github.com/ltltlt/go-source-code@v0.0.0-20190830023027-95be009773aa/runtime/runtime2.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package runtime 6 7 import ( 8 "runtime/internal/atomic" 9 "runtime/internal/sys" 10 "unsafe" 11 ) 12 13 // defined constants 14 const ( 15 // G status 16 // 17 // Beyond indicating the general state of a G, the G status 18 // acts like a lock on the goroutine's stack (and hence its 19 // ability to execute user code). 20 // 21 // If you add to this list, add to the list 22 // of "okay during garbage collection" status 23 // in mgcmark.go too. 24 25 // _Gidle means this goroutine was just allocated and has not 26 // yet been initialized. 27 _Gidle = iota // 0 28 29 // _Grunnable means this goroutine is on a run queue. It is 30 // not currently executing user code. The stack is not owned. 31 _Grunnable // 1 32 33 // _Grunning means this goroutine may execute user code. The 34 // stack is owned by this goroutine. It is not on a run queue. 35 // It is assigned an M and a P. 36 _Grunning // 2 37 38 // _Gsyscall means this goroutine is executing a system call. 39 // It is not executing user code. The stack is owned by this 40 // goroutine. It is not on a run queue. It is assigned an M. 41 _Gsyscall // 3 42 43 // _Gwaiting means this goroutine is blocked in the runtime. 44 // It is not executing user code. It is not on a run queue, 45 // but should be recorded somewhere (e.g., a channel wait 46 // queue) so it can be ready()d when necessary. The stack is 47 // not owned *except* that a channel operation may read or 48 // write parts of the stack under the appropriate channel 49 // lock. Otherwise, it is not safe to access the stack after a 50 // goroutine enters _Gwaiting (e.g., it may get moved). 51 _Gwaiting // 4 52 53 // _Gmoribund_unused is currently unused, but hardcoded in gdb 54 // scripts. 55 _Gmoribund_unused // 5 56 57 // _Gdead means this goroutine is currently unused. It may be 58 // just exited, on a free list, or just being initialized. It 59 // is not executing user code. It may or may not have a stack 60 // allocated. The G and its stack (if any) are owned by the M 61 // that is exiting the G or that obtained the G from the free 62 // list. 63 _Gdead // 6 64 65 // _Genqueue_unused is currently unused. 66 _Genqueue_unused // 7 67 68 // _Gcopystack means this goroutine's stack is being moved. It 69 // is not executing user code and is not on a run queue. The 70 // stack is owned by the goroutine that put it in _Gcopystack. 71 _Gcopystack // 8 72 73 // _Gscan combined with one of the above states other than 74 // _Grunning indicates that GC is scanning the stack. The 75 // goroutine is not executing user code and the stack is owned 76 // by the goroutine that set the _Gscan bit. 77 // 78 // _Gscanrunning is different: it is used to briefly block 79 // state transitions while GC signals the G to scan its own 80 // stack. This is otherwise like _Grunning. 81 // 82 // atomicstatus&~Gscan gives the state the goroutine will 83 // return to when the scan completes. 84 _Gscan = 0x1000 85 _Gscanrunnable = _Gscan + _Grunnable // 0x1001 86 _Gscanrunning = _Gscan + _Grunning // 0x1002 87 _Gscansyscall = _Gscan + _Gsyscall // 0x1003 88 _Gscanwaiting = _Gscan + _Gwaiting // 0x1004 89 ) 90 91 const ( 92 // P status 93 _Pidle = iota 94 _Prunning // Only this P is allowed to change from _Prunning. 95 _Psyscall 96 _Pgcstop 97 _Pdead 98 ) 99 100 // Mutual exclusion locks. In the uncontended case, 101 // as fast as spin locks (just a few user-level instructions), 102 // but on the contention path they sleep in the kernel. 103 // A zeroed Mutex is unlocked (no need to initialize each lock). 104 // 互相排斥的锁. 无竞争时, 就像自旋锁一样快(只是几条用户态指令) 105 // 但有竞争时, 其在内核态睡眠. 一个0值mutex是未锁定的, 没必要初始化每个锁 106 type mutex struct { 107 // Futex-based impl treats it as uint32 key, 108 // while sema-based impl as M* waitm. 109 // Used to be a union, but unions break precise GC. 110 key uintptr 111 } 112 113 // sleep and wakeup on one-time events. 114 // before any calls to notesleep or notewakeup, 115 // must call noteclear to initialize the Note. 116 // then, exactly one thread can call notesleep 117 // and exactly one thread can call notewakeup (once). 118 // once notewakeup has been called, the notesleep 119 // will return. future notesleep will return immediately. 120 // subsequent noteclear must be called only after 121 // previous notesleep has returned, e.g. it's disallowed 122 // to call noteclear straight after notewakeup. 123 // 124 // notetsleep is like notesleep but wakes up after 125 // a given number of nanoseconds even if the event 126 // has not yet happened. if a goroutine uses notetsleep to 127 // wake up early, it must wait to call noteclear until it 128 // can be sure that no other goroutine is calling 129 // notewakeup. 130 // 131 // notesleep/notetsleep are generally called on g0, 132 // notetsleepg is similar to notetsleep but is called on user g. 133 type note struct { 134 // Futex-based impl treats it as uint32 key, 135 // while sema-based impl as M* waitm. 136 // Used to be a union, but unions break precise GC. 137 key uintptr 138 } 139 140 type funcval struct { 141 fn uintptr 142 // variable-size, fn-specific data here 143 // 闭包能引用到的变量的地址就放这, 还有binded method引用到的receiver地址也放这 144 } 145 146 // non-empty interface 147 // 此interface含method, 如var v Reader = whatever 148 // tab 里包含一些实际类型和接口类型 149 type iface struct { 150 tab *itab // _type的基础上加上一些函数指针 151 data unsafe.Pointer 152 } 153 154 // empty interface 155 // 此interface不含method, 如var v interface{} = whatever 156 // 故只要存实际类型和指针即可 157 type eface struct { 158 _type *_type 159 data unsafe.Pointer 160 } 161 162 func efaceOf(ep *interface{}) *eface { 163 return (*eface)(unsafe.Pointer(ep)) 164 } 165 166 // The guintptr, muintptr, and puintptr are all used to bypass write barriers. 167 // It is particularly important to avoid write barriers when the current P has 168 // been released, because the GC thinks the world is stopped, and an 169 // unexpected write barrier would not be synchronized with the GC, 170 // which can lead to a half-executed write barrier that has marked the object 171 // but not queued it. If the GC skips the object and completes before the 172 // queuing can occur, it will incorrectly free the object. 173 // 174 // We tried using special assignment functions invoked only when not 175 // holding a running P, but then some updates to a particular memory 176 // word went through write barriers and some did not. This breaks the 177 // write barrier shadow checking mode, and it is also scary: better to have 178 // a word that is completely ignored by the GC than to have one for which 179 // only a few updates are ignored. 180 // 181 // Gs and Ps are always reachable via true pointers in the 182 // allgs and allp lists or (during allocation before they reach those lists) 183 // from stack variables. 184 // 185 // Ms are always reachable via true pointers either from allm or 186 // freem. Unlike Gs and Ps we do free Ms, so it's important that 187 // nothing ever hold an muintptr across a safe point. 188 189 // A guintptr holds a goroutine pointer, but typed as a uintptr 190 // to bypass write barriers. It is used in the Gobuf goroutine state 191 // and in scheduling lists that are manipulated without a P. 192 // 193 // The Gobuf.g goroutine pointer is almost always updated by assembly code. 194 // In one of the few places it is updated by Go code - func save - it must be 195 // treated as a uintptr to avoid a write barrier being emitted at a bad time. 196 // Instead of figuring out how to emit the write barriers missing in the 197 // assembly manipulation, we change the type of the field to uintptr, 198 // so that it does not require write barriers at all. 199 // 200 // Goroutine structs are published in the allg list and never freed. 201 // That will keep the goroutine structs from being collected. 202 // There is never a time that Gobuf.g's contain the only references 203 // to a goroutine: the publishing of the goroutine in allg comes first. 204 // Goroutine pointers are also kept in non-GC-visible places like TLS, 205 // so I can't see them ever moving. If we did want to start moving data 206 // in the GC, we'd need to allocate the goroutine structs from an 207 // alternate arena. Using guintptr doesn't make that problem any worse. 208 type guintptr uintptr 209 210 //go:nosplit 211 func (gp guintptr) ptr() *g { return (*g)(unsafe.Pointer(gp)) } 212 213 //go:nosplit 214 func (gp *guintptr) set(g *g) { *gp = guintptr(unsafe.Pointer(g)) } 215 216 //go:nosplit 217 func (gp *guintptr) cas(old, new guintptr) bool { 218 return atomic.Casuintptr((*uintptr)(unsafe.Pointer(gp)), uintptr(old), uintptr(new)) 219 } 220 221 // setGNoWB performs *gp = new without a write barrier. 222 // For times when it's impractical to use a guintptr. 223 //go:nosplit 224 //go:nowritebarrier 225 func setGNoWB(gp **g, new *g) { 226 (*guintptr)(unsafe.Pointer(gp)).set(new) 227 } 228 229 type puintptr uintptr 230 231 //go:nosplit 232 func (pp puintptr) ptr() *p { return (*p)(unsafe.Pointer(pp)) } 233 234 //go:nosplit 235 func (pp *puintptr) set(p *p) { *pp = puintptr(unsafe.Pointer(p)) } 236 237 // muintptr is a *m that is not tracked by the garbage collector. 238 // 不被垃圾收集器跟踪 239 // 240 // Because we do free Ms, there are some additional constrains on 241 // muintptrs: 242 // 243 // 1. Never hold an muintptr locally across a safe point. 244 // 245 // 2. Any muintptr in the heap must be owned by the M itself so it can 246 // ensure it is not in use when the last true *m is released. 247 type muintptr uintptr 248 249 //go:nosplit 250 func (mp muintptr) ptr() *m { return (*m)(unsafe.Pointer(mp)) } 251 252 //go:nosplit 253 func (mp *muintptr) set(m *m) { *mp = muintptr(unsafe.Pointer(m)) } 254 255 // setMNoWB performs *mp = new without a write barrier. 256 // For times when it's impractical to use an muintptr. 257 //go:nosplit 258 //go:nowritebarrier 259 func setMNoWB(mp **m, new *m) { 260 (*muintptr)(unsafe.Pointer(mp)).set(new) 261 } 262 263 type gobuf struct { 264 // The offsets of sp, pc, and g are known to (hard-coded in) libmach. 265 // 266 // ctxt is unusual with respect to GC: it may be a 267 // heap-allocated funcval, so GC needs to track it, but it 268 // needs to be set and cleared from assembly, where it's 269 // difficult to have write barriers. However, ctxt is really a 270 // saved, live register, and we only ever exchange it between 271 // the real register and the gobuf. Hence, we treat it as a 272 // root during stack scanning, which means assembly that saves 273 // and restores it doesn't need write barriers. It's still 274 // typed as a pointer so that any other writes from Go get 275 // write barriers. 276 sp uintptr 277 pc uintptr 278 g guintptr 279 ctxt unsafe.Pointer 280 ret sys.Uintreg 281 lr uintptr 282 bp uintptr // for GOEXPERIMENT=framepointer 283 } 284 285 // sudog represents a g in a wait list, such as for sending/receiving 286 // on a channel. 287 // 代表在等待list中的g 288 // 289 // sudog is necessary because the g ↔ synchronization object relation 290 // is many-to-many. A g can be on many wait lists, so there may be 291 // many sudogs for one g; and many gs may be waiting on the same 292 // synchronization object, so there may be many sudogs for one object. 293 // 294 // sudogs are allocated from a special pool. Use acquireSudog and 295 // releaseSudog to allocate and free them. 296 type sudog struct { 297 // The following fields are protected by the hchan.lock of the 298 // channel this sudog is blocking on. shrinkstack depends on 299 // this for sudogs involved in channel ops. 300 301 g *g 302 303 // isSelect indicates g is participating in a select, so 304 // g.selectDone must be CAS'd to win the wake-up race. 305 isSelect bool 306 next *sudog 307 prev *sudog 308 elem unsafe.Pointer // data element (may point to stack) 309 310 // The following fields are never accessed concurrently. 311 // For channels, waitlink is only accessed by g. 312 // For semaphores, all fields (including the ones above) 313 // are only accessed when holding a semaRoot lock. 314 315 acquiretime int64 316 releasetime int64 317 ticket uint32 // treap中的优先级, 插入一个节点时随机生成 318 parent *sudog // semaRoot binary tree 319 waitlink *sudog // g.waiting list or semaRoot 320 waittail *sudog // semaRoot 321 c *hchan // channel 322 } 323 324 type libcall struct { 325 fn uintptr 326 n uintptr // number of parameters 327 args uintptr // parameters 328 r1 uintptr // return values 329 r2 uintptr 330 err uintptr // error number 331 } 332 333 // describes how to handle callback 334 type wincallbackcontext struct { 335 gobody unsafe.Pointer // go function to call 336 argsize uintptr // callback arguments size (in bytes) 337 restorestack uintptr // adjust stack on return by (in bytes) (386 only) 338 cleanstack bool 339 } 340 341 // Stack describes a Go execution stack. 342 // The bounds of the stack are exactly [lo, hi), 343 // with no implicit data structures on either side. 344 type stack struct { 345 lo uintptr 346 hi uintptr 347 } 348 349 // goroutine 350 // 表示goroutine,存储了goroutine的执行stack信息、goroutine状态以及goroutine的任务函数等 351 // 可重用 352 type g struct { 353 // Stack parameters. 354 // stack describes the actual stack memory: [stack.lo, stack.hi). 355 // stackguard0 is the stack pointer compared in the Go stack growth prologue. 356 // It is stack.lo+StackGuard normally, but can be StackPreempt to trigger a preemption. 357 // stackguard1 is the stack pointer compared in the C stack growth prologue. 358 // It is stack.lo+StackGuard on g0 and gsignal stacks. 359 // It is ~0 on other goroutine stacks, to trigger a call to morestackc (and crash). 360 stack stack // offset known to runtime/cgo 361 stackguard0 uintptr // offset known to liblink, 检查栈空间是否足够的值, 低于这个值会扩张栈, 0是go代码使用的 362 stackguard1 uintptr // offset known to liblink, 1是给原生代码用的 363 364 _panic *_panic // innermost panic - offset known to liblink 365 _defer *_defer // innermost defer 366 m *m // current m; offset known to arm liblink 367 sched gobuf 368 syscallsp uintptr // if status==Gsyscall, syscallsp = sched.sp to use during gc 369 syscallpc uintptr // if status==Gsyscall, syscallpc = sched.pc to use during gc 370 stktopsp uintptr // expected sp at top of stack, to check in traceback 371 param unsafe.Pointer // passed parameter on wakeup 372 atomicstatus uint32 373 stackLock uint32 // sigprof/scang lock; TODO: fold in to atomicstatus 374 goid int64 375 waitsince int64 // approx time when the g become blocked 376 waitreason string // if status==Gwaiting 377 schedlink guintptr // schedule里用到, 指向下一个相同类型g的指针(比如runnable队列就是指向下一个runnable g) 378 379 // 抢占位, 如果被设置, 这个G的下一次函数调用, runtime就将其抢占, 放入P的local runq中,等待被下次调用 380 // retake -> preemptone中会设置 381 preempt bool // preemption signal, duplicates stackguard0 = stackpreempt 382 paniconfault bool // panic (instead of crash) on unexpected fault address 383 preemptscan bool // preempted g does scan for gc 384 gcscandone bool // g has scanned stack; protected by _Gscan bit in status 385 gcscanvalid bool // false at start of gc cycle, true if G has not run since last scan; TODO: remove? 386 throwsplit bool // must not split stack 387 raceignore int8 // ignore race detection events 388 sysblocktraced bool // StartTrace has emitted EvGoInSyscall about this goroutine 389 sysexitticks int64 // cputicks when syscall has returned (for tracing) 390 traceseq uint64 // trace event sequencer 391 tracelastp puintptr // last P emitted an event for this goroutine 392 lockedm muintptr 393 sig uint32 394 writebuf []byte 395 sigcode0 uintptr 396 sigcode1 uintptr 397 sigpc uintptr 398 gopc uintptr // pc of go statement that created this goroutine 399 startpc uintptr // pc of goroutine function 400 racectx uintptr 401 waiting *sudog // sudog structures this g is waiting on (that have a valid elem ptr); in lock order 402 cgoCtxt []uintptr // cgo traceback context 403 labels unsafe.Pointer // profiler labels 404 timer *timer // cached timer for time.Sleep 405 selectDone uint32 // are we participating in a select and did someone win the race? 406 407 // Per-G GC state 408 409 // gcAssistBytes is this G's GC assist credit in terms of 410 // bytes allocated. If this is positive, then the G has credit 411 // to allocate gcAssistBytes bytes without assisting. If this 412 // is negative, then the G must correct this by performing 413 // scan work. We track this in bytes to make it fast to update 414 // and check for debt in the malloc hot path. The assist ratio 415 // determines how this corresponds to scan work debt. 416 gcAssistBytes int64 417 } 418 419 // M代表着真正的执行计算资源(os thread) 420 // 在绑定有效的p后,进入schedule循环 421 // 而schedule循环的机制大致是从各种队列、p的本地队列中获取G,切换到G的执行栈上并执行G的函数,调用goexit做清理工作并回到m,如此反复 422 // M并不保留G状态,这是G可以跨M调度的基础。 423 type m struct { 424 // g0是负责调度这个m的g 425 // g0 的栈是带有调度栈的goroutine,其栈是M对应的系统线程的栈 426 // 所有调度相关的代码会先切换到此goroutine的栈中执行 427 g0 *g // goroutine with scheduling stack 428 morebuf gobuf // gobuf arg to morestack 429 divmod uint32 // div/mod denominator for arm - known to liblink 430 431 // Fields not known to debuggers. 432 procid uint64 // for debuggers, but offset not hard-coded 433 gsignal *g // signal-handling g 434 goSigStack gsignalStack // Go-allocated signal handling stack 435 sigmask sigset // storage for saved signal mask 436 tls [6]uintptr // thread-local storage (for x86 extern register) 437 mstartfn func() 438 curg *g // current running goroutine 439 caughtsig guintptr // goroutine running during fatal signal 440 p puintptr // attached p for executing go code (nil if not executing go code) 441 nextp puintptr 442 id int64 443 mallocing int32 444 throwing int32 445 preemptoff string // if != "", keep curg running on this m 446 locks int32 447 softfloat int32 448 dying int32 449 profilehz int32 450 helpgc int32 451 spinning bool // m is out of work and is actively looking for work 452 blocked bool // m is blocked on a note 453 inwb bool // m is executing a write barrier 454 newSigstack bool // minit on C thread called sigaltstack 455 printlock int8 456 incgo bool // m is executing a cgo call 457 freeWait uint32 // if == 0, safe to free g0 and delete m (atomic) 458 fastrand [2]uint32 459 needextram bool 460 traceback uint8 461 ncgocall uint64 // number of cgo calls in total 462 ncgo int32 // number of cgo calls currently in progress 463 cgoCallersUse uint32 // if non-zero, cgoCallers in use temporarily 464 cgoCallers *cgoCallers // cgo traceback if crashing in cgo call 465 park note 466 alllink *m // on allm 467 schedlink muintptr 468 mcache *mcache 469 lockedg guintptr 470 createstack [32]uintptr // stack that created this thread. 471 freglo [16]uint32 // d[i] lsb and f[i] 472 freghi [16]uint32 // d[i] msb and f[i+16] 473 fflag uint32 // floating point compare flags 474 lockedExt uint32 // tracking for external LockOSThread 475 lockedInt uint32 // tracking for internal lockOSThread 476 nextwaitm muintptr // next m waiting for lock 477 waitunlockf unsafe.Pointer // todo go func(*g, unsafe.pointer) bool 478 waitlock unsafe.Pointer 479 waittraceev byte 480 waittraceskip int 481 startingtrace bool 482 syscalltick uint32 483 thread uintptr // thread handle 484 freelink *m // on sched.freem 485 486 // these are here because they are too large to be on the stack 487 // of low-level NOSPLIT functions. 488 libcall libcall 489 libcallpc uintptr // for cpu profiler 490 libcallsp uintptr 491 libcallg guintptr 492 syscall libcall // stores syscall parameters on windows 493 494 mOS 495 } 496 497 // 处理器, 每个g都由p来调度在m上运行 498 // 其个数是GOMAXPROCS 499 // P的数量决定了系统内最大可并行的G的数量(前提:系统的物理cpu核数>=P的数量) 500 // P的最大作用还是其拥有的各种G对象队列、链表、一些cache和状态 501 type p struct { 502 lock mutex 503 504 id int32 505 status uint32 // one of pidle/prunning/... 506 link puintptr 507 schedtick uint32 // incremented on every scheduler call 508 syscalltick uint32 // incremented on every system call 509 sysmontick sysmontick // last tick observed by sysmon 510 m muintptr // back-link to associated m (nil if idle) 511 mcache *mcache // memory span cache 512 racectx uintptr 513 514 deferpool [5][]*_defer // pool of available defer structs of different sizes (see panic.go) 515 deferpoolbuf [5][32]*_defer 516 517 // Cache of goroutine ids, amortizes accesses to runtime·sched.goidgen. 518 goidcache uint64 519 goidcacheend uint64 520 521 // p独立的goroutine 522 // Queue of runnable goroutines. Accessed without lock. 523 runqhead uint32 524 runqtail uint32 525 runq [256]guintptr // wait for run queue 526 // runnext, if non-nil, is a runnable G that was ready'd by 527 // the current G and should be run next instead of what's in 528 // runq if there's time remaining in the running G's time 529 // slice. It will inherit the time left in the current time 530 // slice. If a set of goroutines is locked in a 531 // communicate-and-wait pattern, this schedules that set as a 532 // unit and eliminates the (potentially large) scheduling 533 // latency that otherwise arises from adding the ready'd 534 // goroutines to the end of the run queue. 535 runnext guintptr 536 537 // Available G's (status == Gdead) 538 // G可被重用 539 gfree *g 540 gfreecnt int32 541 542 // g 的等待列表 543 sudogcache []*sudog 544 sudogbuf [128]*sudog 545 546 tracebuf traceBufPtr 547 548 // traceSweep indicates the sweep events should be traced. 549 // This is used to defer the sweep start event until a span 550 // has actually been swept. 551 traceSweep bool 552 // traceSwept and traceReclaimed track the number of bytes 553 // swept and reclaimed by sweeping in the current sweep loop. 554 traceSwept, traceReclaimed uintptr 555 556 palloc persistentAlloc // per-P to avoid mutex 557 558 // Per-P GC state 559 gcAssistTime int64 // Nanoseconds in assistAlloc 560 gcFractionalMarkTime int64 // Nanoseconds in fractional mark worker 561 gcBgMarkWorker guintptr 562 gcMarkWorkerMode gcMarkWorkerMode 563 564 // gcMarkWorkerStartTime is the nanotime() at which this mark 565 // worker started. 566 gcMarkWorkerStartTime int64 567 568 // gcw is this P's GC work buffer cache. The work buffer is 569 // filled by write barriers, drained by mutator assists, and 570 // disposed on certain GC state transitions. 571 gcw gcWork 572 573 // wbBuf is this P's GC write barrier buffer. 574 // 575 // TODO: Consider caching this in the running G. 576 wbBuf wbBuf 577 578 runSafePointFn uint32 // if 1, run sched.safePointFn at next safe point 579 580 pad [sys.CacheLineSize]byte 581 } 582 583 // 全局调度者 584 type schedt struct { 585 // accessed atomically. keep at top to ensure alignment on 32-bit systems. 586 goidgen uint64 587 lastpoll uint64 588 589 lock mutex 590 591 // When increasing nmidle, nmidlelocked, nmsys, or nmfreed, be 592 // sure to call checkdead(). 593 594 midle muintptr // idle m's waiting for work 595 nmidle int32 // number of idle m's waiting for work 596 nmidlelocked int32 // number of locked m's waiting for work 597 mnext int64 // number of m's that have been created and next M ID 598 maxmcount int32 // maximum number of m's allowed (or die) 599 nmsys int32 // number of system m's not counted for deadlock 600 nmfreed int64 // cumulative number of freed m's 601 602 ngsys uint32 // number of system goroutines; updated atomically 603 604 pidle puintptr // idle p's 605 npidle uint32 606 nmspinning uint32 // See "Worker thread parking/unparking" comment in proc.go. 607 608 // Global runnable queue. 609 runqhead guintptr 610 runqtail guintptr 611 runqsize int32 612 613 // Global cache of dead G's. 614 gflock mutex 615 gfreeStack *g 616 gfreeNoStack *g 617 ngfree int32 618 619 // Central cache of sudog structs. 620 sudoglock mutex 621 sudogcache *sudog 622 623 // Central pool of available defer structs of different sizes. 624 deferlock mutex 625 deferpool [5]*_defer 626 627 // freem is the list of m's waiting to be freed when their 628 // m.exited is set. Linked through m.freelink. 629 freem *m 630 631 gcwaiting uint32 // gc is waiting to run 632 stopwait int32 633 stopnote note 634 sysmonwait uint32 635 sysmonnote note 636 637 // safepointFn should be called on each P at the next GC 638 // safepoint if p.runSafePointFn is set. 639 safePointFn func(*p) 640 safePointWait int32 641 safePointNote note 642 643 profilehz int32 // cpu profiling rate 644 645 procresizetime int64 // nanotime() of last change to gomaxprocs 646 totaltime int64 // ∫gomaxprocs dt up to procresizetime 647 } 648 649 // Values for the flags field of a sigTabT. 650 const ( 651 _SigNotify = 1 << iota // let signal.Notify have signal, even if from kernel 652 _SigKill // if signal.Notify doesn't take it, exit quietly 653 _SigThrow // if signal.Notify doesn't take it, exit loudly 654 _SigPanic // if the signal is from the kernel, panic 655 _SigDefault // if the signal isn't explicitly requested, don't monitor it 656 _SigGoExit // cause all runtime procs to exit (only used on Plan 9). 657 _SigSetStack // add SA_ONSTACK to libc handler 658 _SigUnblock // always unblock; see blockableSig 659 _SigIgn // _SIG_DFL action is to ignore the signal 660 ) 661 662 // Layout of in-memory per-function information prepared by linker 663 // See https://golang.org/s/go12symtab. 664 // Keep in sync with linker (../cmd/link/internal/ld/pcln.go:/pclntab) 665 // and with package debug/gosym and with symtab.go in package runtime. 666 type _func struct { 667 entry uintptr // start pc 668 nameoff int32 // function name 669 670 args int32 // in/out args size 671 funcID funcID // set for certain special runtime functions 672 673 pcsp int32 674 pcfile int32 675 pcln int32 676 npcdata int32 677 nfuncdata int32 678 } 679 680 // layout of Itab known to compilers 681 // allocated in non-garbage-collected memory 682 // Needs to be in sync with 683 // ../cmd/compile/internal/gc/reflect.go:/^func.dumptypestructs. 684 type itab struct { 685 inter *interfacetype 686 _type *_type 687 hash uint32 // copy of _type.hash. Used for type switches. 688 _ [4]byte 689 fun [1]uintptr // variable sized. fun[0]==0 means _type does not implement inter. 690 } 691 692 // Lock-free stack node. 693 // // Also known to export_test.go. 694 type lfnode struct { 695 next uint64 696 pushcnt uintptr 697 } 698 699 type forcegcstate struct { 700 lock mutex 701 g *g 702 idle uint32 703 } 704 705 // startup_random_data holds random bytes initialized at startup. These come from 706 // the ELF AT_RANDOM auxiliary vector (vdso_linux_amd64.go or os_linux_386.go). 707 var startupRandomData []byte 708 709 // extendRandom extends the random numbers in r[:n] to the whole slice r. 710 // Treats n<0 as n==0. 711 func extendRandom(r []byte, n int) { 712 if n < 0 { 713 n = 0 714 } 715 for n < len(r) { 716 // Extend random bits using hash function & time seed 717 w := n 718 if w > 16 { 719 w = 16 720 } 721 h := memhash(unsafe.Pointer(&r[n-w]), uintptr(nanotime()), uintptr(w)) 722 for i := 0; i < sys.PtrSize && n < len(r); i++ { 723 r[n] = byte(h) 724 n++ 725 h >>= 8 726 } 727 } 728 } 729 730 // A _defer holds an entry on the list of deferred calls. 731 // If you add a field here, add code to clear it in freedefer. 732 type _defer struct { 733 siz int32 734 started bool 735 sp uintptr // sp at time of defer 736 pc uintptr 737 fn *funcval 738 _panic *_panic // panic that is running defer 739 link *_defer 740 } 741 742 // panics 743 type _panic struct { 744 argp unsafe.Pointer // pointer to arguments of deferred call run during panic; cannot move - known to liblink 745 arg interface{} // argument to panic 746 link *_panic // link to earlier panic 747 recovered bool // whether this panic is over 748 aborted bool // the panic was aborted 749 } 750 751 // stack traces 752 type stkframe struct { 753 fn funcInfo // function being run 754 pc uintptr // program counter within fn 755 continpc uintptr // program counter where execution can continue, or 0 if not 756 lr uintptr // program counter at caller aka link register 757 sp uintptr // stack pointer at pc 758 fp uintptr // stack pointer at caller aka frame pointer 759 varp uintptr // top of local variables 760 argp uintptr // pointer to function arguments 761 arglen uintptr // number of bytes at argp 762 argmap *bitvector // force use of this argmap 763 } 764 765 const ( 766 _TraceRuntimeFrames = 1 << iota // include frames for internal runtime functions. 767 _TraceTrap // the initial PC, SP are from a trap, not a return PC from a call 768 _TraceJumpStack // if traceback is on a systemstack, resume trace at g that called into it 769 ) 770 771 // The maximum number of frames we print for a traceback 772 const _TracebackMaxFrames = 100 773 774 var ( 775 allglen uintptr 776 allm *m 777 allp []*p // len(allp) == gomaxprocs; may change at safe points, otherwise immutable 778 allpLock mutex // Protects P-less reads of allp and all writes 779 gomaxprocs int32 780 ncpu int32 781 forcegc forcegcstate 782 sched schedt 783 newprocs int32 784 785 // Information about what cpu features are available. 786 // Set on startup in asm_{386,amd64,amd64p32}.s. 787 // Packages outside the runtime should not use these 788 // as they are not an external api. 789 processorVersionInfo uint32 790 isIntel bool 791 lfenceBeforeRdtsc bool 792 support_aes bool 793 support_avx bool 794 support_avx2 bool 795 support_bmi1 bool 796 support_bmi2 bool 797 support_erms bool 798 support_osxsave bool 799 support_popcnt bool 800 support_sse2 bool 801 support_sse41 bool 802 support_sse42 bool 803 support_ssse3 bool 804 805 goarm uint8 // set by cmd/link on arm systems 806 framepointer_enabled bool // set by cmd/link 807 ) 808 809 // Set by the linker so the runtime can determine the buildmode. 810 var ( 811 islibrary bool // -buildmode=c-shared 812 isarchive bool // -buildmode=c-archive 813 )