183 syscall := gp.m.syscall 184 185 // entersyscall saves the caller's SP to allow the GC to trace the Go 186 // stack. However, since we're returning to an earlier stack frame and 187 // need to pair with the entersyscall() call made by cgocall, we must 188 // save syscall* and let reentersyscall restore them. 189 savedsp := unsafe.Pointer(gp.syscallsp) 190 savedpc := gp.syscallpc 191 exitsyscall(0) // coming out of cgo call 192 gp.m.incgo = false 193 194 cgocallbackg1(ctxt) 195 196 // At this point unlockOSThread has been called. 197 // The following code must not change to a different m. 198 // This is enforced by checking incgo in the schedule function. 199 200 gp.m.incgo = true 201 // going back to cgo call 202 reentersyscall(savedpc, uintptr(savedsp)) 203 204 gp.m.syscall = syscall 205 } 206 207 func cgocallbackg1(ctxt uintptr) { 208 gp := getg() 209 if gp.m.needextram || atomic.Load(&extraMWaiters) > 0 { 210 gp.m.needextram = false 211 systemstack(newextram) 212 } 213 214 if ctxt != 0 { 215 s := append(gp.cgoCtxt, ctxt) 216 217 // Now we need to set gp.cgoCtxt = s, but we could get 218 // a SIGPROF signal while manipulating the slice, and 219 // the SIGPROF handler could pick up gp.cgoCtxt while 220 // tracing up the stack. We need to ensure that the 221 // handler always sees a valid slice, so set the 222 // values in an order such that it always does. 223 p := (*slice)(unsafe.Pointer(&gp.cgoCtxt)) 224 atomicstorep(unsafe.Pointer(&p.array), unsafe.Pointer(&s[0])) 225 p.cap = cap(s) 226 p.len = len(s) 227 228 defer func(gp *g) { 229 // Decrease the length of the slice by one, safely. 230 p := (*slice)(unsafe.Pointer(&gp.cgoCtxt)) 231 p.len-- 232 }(gp) 233 } 234 235 if gp.m.ncgo == 0 { 236 // The C call to Go came from a thread not currently running 237 // any Go. In the case of -buildmode=c-archive or c-shared, 238 // this call may be coming in before package initialization 239 // is complete. Wait until it is. 240 <-main_init_done 241 } 242 243 // Add entry to defer stack in case of panic. 244 restore := true 245 defer unwindm(&restore) 246 247 if raceenabled { 248 raceacquire(unsafe.Pointer(&racecgosync)) 249 } 250 251 type args struct { 252 fn *funcval 253 arg unsafe.Pointer 254 argsize uintptr 255 } 256 var cb *args 257 258 // Location of callback arguments depends on stack frame layout 259 // and size of stack frame of cgocallback_gofunc. 260 sp := gp.m.g0.sched.sp 261 switch GOARCH { 262 default: 263 throw("cgocallbackg is unimplemented on arch") 264 case "arm": 265 // On arm, stack frame is two words and there's a saved LR between 266 // SP and the stack frame and between the stack frame and the arguments. 267 cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize)) 268 case "arm64": 269 // On arm64, stack frame is four words and there's a saved LR between 270 // SP and the stack frame and between the stack frame and the arguments. 271 cb = (*args)(unsafe.Pointer(sp + 5*sys.PtrSize)) 272 case "amd64": 273 // On amd64, stack frame is two words, plus caller PC. 274 if framepointer_enabled { 275 // In this case, there's also saved BP. 276 cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize)) 277 break 278 } 279 cb = (*args)(unsafe.Pointer(sp + 3*sys.PtrSize)) 280 case "386": 281 // On 386, stack frame is three words, plus caller PC. 282 cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize)) 283 case "ppc64", "ppc64le", "s390x": 284 // On ppc64 and s390x, the callback arguments are in the arguments area of 285 // cgocallback's stack frame. The stack looks like this: 286 // +--------------------+------------------------------+ 287 // | | ... | 288 // | cgoexp_$fn +------------------------------+ 289 // | | fixed frame area | 290 // +--------------------+------------------------------+ 291 // | | arguments area | 292 // | cgocallback +------------------------------+ <- sp + 2*minFrameSize + 2*ptrSize 293 // | | fixed frame area | 294 // +--------------------+------------------------------+ <- sp + minFrameSize + 2*ptrSize 295 // | | local variables (2 pointers) | 296 // | cgocallback_gofunc +------------------------------+ <- sp + minFrameSize 297 // | | fixed frame area | 298 // +--------------------+------------------------------+ <- sp 299 cb = (*args)(unsafe.Pointer(sp + 2*sys.MinFrameSize + 2*sys.PtrSize)) 300 case "mips64", "mips64le": 301 // On mips64x, stack frame is two words and there's a saved LR between 302 // SP and the stack frame and between the stack frame and the arguments. 303 cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize)) 304 case "mips", "mipsle": 305 // On mipsx, stack frame is two words and there's a saved LR between 306 // SP and the stack frame and between the stack frame and the arguments. 307 cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize)) 308 } 309 310 // Invoke callback. 311 // NOTE(rsc): passing nil for argtype means that the copying of the 312 // results back into cb.arg happens without any corresponding write barriers. 313 // For cgo, cb.arg points into a C stack frame and therefore doesn't 314 // hold any pointers that the GC can find anyway - the write barrier 315 // would be a no-op. 316 reflectcall(nil, unsafe.Pointer(cb.fn), cb.arg, uint32(cb.argsize), 0) 317 318 if raceenabled { 319 racereleasemerge(unsafe.Pointer(&racecgosync)) 320 } 321 if msanenabled { 322 // Tell msan that we wrote to the entire argument block. 323 // This tells msan that we set the results. 324 // Since we have already called the function it doesn't 325 // matter that we are writing to the non-result parameters. 326 msanwrite(cb.arg, cb.argsize) 327 } 328 329 // Do not unwind m->g0->sched.sp. 330 // Our caller, cgocallback, will do that. 331 restore = false 332 } 333 334 func unwindm(restore *bool) { 335 if *restore { 336 // Restore sp saved by cgocallback during 337 // unwind of g's stack (see comment at top of file). 338 mp := acquirem() 339 sched := &mp.g0.sched 340 switch GOARCH { 341 default: 342 throw("unwindm not implemented") 343 case "386", "amd64", "arm", "ppc64", "ppc64le", "mips64", "mips64le", "s390x", "mips", "mipsle": 344 sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + sys.MinFrameSize)) 345 case "arm64": 346 sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + 16)) 347 } 348 349 // Call endcgo to do the accounting that cgocall will not have a 350 // chance to do during an unwind. 351 // 352 // In the case where a Go call originates from C, ncgo is 0 353 // and there is no matching cgocall to end. 354 if mp.ncgo > 0 { 355 endcgo(mp) 356 } 357 358 releasem(mp) 359 } 360 361 // Undo the call to lockOSThread in cgocallbackg. 362 // We must still stay on the same m. 363 unlockOSThread() 364 } 365 366 // called from assembly 367 func badcgocallback() { 368 throw("misaligned stack in cgocallback") 369 } 370 371 // called from (incomplete) assembly 372 func cgounimpl() { 373 throw("cgo not implemented") 374 } 375 376 var racecgosync uint64 // represents possible synchronization in C code 377 378 // Pointer checking for cgo code. 379 380 // We want to detect all cases where a program that does not use 381 // unsafe makes a cgo call passing a Go pointer to memory that 382 // contains a Go pointer. Here a Go pointer is defined as a pointer 383 // to memory allocated by the Go runtime. Programs that use unsafe 384 // can evade this restriction easily, so we don't try to catch them. 385 // The cgo program will rewrite all possibly bad pointer arguments to 386 // call cgoCheckPointer, where we can catch cases of a Go pointer 387 // pointing to a Go pointer. 388 389 // Complicating matters, taking the address of a slice or array 390 // element permits the C program to access all elements of the slice 391 // or array. In that case we will see a pointer to a single element, 392 // but we need to check the entire data structure. 393 394 // The cgoCheckPointer call takes additional arguments indicating that 395 // it was called on an address expression. An additional argument of 396 // true means that it only needs to check a single element. An 397 // additional argument of a slice or array means that it needs to 398 // check the entire slice/array, but nothing else. Otherwise, the 399 // pointer could be anything, and we check the entire heap object, 400 // which is conservative but safe. 401 402 // When and if we implement a moving garbage collector, 403 // cgoCheckPointer will pin the pointer for the duration of the cgo 404 // call. (This is necessary but not sufficient; the cgo program will 405 // also have to change to pin Go pointers that cannot point to Go 406 // pointers.) 407 408 // cgoCheckPointer checks if the argument contains a Go pointer that 409 // points to a Go pointer, and panics if it does. 410 func cgoCheckPointer(ptr interface{}, args ...interface{}) { 411 if debug.cgocheck == 0 { 412 return 413 } 414 415 ep := (*eface)(unsafe.Pointer(&ptr)) 416 t := ep._type 417 418 top := true 419 if len(args) > 0 && (t.kind&kindMask == kindPtr || t.kind&kindMask == kindUnsafePointer) { 420 p := ep.data 421 if t.kind&kindDirectIface == 0 { 422 p = *(*unsafe.Pointer)(p) 423 } 424 if !cgoIsGoPointer(p) { 425 return 426 } 427 aep := (*eface)(unsafe.Pointer(&args[0])) 428 switch aep._type.kind & kindMask { 429 case kindBool: 430 if t.kind&kindMask == kindUnsafePointer { 431 // We don't know the type of the element. 432 break 433 } 434 pt := (*ptrtype)(unsafe.Pointer(t)) 435 cgoCheckArg(pt.elem, p, true, false, cgoCheckPointerFail) 436 return 437 case kindSlice: 438 // Check the slice rather than the pointer. 439 ep = aep 440 t = ep._type 441 case kindArray: 442 // Check the array rather than the pointer. 443 // Pass top as false since we have a pointer 444 // to the array. 445 ep = aep 446 t = ep._type 447 top = false 448 default: 449 throw("can't happen") 450 } 451 } 452 453 cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, top, cgoCheckPointerFail) 454 } 455 456 const cgoCheckPointerFail = "cgo argument has Go pointer to Go pointer" 457 const cgoResultFail = "cgo result has Go pointer" 458 459 // cgoCheckArg is the real work of cgoCheckPointer. The argument p 460 // is either a pointer to the value (of type t), or the value itself, 461 // depending on indir. The top parameter is whether we are at the top 462 // level, where Go pointers are allowed. 463 func cgoCheckArg(t *_type, p unsafe.Pointer, indir, top bool, msg string) { 464 if t.kind&kindNoPointers != 0 { 465 // If the type has no pointers there is nothing to do. 466 return 467 } 468 469 switch t.kind & kindMask { 470 default: 471 throw("can't happen") 472 case kindArray: 473 at := (*arraytype)(unsafe.Pointer(t)) 474 if !indir { 475 if at.len != 1 { 476 throw("can't happen") 477 } 478 cgoCheckArg(at.elem, p, at.elem.kind&kindDirectIface == 0, top, msg) 479 return 480 } 481 for i := uintptr(0); i < at.len; i++ { 482 cgoCheckArg(at.elem, p, true, top, msg) 483 p = add(p, at.elem.size) 484 } 485 case kindChan, kindMap: 486 // These types contain internal pointers that will 487 // always be allocated in the Go heap. It's never OK 488 // to pass them to C. 489 panic(errorString(msg)) 490 case kindFunc: 491 if indir { 492 p = *(*unsafe.Pointer)(p) 493 } 494 if !cgoIsGoPointer(p) { 495 return 496 } 497 panic(errorString(msg)) 498 case kindInterface: 499 it := *(**_type)(p) 500 if it == nil { 501 return 502 } 503 // A type known at compile time is OK since it's 504 // constant. A type not known at compile time will be 505 // in the heap and will not be OK. 506 if inheap(uintptr(unsafe.Pointer(it))) { 507 panic(errorString(msg)) 508 } 509 p = *(*unsafe.Pointer)(add(p, sys.PtrSize)) 510 if !cgoIsGoPointer(p) { 511 return 512 } 513 if !top { 514 panic(errorString(msg)) 515 } 516 cgoCheckArg(it, p, it.kind&kindDirectIface == 0, false, msg) 517 case kindSlice: 518 st := (*slicetype)(unsafe.Pointer(t)) 519 s := (*slice)(p) 520 p = s.array 521 if !cgoIsGoPointer(p) { 522 return 523 } 524 if !top { 525 panic(errorString(msg)) 526 } 527 if st.elem.kind&kindNoPointers != 0 { 528 return 529 } 530 for i := 0; i < s.cap; i++ { 531 cgoCheckArg(st.elem, p, true, false, msg) 532 p = add(p, st.elem.size) 533 } 534 case kindString: 535 ss := (*stringStruct)(p) 536 if !cgoIsGoPointer(ss.str) { 537 return 538 } 539 if !top { 540 panic(errorString(msg)) 541 } 542 case kindStruct: 543 st := (*structtype)(unsafe.Pointer(t)) 544 if !indir { 545 if len(st.fields) != 1 { 546 throw("can't happen") 547 } 548 cgoCheckArg(st.fields[0].typ, p, st.fields[0].typ.kind&kindDirectIface == 0, top, msg) 549 return 550 } 551 for _, f := range st.fields { 552 cgoCheckArg(f.typ, add(p, f.offset()), true, top, msg) 553 } 554 case kindPtr, kindUnsafePointer: 555 if indir { 556 p = *(*unsafe.Pointer)(p) 557 } 558 559 if !cgoIsGoPointer(p) { 560 return 561 } 562 if !top { 563 panic(errorString(msg)) 564 } 565 566 cgoCheckUnknownPointer(p, msg) 567 } 568 } 569 570 // cgoCheckUnknownPointer is called for an arbitrary pointer into Go 571 // memory. It checks whether that Go memory contains any other 572 // pointer into Go memory. If it does, we panic. 573 // The return values are unused but useful to see in panic tracebacks. 574 func cgoCheckUnknownPointer(p unsafe.Pointer, msg string) (base, i uintptr) { 575 if cgoInRange(p, mheap_.arena_start, mheap_.arena_used) { 576 if !inheap(uintptr(p)) { 577 // On 32-bit systems it is possible for C's allocated memory 578 // to have addresses between arena_start and arena_used. 579 // Either this pointer is a stack or an unused span or it's 580 // a C allocation. Escape analysis should prevent the first, 581 // garbage collection should prevent the second, 582 // and the third is completely OK. 583 return 584 } 585 586 b, hbits, span, _ := heapBitsForObject(uintptr(p), 0, 0) 587 base = b 588 if base == 0 { 589 return 590 } 591 n := span.elemsize 592 for i = uintptr(0); i < n; i += sys.PtrSize { 593 if i != 1*sys.PtrSize && !hbits.morePointers() { 594 // No more possible pointers. 595 break 596 } 597 if hbits.isPointer() && cgoIsGoPointer(*(*unsafe.Pointer)(unsafe.Pointer(base + i))) { 598 panic(errorString(msg)) 599 } 600 hbits = hbits.next() 601 } 602 603 return 604 } 605 606 for _, datap := range activeModules() { 607 if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) { 608 // We have no way to know the size of the object. 609 // We have to assume that it might contain a pointer. 610 panic(errorString(msg)) 611 } 612 // In the text or noptr sections, we know that the 613 // pointer does not point to a Go pointer. 614 } 615 616 return 617 } 618 619 // cgoIsGoPointer returns whether the pointer is a Go pointer--a 620 // pointer to Go memory. We only care about Go memory that might 621 // contain pointers. 622 //go:nosplit 623 //go:nowritebarrierrec 624 func cgoIsGoPointer(p unsafe.Pointer) bool { 625 if p == nil { 626 return false 627 } 628 629 if inHeapOrStack(uintptr(p)) { 630 return true 631 } 632 633 for _, datap := range activeModules() { 634 if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) { 635 return true 636 } 637 } 638 639 return false 640 } 641 642 // cgoInRange returns whether p is between start and end. 643 //go:nosplit 644 //go:nowritebarrierrec 645 func cgoInRange(p unsafe.Pointer, start, end uintptr) bool { 646 return start <= uintptr(p) && uintptr(p) < end 647 } 648 649 // cgoCheckResult is called to check the result parameter of an 650 // exported Go function. It panics if the result is or contains a Go 651 // pointer. 652 func cgoCheckResult(val interface{}) { 653 if debug.cgocheck == 0 { 654 return 655 } 656 657 ep := (*eface)(unsafe.Pointer(&val)) 658 t := ep._type 659 cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, false, cgoResultFail) 660 }