github.com/ltltlt/go-source-code@v0.0.0-20190830023027-95be009773aa/runtime/mgcmark.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Garbage collector: marking and scanning 6 7 package runtime 8 9 import ( 10 "runtime/internal/atomic" 11 "runtime/internal/sys" 12 "unsafe" 13 ) 14 15 const ( 16 fixedRootFinalizers = iota 17 fixedRootFreeGStacks 18 fixedRootCount 19 20 // rootBlockBytes is the number of bytes to scan per data or 21 // BSS root. 22 rootBlockBytes = 256 << 10 23 24 // rootBlockSpans is the number of spans to scan per span 25 // root. 26 rootBlockSpans = 8 * 1024 // 64MB worth of spans 27 28 // maxObletBytes is the maximum bytes of an object to scan at 29 // once. Larger objects will be split up into "oblets" of at 30 // most this size. Since we can scan 1–2 MB/ms, 128 KB bounds 31 // scan preemption at ~100 µs. 32 // 33 // This must be > _MaxSmallSize so that the object base is the 34 // span base. 35 maxObletBytes = 128 << 10 36 37 // drainCheckThreshold specifies how many units of work to do 38 // between self-preemption checks in gcDrain. Assuming a scan 39 // rate of 1 MB/ms, this is ~100 µs. Lower values have higher 40 // overhead in the scan loop (the scheduler check may perform 41 // a syscall, so its overhead is nontrivial). Higher values 42 // make the system less responsive to incoming work. 43 drainCheckThreshold = 100000 44 ) 45 46 // gcMarkRootPrepare queues root scanning jobs (stacks, globals, and 47 // some miscellany) and initializes scanning-related state. 48 // 49 // The caller must have call gcCopySpans(). 50 // 51 // The world must be stopped. 52 // 53 //go:nowritebarrier 54 func gcMarkRootPrepare() { 55 if gcphase == _GCmarktermination { 56 work.nFlushCacheRoots = int(gomaxprocs) 57 } else { 58 work.nFlushCacheRoots = 0 59 } 60 61 // Compute how many data and BSS root blocks there are. 62 nBlocks := func(bytes uintptr) int { 63 return int((bytes + rootBlockBytes - 1) / rootBlockBytes) 64 } 65 66 work.nDataRoots = 0 67 work.nBSSRoots = 0 68 69 // Only scan globals once per cycle; preferably concurrently. 70 if !work.markrootDone { 71 for _, datap := range activeModules() { 72 nDataRoots := nBlocks(datap.edata - datap.data) 73 if nDataRoots > work.nDataRoots { 74 work.nDataRoots = nDataRoots 75 } 76 } 77 78 for _, datap := range activeModules() { 79 nBSSRoots := nBlocks(datap.ebss - datap.bss) 80 if nBSSRoots > work.nBSSRoots { 81 work.nBSSRoots = nBSSRoots 82 } 83 } 84 } 85 86 if !work.markrootDone { 87 // On the first markroot, we need to scan span roots. 88 // In concurrent GC, this happens during concurrent 89 // mark and we depend on addfinalizer to ensure the 90 // above invariants for objects that get finalizers 91 // after concurrent mark. In STW GC, this will happen 92 // during mark termination. 93 // 94 // We're only interested in scanning the in-use spans, 95 // which will all be swept at this point. More spans 96 // may be added to this list during concurrent GC, but 97 // we only care about spans that were allocated before 98 // this mark phase. 99 work.nSpanRoots = mheap_.sweepSpans[mheap_.sweepgen/2%2].numBlocks() 100 101 // On the first markroot, we need to scan all Gs. Gs 102 // may be created after this point, but it's okay that 103 // we ignore them because they begin life without any 104 // roots, so there's nothing to scan, and any roots 105 // they create during the concurrent phase will be 106 // scanned during mark termination. During mark 107 // termination, allglen isn't changing, so we'll scan 108 // all Gs. 109 work.nStackRoots = int(atomic.Loaduintptr(&allglen)) 110 } else { 111 // We've already scanned span roots and kept the scan 112 // up-to-date during concurrent mark. 113 work.nSpanRoots = 0 114 115 // The hybrid barrier ensures that stacks can't 116 // contain pointers to unmarked objects, so on the 117 // second markroot, there's no need to scan stacks. 118 work.nStackRoots = 0 119 120 if debug.gcrescanstacks > 0 { 121 // Scan stacks anyway for debugging. 122 work.nStackRoots = int(atomic.Loaduintptr(&allglen)) 123 } 124 } 125 126 work.markrootNext = 0 127 work.markrootJobs = uint32(fixedRootCount + work.nFlushCacheRoots + work.nDataRoots + work.nBSSRoots + work.nSpanRoots + work.nStackRoots) 128 } 129 130 // gcMarkRootCheck checks that all roots have been scanned. It is 131 // purely for debugging. 132 func gcMarkRootCheck() { 133 if work.markrootNext < work.markrootJobs { 134 print(work.markrootNext, " of ", work.markrootJobs, " markroot jobs done\n") 135 throw("left over markroot jobs") 136 } 137 138 lock(&allglock) 139 // Check that stacks have been scanned. 140 var gp *g 141 if gcphase == _GCmarktermination && debug.gcrescanstacks > 0 { 142 for i := 0; i < len(allgs); i++ { 143 gp = allgs[i] 144 if !(gp.gcscandone && gp.gcscanvalid) && readgstatus(gp) != _Gdead { 145 goto fail 146 } 147 } 148 } else { 149 for i := 0; i < work.nStackRoots; i++ { 150 gp = allgs[i] 151 if !gp.gcscandone { 152 goto fail 153 } 154 } 155 } 156 unlock(&allglock) 157 return 158 159 fail: 160 println("gp", gp, "goid", gp.goid, 161 "status", readgstatus(gp), 162 "gcscandone", gp.gcscandone, 163 "gcscanvalid", gp.gcscanvalid) 164 unlock(&allglock) // Avoid self-deadlock with traceback. 165 throw("scan missed a g") 166 } 167 168 // ptrmask for an allocation containing a single pointer. 169 var oneptrmask = [...]uint8{1} 170 171 // markroot scans the i'th root. 172 // 173 // Preemption must be disabled (because this uses a gcWork). 174 // 175 // nowritebarrier is only advisory here. 176 // 177 //go:nowritebarrier 178 func markroot(gcw *gcWork, i uint32) { 179 // TODO(austin): This is a bit ridiculous. Compute and store 180 // the bases in gcMarkRootPrepare instead of the counts. 181 baseFlushCache := uint32(fixedRootCount) 182 baseData := baseFlushCache + uint32(work.nFlushCacheRoots) 183 baseBSS := baseData + uint32(work.nDataRoots) 184 baseSpans := baseBSS + uint32(work.nBSSRoots) 185 baseStacks := baseSpans + uint32(work.nSpanRoots) 186 end := baseStacks + uint32(work.nStackRoots) 187 188 // Note: if you add a case here, please also update heapdump.go:dumproots. 189 switch { 190 case baseFlushCache <= i && i < baseData: 191 flushmcache(int(i - baseFlushCache)) 192 193 case baseData <= i && i < baseBSS: 194 for _, datap := range activeModules() { 195 markrootBlock(datap.data, datap.edata-datap.data, datap.gcdatamask.bytedata, gcw, int(i-baseData)) 196 } 197 198 case baseBSS <= i && i < baseSpans: 199 for _, datap := range activeModules() { 200 markrootBlock(datap.bss, datap.ebss-datap.bss, datap.gcbssmask.bytedata, gcw, int(i-baseBSS)) 201 } 202 203 case i == fixedRootFinalizers: 204 // Only do this once per GC cycle since we don't call 205 // queuefinalizer during marking. 206 if work.markrootDone { 207 break 208 } 209 for fb := allfin; fb != nil; fb = fb.alllink { 210 cnt := uintptr(atomic.Load(&fb.cnt)) 211 scanblock(uintptr(unsafe.Pointer(&fb.fin[0])), cnt*unsafe.Sizeof(fb.fin[0]), &finptrmask[0], gcw) 212 } 213 214 case i == fixedRootFreeGStacks: 215 // Only do this once per GC cycle; preferably 216 // concurrently. 217 if !work.markrootDone { 218 // Switch to the system stack so we can call 219 // stackfree. 220 systemstack(markrootFreeGStacks) 221 } 222 223 case baseSpans <= i && i < baseStacks: 224 // mark MSpan.specials 225 markrootSpans(gcw, int(i-baseSpans)) 226 227 default: 228 // the rest is scanning goroutine stacks 229 var gp *g 230 if baseStacks <= i && i < end { 231 gp = allgs[i-baseStacks] 232 } else { 233 throw("markroot: bad index") 234 } 235 236 // remember when we've first observed the G blocked 237 // needed only to output in traceback 238 status := readgstatus(gp) // We are not in a scan state 239 if (status == _Gwaiting || status == _Gsyscall) && gp.waitsince == 0 { 240 gp.waitsince = work.tstart 241 } 242 243 // scang must be done on the system stack in case 244 // we're trying to scan our own stack. 245 systemstack(func() { 246 // If this is a self-scan, put the user G in 247 // _Gwaiting to prevent self-deadlock. It may 248 // already be in _Gwaiting if this is a mark 249 // worker or we're in mark termination. 250 userG := getg().m.curg 251 selfScan := gp == userG && readgstatus(userG) == _Grunning 252 if selfScan { 253 casgstatus(userG, _Grunning, _Gwaiting) 254 userG.waitreason = "garbage collection scan" 255 } 256 257 // TODO: scang blocks until gp's stack has 258 // been scanned, which may take a while for 259 // running goroutines. Consider doing this in 260 // two phases where the first is non-blocking: 261 // we scan the stacks we can and ask running 262 // goroutines to scan themselves; and the 263 // second blocks. 264 scang(gp, gcw) 265 266 if selfScan { 267 casgstatus(userG, _Gwaiting, _Grunning) 268 } 269 }) 270 } 271 } 272 273 // markrootBlock scans the shard'th shard of the block of memory [b0, 274 // b0+n0), with the given pointer mask. 275 // 276 //go:nowritebarrier 277 func markrootBlock(b0, n0 uintptr, ptrmask0 *uint8, gcw *gcWork, shard int) { 278 if rootBlockBytes%(8*sys.PtrSize) != 0 { 279 // This is necessary to pick byte offsets in ptrmask0. 280 throw("rootBlockBytes must be a multiple of 8*ptrSize") 281 } 282 283 b := b0 + uintptr(shard)*rootBlockBytes 284 if b >= b0+n0 { 285 return 286 } 287 ptrmask := (*uint8)(add(unsafe.Pointer(ptrmask0), uintptr(shard)*(rootBlockBytes/(8*sys.PtrSize)))) 288 n := uintptr(rootBlockBytes) 289 if b+n > b0+n0 { 290 n = b0 + n0 - b 291 } 292 293 // Scan this shard. 294 scanblock(b, n, ptrmask, gcw) 295 } 296 297 // markrootFreeGStacks frees stacks of dead Gs. 298 // 299 // This does not free stacks of dead Gs cached on Ps, but having a few 300 // cached stacks around isn't a problem. 301 // 302 //TODO go:nowritebarrier 303 func markrootFreeGStacks() { 304 // Take list of dead Gs with stacks. 305 lock(&sched.gflock) 306 list := sched.gfreeStack 307 sched.gfreeStack = nil 308 unlock(&sched.gflock) 309 if list == nil { 310 return 311 } 312 313 // Free stacks. 314 tail := list 315 for gp := list; gp != nil; gp = gp.schedlink.ptr() { 316 shrinkstack(gp) 317 tail = gp 318 } 319 320 // Put Gs back on the free list. 321 lock(&sched.gflock) 322 tail.schedlink.set(sched.gfreeNoStack) 323 sched.gfreeNoStack = list 324 unlock(&sched.gflock) 325 } 326 327 // markrootSpans marks roots for one shard of work.spans. 328 // 329 //go:nowritebarrier 330 func markrootSpans(gcw *gcWork, shard int) { 331 // Objects with finalizers have two GC-related invariants: 332 // 333 // 1) Everything reachable from the object must be marked. 334 // This ensures that when we pass the object to its finalizer, 335 // everything the finalizer can reach will be retained. 336 // 337 // 2) Finalizer specials (which are not in the garbage 338 // collected heap) are roots. In practice, this means the fn 339 // field must be scanned. 340 // 341 // TODO(austin): There are several ideas for making this more 342 // efficient in issue #11485. 343 344 if work.markrootDone { 345 throw("markrootSpans during second markroot") 346 } 347 348 sg := mheap_.sweepgen 349 spans := mheap_.sweepSpans[mheap_.sweepgen/2%2].block(shard) 350 // Note that work.spans may not include spans that were 351 // allocated between entering the scan phase and now. This is 352 // okay because any objects with finalizers in those spans 353 // must have been allocated and given finalizers after we 354 // entered the scan phase, so addfinalizer will have ensured 355 // the above invariants for them. 356 for _, s := range spans { 357 if s.state != mSpanInUse { 358 continue 359 } 360 if !useCheckmark && s.sweepgen != sg { 361 // sweepgen was updated (+2) during non-checkmark GC pass 362 print("sweep ", s.sweepgen, " ", sg, "\n") 363 throw("gc: unswept span") 364 } 365 366 // Speculatively check if there are any specials 367 // without acquiring the span lock. This may race with 368 // adding the first special to a span, but in that 369 // case addfinalizer will observe that the GC is 370 // active (which is globally synchronized) and ensure 371 // the above invariants. We may also ensure the 372 // invariants, but it's okay to scan an object twice. 373 if s.specials == nil { 374 continue 375 } 376 377 // Lock the specials to prevent a special from being 378 // removed from the list while we're traversing it. 379 lock(&s.speciallock) 380 381 for sp := s.specials; sp != nil; sp = sp.next { 382 if sp.kind != _KindSpecialFinalizer { 383 continue 384 } 385 // don't mark finalized object, but scan it so we 386 // retain everything it points to. 387 spf := (*specialfinalizer)(unsafe.Pointer(sp)) 388 // A finalizer can be set for an inner byte of an object, find object beginning. 389 p := s.base() + uintptr(spf.special.offset)/s.elemsize*s.elemsize 390 391 // Mark everything that can be reached from 392 // the object (but *not* the object itself or 393 // we'll never collect it). 394 scanobject(p, gcw) 395 396 // The special itself is a root. 397 scanblock(uintptr(unsafe.Pointer(&spf.fn)), sys.PtrSize, &oneptrmask[0], gcw) 398 } 399 400 unlock(&s.speciallock) 401 } 402 } 403 404 // gcAssistAlloc performs GC work to make gp's assist debt positive. 405 // gp must be the calling user gorountine. 406 // 407 // This must be called with preemption enabled. 408 func gcAssistAlloc(gp *g) { 409 // Don't assist in non-preemptible contexts. These are 410 // generally fragile and won't allow the assist to block. 411 if getg() == gp.m.g0 { 412 return 413 } 414 if mp := getg().m; mp.locks > 0 || mp.preemptoff != "" { 415 return 416 } 417 418 traced := false 419 retry: 420 // Compute the amount of scan work we need to do to make the 421 // balance positive. When the required amount of work is low, 422 // we over-assist to build up credit for future allocations 423 // and amortize the cost of assisting. 424 debtBytes := -gp.gcAssistBytes 425 scanWork := int64(gcController.assistWorkPerByte * float64(debtBytes)) 426 if scanWork < gcOverAssistWork { 427 scanWork = gcOverAssistWork 428 debtBytes = int64(gcController.assistBytesPerWork * float64(scanWork)) 429 } 430 431 // Steal as much credit as we can from the background GC's 432 // scan credit. This is racy and may drop the background 433 // credit below 0 if two mutators steal at the same time. This 434 // will just cause steals to fail until credit is accumulated 435 // again, so in the long run it doesn't really matter, but we 436 // do have to handle the negative credit case. 437 bgScanCredit := atomic.Loadint64(&gcController.bgScanCredit) 438 stolen := int64(0) 439 if bgScanCredit > 0 { 440 if bgScanCredit < scanWork { 441 stolen = bgScanCredit 442 gp.gcAssistBytes += 1 + int64(gcController.assistBytesPerWork*float64(stolen)) 443 } else { 444 stolen = scanWork 445 gp.gcAssistBytes += debtBytes 446 } 447 atomic.Xaddint64(&gcController.bgScanCredit, -stolen) 448 449 scanWork -= stolen 450 451 if scanWork == 0 { 452 // We were able to steal all of the credit we 453 // needed. 454 if traced { 455 traceGCMarkAssistDone() 456 } 457 return 458 } 459 } 460 461 if trace.enabled && !traced { 462 traced = true 463 traceGCMarkAssistStart() 464 } 465 466 // Perform assist work 467 systemstack(func() { 468 gcAssistAlloc1(gp, scanWork) 469 // The user stack may have moved, so this can't touch 470 // anything on it until it returns from systemstack. 471 }) 472 473 completed := gp.param != nil 474 gp.param = nil 475 if completed { 476 gcMarkDone() 477 } 478 479 if gp.gcAssistBytes < 0 { 480 // We were unable steal enough credit or perform 481 // enough work to pay off the assist debt. We need to 482 // do one of these before letting the mutator allocate 483 // more to prevent over-allocation. 484 // 485 // If this is because we were preempted, reschedule 486 // and try some more. 487 if gp.preempt { 488 Gosched() 489 goto retry 490 } 491 492 // Add this G to an assist queue and park. When the GC 493 // has more background credit, it will satisfy queued 494 // assists before flushing to the global credit pool. 495 // 496 // Note that this does *not* get woken up when more 497 // work is added to the work list. The theory is that 498 // there wasn't enough work to do anyway, so we might 499 // as well let background marking take care of the 500 // work that is available. 501 if !gcParkAssist() { 502 goto retry 503 } 504 505 // At this point either background GC has satisfied 506 // this G's assist debt, or the GC cycle is over. 507 } 508 if traced { 509 traceGCMarkAssistDone() 510 } 511 } 512 513 // gcAssistAlloc1 is the part of gcAssistAlloc that runs on the system 514 // stack. This is a separate function to make it easier to see that 515 // we're not capturing anything from the user stack, since the user 516 // stack may move while we're in this function. 517 // 518 // gcAssistAlloc1 indicates whether this assist completed the mark 519 // phase by setting gp.param to non-nil. This can't be communicated on 520 // the stack since it may move. 521 // 522 //go:systemstack 523 func gcAssistAlloc1(gp *g, scanWork int64) { 524 // Clear the flag indicating that this assist completed the 525 // mark phase. 526 gp.param = nil 527 528 if atomic.Load(&gcBlackenEnabled) == 0 { 529 // The gcBlackenEnabled check in malloc races with the 530 // store that clears it but an atomic check in every malloc 531 // would be a performance hit. 532 // Instead we recheck it here on the non-preemptable system 533 // stack to determine if we should preform an assist. 534 535 // GC is done, so ignore any remaining debt. 536 gp.gcAssistBytes = 0 537 return 538 } 539 // Track time spent in this assist. Since we're on the 540 // system stack, this is non-preemptible, so we can 541 // just measure start and end time. 542 startTime := nanotime() 543 544 decnwait := atomic.Xadd(&work.nwait, -1) 545 if decnwait == work.nproc { 546 println("runtime: work.nwait =", decnwait, "work.nproc=", work.nproc) 547 throw("nwait > work.nprocs") 548 } 549 550 // gcDrainN requires the caller to be preemptible. 551 casgstatus(gp, _Grunning, _Gwaiting) 552 gp.waitreason = "GC assist marking" 553 554 // drain own cached work first in the hopes that it 555 // will be more cache friendly. 556 gcw := &getg().m.p.ptr().gcw 557 workDone := gcDrainN(gcw, scanWork) 558 // If we are near the end of the mark phase 559 // dispose of the gcw. 560 if gcBlackenPromptly { 561 gcw.dispose() 562 } 563 564 casgstatus(gp, _Gwaiting, _Grunning) 565 566 // Record that we did this much scan work. 567 // 568 // Back out the number of bytes of assist credit that 569 // this scan work counts for. The "1+" is a poor man's 570 // round-up, to ensure this adds credit even if 571 // assistBytesPerWork is very low. 572 gp.gcAssistBytes += 1 + int64(gcController.assistBytesPerWork*float64(workDone)) 573 574 // If this is the last worker and we ran out of work, 575 // signal a completion point. 576 incnwait := atomic.Xadd(&work.nwait, +1) 577 if incnwait > work.nproc { 578 println("runtime: work.nwait=", incnwait, 579 "work.nproc=", work.nproc, 580 "gcBlackenPromptly=", gcBlackenPromptly) 581 throw("work.nwait > work.nproc") 582 } 583 584 if incnwait == work.nproc && !gcMarkWorkAvailable(nil) { 585 // This has reached a background completion point. Set 586 // gp.param to a non-nil value to indicate this. It 587 // doesn't matter what we set it to (it just has to be 588 // a valid pointer). 589 gp.param = unsafe.Pointer(gp) 590 } 591 duration := nanotime() - startTime 592 _p_ := gp.m.p.ptr() 593 _p_.gcAssistTime += duration 594 if _p_.gcAssistTime > gcAssistTimeSlack { 595 atomic.Xaddint64(&gcController.assistTime, _p_.gcAssistTime) 596 _p_.gcAssistTime = 0 597 } 598 } 599 600 // gcWakeAllAssists wakes all currently blocked assists. This is used 601 // at the end of a GC cycle. gcBlackenEnabled must be false to prevent 602 // new assists from going to sleep after this point. 603 func gcWakeAllAssists() { 604 lock(&work.assistQueue.lock) 605 injectglist(work.assistQueue.head.ptr()) 606 work.assistQueue.head.set(nil) 607 work.assistQueue.tail.set(nil) 608 unlock(&work.assistQueue.lock) 609 } 610 611 // gcParkAssist puts the current goroutine on the assist queue and parks. 612 // 613 // gcParkAssist returns whether the assist is now satisfied. If it 614 // returns false, the caller must retry the assist. 615 // 616 //go:nowritebarrier 617 func gcParkAssist() bool { 618 lock(&work.assistQueue.lock) 619 // If the GC cycle finished while we were getting the lock, 620 // exit the assist. The cycle can't finish while we hold the 621 // lock. 622 if atomic.Load(&gcBlackenEnabled) == 0 { 623 unlock(&work.assistQueue.lock) 624 return true 625 } 626 627 gp := getg() 628 oldHead, oldTail := work.assistQueue.head, work.assistQueue.tail 629 if oldHead == 0 { 630 work.assistQueue.head.set(gp) 631 } else { 632 oldTail.ptr().schedlink.set(gp) 633 } 634 work.assistQueue.tail.set(gp) 635 gp.schedlink.set(nil) 636 637 // Recheck for background credit now that this G is in 638 // the queue, but can still back out. This avoids a 639 // race in case background marking has flushed more 640 // credit since we checked above. 641 if atomic.Loadint64(&gcController.bgScanCredit) > 0 { 642 work.assistQueue.head = oldHead 643 work.assistQueue.tail = oldTail 644 if oldTail != 0 { 645 oldTail.ptr().schedlink.set(nil) 646 } 647 unlock(&work.assistQueue.lock) 648 return false 649 } 650 // Park. 651 goparkunlock(&work.assistQueue.lock, "GC assist wait", traceEvGoBlockGC, 2) 652 return true 653 } 654 655 // gcFlushBgCredit flushes scanWork units of background scan work 656 // credit. This first satisfies blocked assists on the 657 // work.assistQueue and then flushes any remaining credit to 658 // gcController.bgScanCredit. 659 // 660 // Write barriers are disallowed because this is used by gcDrain after 661 // it has ensured that all work is drained and this must preserve that 662 // condition. 663 // 664 //go:nowritebarrierrec 665 func gcFlushBgCredit(scanWork int64) { 666 if work.assistQueue.head == 0 { 667 // Fast path; there are no blocked assists. There's a 668 // small window here where an assist may add itself to 669 // the blocked queue and park. If that happens, we'll 670 // just get it on the next flush. 671 atomic.Xaddint64(&gcController.bgScanCredit, scanWork) 672 return 673 } 674 675 scanBytes := int64(float64(scanWork) * gcController.assistBytesPerWork) 676 677 lock(&work.assistQueue.lock) 678 gp := work.assistQueue.head.ptr() 679 for gp != nil && scanBytes > 0 { 680 // Note that gp.gcAssistBytes is negative because gp 681 // is in debt. Think carefully about the signs below. 682 if scanBytes+gp.gcAssistBytes >= 0 { 683 // Satisfy this entire assist debt. 684 scanBytes += gp.gcAssistBytes 685 gp.gcAssistBytes = 0 686 xgp := gp 687 gp = gp.schedlink.ptr() 688 // It's important that we *not* put xgp in 689 // runnext. Otherwise, it's possible for user 690 // code to exploit the GC worker's high 691 // scheduler priority to get itself always run 692 // before other goroutines and always in the 693 // fresh quantum started by GC. 694 ready(xgp, 0, false) 695 } else { 696 // Partially satisfy this assist. 697 gp.gcAssistBytes += scanBytes 698 scanBytes = 0 699 // As a heuristic, we move this assist to the 700 // back of the queue so that large assists 701 // can't clog up the assist queue and 702 // substantially delay small assists. 703 xgp := gp 704 gp = gp.schedlink.ptr() 705 if gp == nil { 706 // gp is the only assist in the queue. 707 gp = xgp 708 } else { 709 xgp.schedlink = 0 710 work.assistQueue.tail.ptr().schedlink.set(xgp) 711 work.assistQueue.tail.set(xgp) 712 } 713 break 714 } 715 } 716 work.assistQueue.head.set(gp) 717 if gp == nil { 718 work.assistQueue.tail.set(nil) 719 } 720 721 if scanBytes > 0 { 722 // Convert from scan bytes back to work. 723 scanWork = int64(float64(scanBytes) * gcController.assistWorkPerByte) 724 atomic.Xaddint64(&gcController.bgScanCredit, scanWork) 725 } 726 unlock(&work.assistQueue.lock) 727 } 728 729 // scanstack scans gp's stack, greying all pointers found on the stack. 730 // 731 // scanstack is marked go:systemstack because it must not be preempted 732 // while using a workbuf. 733 // 734 //go:nowritebarrier 735 //go:systemstack 736 func scanstack(gp *g, gcw *gcWork) { 737 if gp.gcscanvalid { 738 return 739 } 740 741 if readgstatus(gp)&_Gscan == 0 { 742 print("runtime:scanstack: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", hex(readgstatus(gp)), "\n") 743 throw("scanstack - bad status") 744 } 745 746 switch readgstatus(gp) &^ _Gscan { 747 default: 748 print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n") 749 throw("mark - bad status") 750 case _Gdead: 751 return 752 case _Grunning: 753 print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n") 754 throw("scanstack: goroutine not stopped") 755 case _Grunnable, _Gsyscall, _Gwaiting: 756 // ok 757 } 758 759 if gp == getg() { 760 throw("can't scan our own stack") 761 } 762 mp := gp.m 763 if mp != nil && mp.helpgc != 0 { 764 throw("can't scan gchelper stack") 765 } 766 767 // Shrink the stack if not much of it is being used. During 768 // concurrent GC, we can do this during concurrent mark. 769 if !work.markrootDone { 770 shrinkstack(gp) 771 } 772 773 // Scan the saved context register. This is effectively a live 774 // register that gets moved back and forth between the 775 // register and sched.ctxt without a write barrier. 776 if gp.sched.ctxt != nil { 777 scanblock(uintptr(unsafe.Pointer(&gp.sched.ctxt)), sys.PtrSize, &oneptrmask[0], gcw) 778 } 779 780 // Scan the stack. 781 var cache pcvalueCache 782 scanframe := func(frame *stkframe, unused unsafe.Pointer) bool { 783 scanframeworker(frame, &cache, gcw) 784 return true 785 } 786 gentraceback(^uintptr(0), ^uintptr(0), 0, gp, 0, nil, 0x7fffffff, scanframe, nil, 0) 787 tracebackdefers(gp, scanframe, nil) 788 gp.gcscanvalid = true 789 } 790 791 // Scan a stack frame: local variables and function arguments/results. 792 //go:nowritebarrier 793 func scanframeworker(frame *stkframe, cache *pcvalueCache, gcw *gcWork) { 794 795 f := frame.fn 796 targetpc := frame.continpc 797 if targetpc == 0 { 798 // Frame is dead. 799 return 800 } 801 if _DebugGC > 1 { 802 print("scanframe ", funcname(f), "\n") 803 } 804 if targetpc != f.entry { 805 targetpc-- 806 } 807 pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc, cache) 808 if pcdata == -1 { 809 // We do not have a valid pcdata value but there might be a 810 // stackmap for this function. It is likely that we are looking 811 // at the function prologue, assume so and hope for the best. 812 pcdata = 0 813 } 814 815 // Scan local variables if stack frame has been allocated. 816 size := frame.varp - frame.sp 817 var minsize uintptr 818 switch sys.ArchFamily { 819 case sys.ARM64: 820 minsize = sys.SpAlign 821 default: 822 minsize = sys.MinFrameSize 823 } 824 if size > minsize { 825 stkmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps)) 826 if stkmap == nil || stkmap.n <= 0 { 827 print("runtime: frame ", funcname(f), " untyped locals ", hex(frame.varp-size), "+", hex(size), "\n") 828 throw("missing stackmap") 829 } 830 831 // Locals bitmap information, scan just the pointers in locals. 832 if pcdata < 0 || pcdata >= stkmap.n { 833 // don't know where we are 834 print("runtime: pcdata is ", pcdata, " and ", stkmap.n, " locals stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n") 835 throw("scanframe: bad symbol table") 836 } 837 bv := stackmapdata(stkmap, pcdata) 838 size = uintptr(bv.n) * sys.PtrSize 839 scanblock(frame.varp-size, size, bv.bytedata, gcw) 840 } 841 842 // Scan arguments. 843 if frame.arglen > 0 { 844 var bv bitvector 845 if frame.argmap != nil { 846 bv = *frame.argmap 847 } else { 848 stkmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps)) 849 if stkmap == nil || stkmap.n <= 0 { 850 print("runtime: frame ", funcname(f), " untyped args ", hex(frame.argp), "+", hex(frame.arglen), "\n") 851 throw("missing stackmap") 852 } 853 if pcdata < 0 || pcdata >= stkmap.n { 854 // don't know where we are 855 print("runtime: pcdata is ", pcdata, " and ", stkmap.n, " args stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n") 856 throw("scanframe: bad symbol table") 857 } 858 bv = stackmapdata(stkmap, pcdata) 859 } 860 scanblock(frame.argp, uintptr(bv.n)*sys.PtrSize, bv.bytedata, gcw) 861 } 862 } 863 864 type gcDrainFlags int 865 866 const ( 867 gcDrainUntilPreempt gcDrainFlags = 1 << iota 868 gcDrainNoBlock 869 gcDrainFlushBgCredit 870 gcDrainIdle 871 gcDrainFractional 872 873 // gcDrainBlock means neither gcDrainUntilPreempt or 874 // gcDrainNoBlock. It is the default, but callers should use 875 // the constant for documentation purposes. 876 gcDrainBlock gcDrainFlags = 0 877 ) 878 879 // gcDrain scans roots and objects in work buffers, blackening grey 880 // objects until all roots and work buffers have been drained. 881 // 882 // If flags&gcDrainUntilPreempt != 0, gcDrain returns when g.preempt 883 // is set. This implies gcDrainNoBlock. 884 // 885 // If flags&gcDrainIdle != 0, gcDrain returns when there is other work 886 // to do. This implies gcDrainNoBlock. 887 // 888 // If flags&gcDrainFractional != 0, gcDrain self-preempts when 889 // pollFractionalWorkerExit() returns true. This implies 890 // gcDrainNoBlock. 891 // 892 // If flags&gcDrainNoBlock != 0, gcDrain returns as soon as it is 893 // unable to get more work. Otherwise, it will block until all 894 // blocking calls are blocked in gcDrain. 895 // 896 // If flags&gcDrainFlushBgCredit != 0, gcDrain flushes scan work 897 // credit to gcController.bgScanCredit every gcCreditSlack units of 898 // scan work. 899 // 900 //go:nowritebarrier 901 func gcDrain(gcw *gcWork, flags gcDrainFlags) { 902 if !writeBarrier.needed { 903 throw("gcDrain phase incorrect") 904 } 905 906 gp := getg().m.curg 907 preemptible := flags&gcDrainUntilPreempt != 0 908 blocking := flags&(gcDrainUntilPreempt|gcDrainIdle|gcDrainFractional|gcDrainNoBlock) == 0 909 flushBgCredit := flags&gcDrainFlushBgCredit != 0 910 idle := flags&gcDrainIdle != 0 911 912 initScanWork := gcw.scanWork 913 914 // checkWork is the scan work before performing the next 915 // self-preempt check. 916 checkWork := int64(1<<63 - 1) 917 var check func() bool 918 if flags&(gcDrainIdle|gcDrainFractional) != 0 { 919 checkWork = initScanWork + drainCheckThreshold 920 if idle { 921 check = pollWork 922 } else if flags&gcDrainFractional != 0 { 923 check = pollFractionalWorkerExit 924 } 925 } 926 927 // Drain root marking jobs. 928 if work.markrootNext < work.markrootJobs { 929 for !(preemptible && gp.preempt) { 930 job := atomic.Xadd(&work.markrootNext, +1) - 1 931 if job >= work.markrootJobs { 932 break 933 } 934 markroot(gcw, job) 935 if check != nil && check() { 936 goto done 937 } 938 } 939 } 940 941 // Drain heap marking jobs. 942 for !(preemptible && gp.preempt) { 943 // Try to keep work available on the global queue. We used to 944 // check if there were waiting workers, but it's better to 945 // just keep work available than to make workers wait. In the 946 // worst case, we'll do O(log(_WorkbufSize)) unnecessary 947 // balances. 948 if work.full == 0 { 949 gcw.balance() 950 } 951 952 var b uintptr 953 if blocking { 954 b = gcw.get() 955 } else { 956 b = gcw.tryGetFast() 957 if b == 0 { 958 b = gcw.tryGet() 959 } 960 } 961 if b == 0 { 962 // work barrier reached or tryGet failed. 963 break 964 } 965 scanobject(b, gcw) 966 967 // Flush background scan work credit to the global 968 // account if we've accumulated enough locally so 969 // mutator assists can draw on it. 970 if gcw.scanWork >= gcCreditSlack { 971 atomic.Xaddint64(&gcController.scanWork, gcw.scanWork) 972 if flushBgCredit { 973 gcFlushBgCredit(gcw.scanWork - initScanWork) 974 initScanWork = 0 975 } 976 checkWork -= gcw.scanWork 977 gcw.scanWork = 0 978 979 if checkWork <= 0 { 980 checkWork += drainCheckThreshold 981 if check != nil && check() { 982 break 983 } 984 } 985 } 986 } 987 988 // In blocking mode, write barriers are not allowed after this 989 // point because we must preserve the condition that the work 990 // buffers are empty. 991 992 done: 993 // Flush remaining scan work credit. 994 if gcw.scanWork > 0 { 995 atomic.Xaddint64(&gcController.scanWork, gcw.scanWork) 996 if flushBgCredit { 997 gcFlushBgCredit(gcw.scanWork - initScanWork) 998 } 999 gcw.scanWork = 0 1000 } 1001 } 1002 1003 // gcDrainN blackens grey objects until it has performed roughly 1004 // scanWork units of scan work or the G is preempted. This is 1005 // best-effort, so it may perform less work if it fails to get a work 1006 // buffer. Otherwise, it will perform at least n units of work, but 1007 // may perform more because scanning is always done in whole object 1008 // increments. It returns the amount of scan work performed. 1009 // 1010 // The caller goroutine must be in a preemptible state (e.g., 1011 // _Gwaiting) to prevent deadlocks during stack scanning. As a 1012 // consequence, this must be called on the system stack. 1013 // 1014 //go:nowritebarrier 1015 //go:systemstack 1016 func gcDrainN(gcw *gcWork, scanWork int64) int64 { 1017 if !writeBarrier.needed { 1018 throw("gcDrainN phase incorrect") 1019 } 1020 1021 // There may already be scan work on the gcw, which we don't 1022 // want to claim was done by this call. 1023 workFlushed := -gcw.scanWork 1024 1025 gp := getg().m.curg 1026 for !gp.preempt && workFlushed+gcw.scanWork < scanWork { 1027 // See gcDrain comment. 1028 if work.full == 0 { 1029 gcw.balance() 1030 } 1031 1032 // This might be a good place to add prefetch code... 1033 // if(wbuf.nobj > 4) { 1034 // PREFETCH(wbuf->obj[wbuf.nobj - 3]; 1035 // } 1036 // 1037 b := gcw.tryGetFast() 1038 if b == 0 { 1039 b = gcw.tryGet() 1040 } 1041 1042 if b == 0 { 1043 // Try to do a root job. 1044 // 1045 // TODO: Assists should get credit for this 1046 // work. 1047 if work.markrootNext < work.markrootJobs { 1048 job := atomic.Xadd(&work.markrootNext, +1) - 1 1049 if job < work.markrootJobs { 1050 markroot(gcw, job) 1051 continue 1052 } 1053 } 1054 // No heap or root jobs. 1055 break 1056 } 1057 scanobject(b, gcw) 1058 1059 // Flush background scan work credit. 1060 if gcw.scanWork >= gcCreditSlack { 1061 atomic.Xaddint64(&gcController.scanWork, gcw.scanWork) 1062 workFlushed += gcw.scanWork 1063 gcw.scanWork = 0 1064 } 1065 } 1066 1067 // Unlike gcDrain, there's no need to flush remaining work 1068 // here because this never flushes to bgScanCredit and 1069 // gcw.dispose will flush any remaining work to scanWork. 1070 1071 return workFlushed + gcw.scanWork 1072 } 1073 1074 // scanblock scans b as scanobject would, but using an explicit 1075 // pointer bitmap instead of the heap bitmap. 1076 // 1077 // This is used to scan non-heap roots, so it does not update 1078 // gcw.bytesMarked or gcw.scanWork. 1079 // 1080 //go:nowritebarrier 1081 func scanblock(b0, n0 uintptr, ptrmask *uint8, gcw *gcWork) { 1082 // Use local copies of original parameters, so that a stack trace 1083 // due to one of the throws below shows the original block 1084 // base and extent. 1085 b := b0 1086 n := n0 1087 1088 arena_start := mheap_.arena_start 1089 arena_used := mheap_.arena_used 1090 1091 for i := uintptr(0); i < n; { 1092 // Find bits for the next word. 1093 bits := uint32(*addb(ptrmask, i/(sys.PtrSize*8))) 1094 if bits == 0 { 1095 i += sys.PtrSize * 8 1096 continue 1097 } 1098 for j := 0; j < 8 && i < n; j++ { 1099 if bits&1 != 0 { 1100 // Same work as in scanobject; see comments there. 1101 obj := *(*uintptr)(unsafe.Pointer(b + i)) 1102 if obj != 0 && arena_start <= obj && obj < arena_used { 1103 if obj, hbits, span, objIndex := heapBitsForObject(obj, b, i); obj != 0 { 1104 greyobject(obj, b, i, hbits, span, gcw, objIndex) 1105 } 1106 } 1107 } 1108 bits >>= 1 1109 i += sys.PtrSize 1110 } 1111 } 1112 } 1113 1114 // scanobject scans the object starting at b, adding pointers to gcw. 1115 // b must point to the beginning of a heap object or an oblet. 1116 // scanobject consults the GC bitmap for the pointer mask and the 1117 // spans for the size of the object. 1118 // 1119 //go:nowritebarrier 1120 func scanobject(b uintptr, gcw *gcWork) { 1121 // Note that arena_used may change concurrently during 1122 // scanobject and hence scanobject may encounter a pointer to 1123 // a newly allocated heap object that is *not* in 1124 // [start,used). It will not mark this object; however, we 1125 // know that it was just installed by a mutator, which means 1126 // that mutator will execute a write barrier and take care of 1127 // marking it. This is even more pronounced on relaxed memory 1128 // architectures since we access arena_used without barriers 1129 // or synchronization, but the same logic applies. 1130 arena_start := mheap_.arena_start 1131 arena_used := mheap_.arena_used 1132 1133 // Find the bits for b and the size of the object at b. 1134 // 1135 // b is either the beginning of an object, in which case this 1136 // is the size of the object to scan, or it points to an 1137 // oblet, in which case we compute the size to scan below. 1138 hbits := heapBitsForAddr(b) 1139 s := spanOfUnchecked(b) 1140 n := s.elemsize 1141 if n == 0 { 1142 throw("scanobject n == 0") 1143 } 1144 1145 if n > maxObletBytes { 1146 // Large object. Break into oblets for better 1147 // parallelism and lower latency. 1148 if b == s.base() { 1149 // It's possible this is a noscan object (not 1150 // from greyobject, but from other code 1151 // paths), in which case we must *not* enqueue 1152 // oblets since their bitmaps will be 1153 // uninitialized. 1154 if s.spanclass.noscan() { 1155 // Bypass the whole scan. 1156 gcw.bytesMarked += uint64(n) 1157 return 1158 } 1159 1160 // Enqueue the other oblets to scan later. 1161 // Some oblets may be in b's scalar tail, but 1162 // these will be marked as "no more pointers", 1163 // so we'll drop out immediately when we go to 1164 // scan those. 1165 for oblet := b + maxObletBytes; oblet < s.base()+s.elemsize; oblet += maxObletBytes { 1166 if !gcw.putFast(oblet) { 1167 gcw.put(oblet) 1168 } 1169 } 1170 } 1171 1172 // Compute the size of the oblet. Since this object 1173 // must be a large object, s.base() is the beginning 1174 // of the object. 1175 n = s.base() + s.elemsize - b 1176 if n > maxObletBytes { 1177 n = maxObletBytes 1178 } 1179 } 1180 1181 var i uintptr 1182 for i = 0; i < n; i += sys.PtrSize { 1183 // Find bits for this word. 1184 if i != 0 { 1185 // Avoid needless hbits.next() on last iteration. 1186 hbits = hbits.next() 1187 } 1188 // Load bits once. See CL 22712 and issue 16973 for discussion. 1189 bits := hbits.bits() 1190 // During checkmarking, 1-word objects store the checkmark 1191 // in the type bit for the one word. The only one-word objects 1192 // are pointers, or else they'd be merged with other non-pointer 1193 // data into larger allocations. 1194 if i != 1*sys.PtrSize && bits&bitScan == 0 { 1195 break // no more pointers in this object 1196 } 1197 if bits&bitPointer == 0 { 1198 continue // not a pointer 1199 } 1200 1201 // Work here is duplicated in scanblock and above. 1202 // If you make changes here, make changes there too. 1203 obj := *(*uintptr)(unsafe.Pointer(b + i)) 1204 1205 // At this point we have extracted the next potential pointer. 1206 // Check if it points into heap and not back at the current object. 1207 if obj != 0 && arena_start <= obj && obj < arena_used && obj-b >= n { 1208 // Mark the object. 1209 if obj, hbits, span, objIndex := heapBitsForObject(obj, b, i); obj != 0 { 1210 greyobject(obj, b, i, hbits, span, gcw, objIndex) 1211 } 1212 } 1213 } 1214 gcw.bytesMarked += uint64(n) 1215 gcw.scanWork += int64(i) 1216 } 1217 1218 // Shade the object if it isn't already. 1219 // The object is not nil and known to be in the heap. 1220 // Preemption must be disabled. 1221 //go:nowritebarrier 1222 func shade(b uintptr) { 1223 if obj, hbits, span, objIndex := heapBitsForObject(b, 0, 0); obj != 0 { 1224 gcw := &getg().m.p.ptr().gcw 1225 greyobject(obj, 0, 0, hbits, span, gcw, objIndex) 1226 if gcphase == _GCmarktermination || gcBlackenPromptly { 1227 // Ps aren't allowed to cache work during mark 1228 // termination. 1229 gcw.dispose() 1230 } 1231 } 1232 } 1233 1234 // obj is the start of an object with mark mbits. 1235 // If it isn't already marked, mark it and enqueue into gcw. 1236 // base and off are for debugging only and could be removed. 1237 // 1238 // See also wbBufFlush1, which partially duplicates this logic. 1239 // 1240 //go:nowritebarrierrec 1241 func greyobject(obj, base, off uintptr, hbits heapBits, span *mspan, gcw *gcWork, objIndex uintptr) { 1242 // obj should be start of allocation, and so must be at least pointer-aligned. 1243 if obj&(sys.PtrSize-1) != 0 { 1244 throw("greyobject: obj not pointer-aligned") 1245 } 1246 mbits := span.markBitsForIndex(objIndex) 1247 1248 if useCheckmark { 1249 if !mbits.isMarked() { 1250 printlock() 1251 print("runtime:greyobject: checkmarks finds unexpected unmarked object obj=", hex(obj), "\n") 1252 print("runtime: found obj at *(", hex(base), "+", hex(off), ")\n") 1253 1254 // Dump the source (base) object 1255 gcDumpObject("base", base, off) 1256 1257 // Dump the object 1258 gcDumpObject("obj", obj, ^uintptr(0)) 1259 1260 getg().m.traceback = 2 1261 throw("checkmark found unmarked object") 1262 } 1263 if hbits.isCheckmarked(span.elemsize) { 1264 return 1265 } 1266 hbits.setCheckmarked(span.elemsize) 1267 if !hbits.isCheckmarked(span.elemsize) { 1268 throw("setCheckmarked and isCheckmarked disagree") 1269 } 1270 } else { 1271 if debug.gccheckmark > 0 && span.isFree(objIndex) { 1272 print("runtime: marking free object ", hex(obj), " found at *(", hex(base), "+", hex(off), ")\n") 1273 gcDumpObject("base", base, off) 1274 gcDumpObject("obj", obj, ^uintptr(0)) 1275 getg().m.traceback = 2 1276 throw("marking free object") 1277 } 1278 1279 // If marked we have nothing to do. 1280 if mbits.isMarked() { 1281 return 1282 } 1283 // mbits.setMarked() // Avoid extra call overhead with manual inlining. 1284 atomic.Or8(mbits.bytep, mbits.mask) 1285 // If this is a noscan object, fast-track it to black 1286 // instead of greying it. 1287 if span.spanclass.noscan() { 1288 gcw.bytesMarked += uint64(span.elemsize) 1289 return 1290 } 1291 } 1292 1293 // Queue the obj for scanning. The PREFETCH(obj) logic has been removed but 1294 // seems like a nice optimization that can be added back in. 1295 // There needs to be time between the PREFETCH and the use. 1296 // Previously we put the obj in an 8 element buffer that is drained at a rate 1297 // to give the PREFETCH time to do its work. 1298 // Use of PREFETCHNTA might be more appropriate than PREFETCH 1299 if !gcw.putFast(obj) { 1300 gcw.put(obj) 1301 } 1302 } 1303 1304 // gcDumpObject dumps the contents of obj for debugging and marks the 1305 // field at byte offset off in obj. 1306 func gcDumpObject(label string, obj, off uintptr) { 1307 if obj < mheap_.arena_start || obj >= mheap_.arena_used { 1308 print(label, "=", hex(obj), " is not in the Go heap\n") 1309 return 1310 } 1311 k := obj >> _PageShift 1312 x := k 1313 x -= mheap_.arena_start >> _PageShift 1314 s := mheap_.spans[x] 1315 print(label, "=", hex(obj), " k=", hex(k)) 1316 if s == nil { 1317 print(" s=nil\n") 1318 return 1319 } 1320 print(" s.base()=", hex(s.base()), " s.limit=", hex(s.limit), " s.spanclass=", s.spanclass, " s.elemsize=", s.elemsize, " s.state=") 1321 if 0 <= s.state && int(s.state) < len(mSpanStateNames) { 1322 print(mSpanStateNames[s.state], "\n") 1323 } else { 1324 print("unknown(", s.state, ")\n") 1325 } 1326 1327 skipped := false 1328 size := s.elemsize 1329 if s.state == _MSpanManual && size == 0 { 1330 // We're printing something from a stack frame. We 1331 // don't know how big it is, so just show up to an 1332 // including off. 1333 size = off + sys.PtrSize 1334 } 1335 for i := uintptr(0); i < size; i += sys.PtrSize { 1336 // For big objects, just print the beginning (because 1337 // that usually hints at the object's type) and the 1338 // fields around off. 1339 if !(i < 128*sys.PtrSize || off-16*sys.PtrSize < i && i < off+16*sys.PtrSize) { 1340 skipped = true 1341 continue 1342 } 1343 if skipped { 1344 print(" ...\n") 1345 skipped = false 1346 } 1347 print(" *(", label, "+", i, ") = ", hex(*(*uintptr)(unsafe.Pointer(obj + i)))) 1348 if i == off { 1349 print(" <==") 1350 } 1351 print("\n") 1352 } 1353 if skipped { 1354 print(" ...\n") 1355 } 1356 } 1357 1358 // gcmarknewobject marks a newly allocated object black. obj must 1359 // not contain any non-nil pointers. 1360 // 1361 // This is nosplit so it can manipulate a gcWork without preemption. 1362 // 1363 //go:nowritebarrier 1364 //go:nosplit 1365 func gcmarknewobject(obj, size, scanSize uintptr) { 1366 if useCheckmark && !gcBlackenPromptly { // The world should be stopped so this should not happen. 1367 throw("gcmarknewobject called while doing checkmark") 1368 } 1369 markBitsForAddr(obj).setMarked() 1370 gcw := &getg().m.p.ptr().gcw 1371 gcw.bytesMarked += uint64(size) 1372 gcw.scanWork += int64(scanSize) 1373 if gcBlackenPromptly { 1374 // There shouldn't be anything in the work queue, but 1375 // we still need to flush stats. 1376 gcw.dispose() 1377 } 1378 } 1379 1380 // gcMarkTinyAllocs greys all active tiny alloc blocks. 1381 // 1382 // The world must be stopped. 1383 func gcMarkTinyAllocs() { 1384 for _, p := range allp { 1385 c := p.mcache 1386 if c == nil || c.tiny == 0 { 1387 continue 1388 } 1389 _, hbits, span, objIndex := heapBitsForObject(c.tiny, 0, 0) 1390 gcw := &p.gcw 1391 greyobject(c.tiny, 0, 0, hbits, span, gcw, objIndex) 1392 if gcBlackenPromptly { 1393 gcw.dispose() 1394 } 1395 } 1396 } 1397 1398 // Checkmarking 1399 1400 // To help debug the concurrent GC we remark with the world 1401 // stopped ensuring that any object encountered has their normal 1402 // mark bit set. To do this we use an orthogonal bit 1403 // pattern to indicate the object is marked. The following pattern 1404 // uses the upper two bits in the object's boundary nibble. 1405 // 01: scalar not marked 1406 // 10: pointer not marked 1407 // 11: pointer marked 1408 // 00: scalar marked 1409 // Xoring with 01 will flip the pattern from marked to unmarked and vica versa. 1410 // The higher bit is 1 for pointers and 0 for scalars, whether the object 1411 // is marked or not. 1412 // The first nibble no longer holds the typeDead pattern indicating that the 1413 // there are no more pointers in the object. This information is held 1414 // in the second nibble. 1415 1416 // If useCheckmark is true, marking of an object uses the 1417 // checkmark bits (encoding above) instead of the standard 1418 // mark bits. 1419 var useCheckmark = false 1420 1421 //go:nowritebarrier 1422 func initCheckmarks() { 1423 useCheckmark = true 1424 for _, s := range mheap_.allspans { 1425 if s.state == _MSpanInUse { 1426 heapBitsForSpan(s.base()).initCheckmarkSpan(s.layout()) 1427 } 1428 } 1429 } 1430 1431 func clearCheckmarks() { 1432 useCheckmark = false 1433 for _, s := range mheap_.allspans { 1434 if s.state == _MSpanInUse { 1435 heapBitsForSpan(s.base()).clearCheckmarkSpan(s.layout()) 1436 } 1437 } 1438 }