github.com/ltltlt/go-source-code@v0.0.0-20190830023027-95be009773aa/text/template/exec.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package template 6 7 import ( 8 "bytes" 9 "fmt" 10 "io" 11 "reflect" 12 "runtime" 13 "sort" 14 "strings" 15 "text/template/parse" 16 ) 17 18 // maxExecDepth specifies the maximum stack depth of templates within 19 // templates. This limit is only practically reached by accidentally 20 // recursive template invocations. This limit allows us to return 21 // an error instead of triggering a stack overflow. 22 const maxExecDepth = 100000 23 24 // state represents the state of an execution. It's not part of the 25 // template so that multiple executions of the same template 26 // can execute in parallel. 27 type state struct { 28 tmpl *Template 29 wr io.Writer 30 node parse.Node // current node, for errors 31 vars []variable // push-down stack of variable values. 32 depth int // the height of the stack of executing templates. 33 } 34 35 // variable holds the dynamic value of a variable such as $, $x etc. 36 type variable struct { 37 name string 38 value reflect.Value 39 } 40 41 // push pushes a new variable on the stack. 42 func (s *state) push(name string, value reflect.Value) { 43 s.vars = append(s.vars, variable{name, value}) 44 } 45 46 // mark returns the length of the variable stack. 47 func (s *state) mark() int { 48 return len(s.vars) 49 } 50 51 // pop pops the variable stack up to the mark. 52 func (s *state) pop(mark int) { 53 s.vars = s.vars[0:mark] 54 } 55 56 // setVar overwrites the top-nth variable on the stack. Used by range iterations. 57 func (s *state) setVar(n int, value reflect.Value) { 58 s.vars[len(s.vars)-n].value = value 59 } 60 61 // varValue returns the value of the named variable. 62 func (s *state) varValue(name string) reflect.Value { 63 for i := s.mark() - 1; i >= 0; i-- { 64 if s.vars[i].name == name { 65 return s.vars[i].value 66 } 67 } 68 s.errorf("undefined variable: %s", name) 69 return zero 70 } 71 72 var zero reflect.Value 73 74 // at marks the state to be on node n, for error reporting. 75 func (s *state) at(node parse.Node) { 76 s.node = node 77 } 78 79 // doublePercent returns the string with %'s replaced by %%, if necessary, 80 // so it can be used safely inside a Printf format string. 81 func doublePercent(str string) string { 82 return strings.Replace(str, "%", "%%", -1) 83 } 84 85 // TODO: It would be nice if ExecError was more broken down, but 86 // the way ErrorContext embeds the template name makes the 87 // processing too clumsy. 88 89 // ExecError is the custom error type returned when Execute has an 90 // error evaluating its template. (If a write error occurs, the actual 91 // error is returned; it will not be of type ExecError.) 92 type ExecError struct { 93 Name string // Name of template. 94 Err error // Pre-formatted error. 95 } 96 97 func (e ExecError) Error() string { 98 return e.Err.Error() 99 } 100 101 // errorf records an ExecError and terminates processing. 102 func (s *state) errorf(format string, args ...interface{}) { 103 name := doublePercent(s.tmpl.Name()) 104 if s.node == nil { 105 format = fmt.Sprintf("template: %s: %s", name, format) 106 } else { 107 location, context := s.tmpl.ErrorContext(s.node) 108 format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format) 109 } 110 panic(ExecError{ 111 Name: s.tmpl.Name(), 112 Err: fmt.Errorf(format, args...), 113 }) 114 } 115 116 // writeError is the wrapper type used internally when Execute has an 117 // error writing to its output. We strip the wrapper in errRecover. 118 // Note that this is not an implementation of error, so it cannot escape 119 // from the package as an error value. 120 type writeError struct { 121 Err error // Original error. 122 } 123 124 func (s *state) writeError(err error) { 125 panic(writeError{ 126 Err: err, 127 }) 128 } 129 130 // errRecover is the handler that turns panics into returns from the top 131 // level of Parse. 132 func errRecover(errp *error) { 133 e := recover() 134 if e != nil { 135 switch err := e.(type) { 136 case runtime.Error: 137 panic(e) 138 case writeError: 139 *errp = err.Err // Strip the wrapper. 140 case ExecError: 141 *errp = err // Keep the wrapper. 142 default: 143 panic(e) 144 } 145 } 146 } 147 148 // ExecuteTemplate applies the template associated with t that has the given name 149 // to the specified data object and writes the output to wr. 150 // If an error occurs executing the template or writing its output, 151 // execution stops, but partial results may already have been written to 152 // the output writer. 153 // A template may be executed safely in parallel, although if parallel 154 // executions share a Writer the output may be interleaved. 155 func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error { 156 var tmpl *Template 157 if t.common != nil { 158 tmpl = t.tmpl[name] 159 } 160 if tmpl == nil { 161 return fmt.Errorf("template: no template %q associated with template %q", name, t.name) 162 } 163 return tmpl.Execute(wr, data) 164 } 165 166 // Execute applies a parsed template to the specified data object, 167 // and writes the output to wr. 168 // If an error occurs executing the template or writing its output, 169 // execution stops, but partial results may already have been written to 170 // the output writer. 171 // A template may be executed safely in parallel, although if parallel 172 // executions share a Writer the output may be interleaved. 173 // 174 // If data is a reflect.Value, the template applies to the concrete 175 // value that the reflect.Value holds, as in fmt.Print. 176 func (t *Template) Execute(wr io.Writer, data interface{}) error { 177 return t.execute(wr, data) 178 } 179 180 func (t *Template) execute(wr io.Writer, data interface{}) (err error) { 181 defer errRecover(&err) 182 value, ok := data.(reflect.Value) 183 if !ok { 184 value = reflect.ValueOf(data) 185 } 186 state := &state{ 187 tmpl: t, 188 wr: wr, 189 vars: []variable{{"$", value}}, 190 } 191 if t.Tree == nil || t.Root == nil { 192 state.errorf("%q is an incomplete or empty template", t.Name()) 193 } 194 state.walk(value, t.Root) 195 return 196 } 197 198 // DefinedTemplates returns a string listing the defined templates, 199 // prefixed by the string "; defined templates are: ". If there are none, 200 // it returns the empty string. For generating an error message here 201 // and in html/template. 202 func (t *Template) DefinedTemplates() string { 203 if t.common == nil { 204 return "" 205 } 206 var b bytes.Buffer 207 for name, tmpl := range t.tmpl { 208 if tmpl.Tree == nil || tmpl.Root == nil { 209 continue 210 } 211 if b.Len() > 0 { 212 b.WriteString(", ") 213 } 214 fmt.Fprintf(&b, "%q", name) 215 } 216 var s string 217 if b.Len() > 0 { 218 s = "; defined templates are: " + b.String() 219 } 220 return s 221 } 222 223 // Walk functions step through the major pieces of the template structure, 224 // generating output as they go. 225 func (s *state) walk(dot reflect.Value, node parse.Node) { 226 s.at(node) 227 switch node := node.(type) { 228 case *parse.ActionNode: 229 // Do not pop variables so they persist until next end. 230 // Also, if the action declares variables, don't print the result. 231 val := s.evalPipeline(dot, node.Pipe) 232 if len(node.Pipe.Decl) == 0 { 233 s.printValue(node, val) 234 } 235 case *parse.IfNode: 236 s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList) 237 case *parse.ListNode: 238 for _, node := range node.Nodes { 239 s.walk(dot, node) 240 } 241 case *parse.RangeNode: 242 s.walkRange(dot, node) 243 case *parse.TemplateNode: 244 s.walkTemplate(dot, node) 245 case *parse.TextNode: 246 if _, err := s.wr.Write(node.Text); err != nil { 247 s.writeError(err) 248 } 249 case *parse.WithNode: 250 s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList) 251 default: 252 s.errorf("unknown node: %s", node) 253 } 254 } 255 256 // walkIfOrWith walks an 'if' or 'with' node. The two control structures 257 // are identical in behavior except that 'with' sets dot. 258 func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { 259 defer s.pop(s.mark()) 260 val := s.evalPipeline(dot, pipe) 261 truth, ok := isTrue(val) 262 if !ok { 263 s.errorf("if/with can't use %v", val) 264 } 265 if truth { 266 if typ == parse.NodeWith { 267 s.walk(val, list) 268 } else { 269 s.walk(dot, list) 270 } 271 } else if elseList != nil { 272 s.walk(dot, elseList) 273 } 274 } 275 276 // IsTrue reports whether the value is 'true', in the sense of not the zero of its type, 277 // and whether the value has a meaningful truth value. This is the definition of 278 // truth used by if and other such actions. 279 func IsTrue(val interface{}) (truth, ok bool) { 280 return isTrue(reflect.ValueOf(val)) 281 } 282 283 func isTrue(val reflect.Value) (truth, ok bool) { 284 if !val.IsValid() { 285 // Something like var x interface{}, never set. It's a form of nil. 286 return false, true 287 } 288 switch val.Kind() { 289 case reflect.Array, reflect.Map, reflect.Slice, reflect.String: 290 truth = val.Len() > 0 291 case reflect.Bool: 292 truth = val.Bool() 293 case reflect.Complex64, reflect.Complex128: 294 truth = val.Complex() != 0 295 case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface: 296 truth = !val.IsNil() 297 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 298 truth = val.Int() != 0 299 case reflect.Float32, reflect.Float64: 300 truth = val.Float() != 0 301 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 302 truth = val.Uint() != 0 303 case reflect.Struct: 304 truth = true // Struct values are always true. 305 default: 306 return 307 } 308 return truth, true 309 } 310 311 func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { 312 s.at(r) 313 defer s.pop(s.mark()) 314 val, _ := indirect(s.evalPipeline(dot, r.Pipe)) 315 // mark top of stack before any variables in the body are pushed. 316 mark := s.mark() 317 oneIteration := func(index, elem reflect.Value) { 318 // Set top var (lexically the second if there are two) to the element. 319 if len(r.Pipe.Decl) > 0 { 320 s.setVar(1, elem) 321 } 322 // Set next var (lexically the first if there are two) to the index. 323 if len(r.Pipe.Decl) > 1 { 324 s.setVar(2, index) 325 } 326 s.walk(elem, r.List) 327 s.pop(mark) 328 } 329 switch val.Kind() { 330 case reflect.Array, reflect.Slice: 331 if val.Len() == 0 { 332 break 333 } 334 for i := 0; i < val.Len(); i++ { 335 oneIteration(reflect.ValueOf(i), val.Index(i)) 336 } 337 return 338 case reflect.Map: 339 if val.Len() == 0 { 340 break 341 } 342 for _, key := range sortKeys(val.MapKeys()) { 343 oneIteration(key, val.MapIndex(key)) 344 } 345 return 346 case reflect.Chan: 347 if val.IsNil() { 348 break 349 } 350 i := 0 351 for ; ; i++ { 352 elem, ok := val.Recv() 353 if !ok { 354 break 355 } 356 oneIteration(reflect.ValueOf(i), elem) 357 } 358 if i == 0 { 359 break 360 } 361 return 362 case reflect.Invalid: 363 break // An invalid value is likely a nil map, etc. and acts like an empty map. 364 default: 365 s.errorf("range can't iterate over %v", val) 366 } 367 if r.ElseList != nil { 368 s.walk(dot, r.ElseList) 369 } 370 } 371 372 func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { 373 s.at(t) 374 tmpl := s.tmpl.tmpl[t.Name] 375 if tmpl == nil { 376 s.errorf("template %q not defined", t.Name) 377 } 378 if s.depth == maxExecDepth { 379 s.errorf("exceeded maximum template depth (%v)", maxExecDepth) 380 } 381 // Variables declared by the pipeline persist. 382 dot = s.evalPipeline(dot, t.Pipe) 383 newState := *s 384 newState.depth++ 385 newState.tmpl = tmpl 386 // No dynamic scoping: template invocations inherit no variables. 387 newState.vars = []variable{{"$", dot}} 388 newState.walk(dot, tmpl.Root) 389 } 390 391 // Eval functions evaluate pipelines, commands, and their elements and extract 392 // values from the data structure by examining fields, calling methods, and so on. 393 // The printing of those values happens only through walk functions. 394 395 // evalPipeline returns the value acquired by evaluating a pipeline. If the 396 // pipeline has a variable declaration, the variable will be pushed on the 397 // stack. Callers should therefore pop the stack after they are finished 398 // executing commands depending on the pipeline value. 399 func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { 400 if pipe == nil { 401 return 402 } 403 s.at(pipe) 404 for _, cmd := range pipe.Cmds { 405 value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. 406 // If the object has type interface{}, dig down one level to the thing inside. 407 if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { 408 value = reflect.ValueOf(value.Interface()) // lovely! 409 } 410 } 411 for _, variable := range pipe.Decl { 412 s.push(variable.Ident[0], value) 413 } 414 return value 415 } 416 417 func (s *state) notAFunction(args []parse.Node, final reflect.Value) { 418 if len(args) > 1 || final.IsValid() { 419 s.errorf("can't give argument to non-function %s", args[0]) 420 } 421 } 422 423 func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { 424 firstWord := cmd.Args[0] 425 switch n := firstWord.(type) { 426 case *parse.FieldNode: 427 return s.evalFieldNode(dot, n, cmd.Args, final) 428 case *parse.ChainNode: 429 return s.evalChainNode(dot, n, cmd.Args, final) 430 case *parse.IdentifierNode: 431 // Must be a function. 432 return s.evalFunction(dot, n, cmd, cmd.Args, final) 433 case *parse.PipeNode: 434 // Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored. 435 return s.evalPipeline(dot, n) 436 case *parse.VariableNode: 437 return s.evalVariableNode(dot, n, cmd.Args, final) 438 } 439 s.at(firstWord) 440 s.notAFunction(cmd.Args, final) 441 switch word := firstWord.(type) { 442 case *parse.BoolNode: 443 return reflect.ValueOf(word.True) 444 case *parse.DotNode: 445 return dot 446 case *parse.NilNode: 447 s.errorf("nil is not a command") 448 case *parse.NumberNode: 449 return s.idealConstant(word) 450 case *parse.StringNode: 451 return reflect.ValueOf(word.Text) 452 } 453 s.errorf("can't evaluate command %q", firstWord) 454 panic("not reached") 455 } 456 457 // idealConstant is called to return the value of a number in a context where 458 // we don't know the type. In that case, the syntax of the number tells us 459 // its type, and we use Go rules to resolve. Note there is no such thing as 460 // a uint ideal constant in this situation - the value must be of int type. 461 func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { 462 // These are ideal constants but we don't know the type 463 // and we have no context. (If it was a method argument, 464 // we'd know what we need.) The syntax guides us to some extent. 465 s.at(constant) 466 switch { 467 case constant.IsComplex: 468 return reflect.ValueOf(constant.Complex128) // incontrovertible. 469 case constant.IsFloat && !isHexConstant(constant.Text) && strings.ContainsAny(constant.Text, ".eE"): 470 return reflect.ValueOf(constant.Float64) 471 case constant.IsInt: 472 n := int(constant.Int64) 473 if int64(n) != constant.Int64 { 474 s.errorf("%s overflows int", constant.Text) 475 } 476 return reflect.ValueOf(n) 477 case constant.IsUint: 478 s.errorf("%s overflows int", constant.Text) 479 } 480 return zero 481 } 482 483 func isHexConstant(s string) bool { 484 return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') 485 } 486 487 func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { 488 s.at(field) 489 return s.evalFieldChain(dot, dot, field, field.Ident, args, final) 490 } 491 492 func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value { 493 s.at(chain) 494 if len(chain.Field) == 0 { 495 s.errorf("internal error: no fields in evalChainNode") 496 } 497 if chain.Node.Type() == parse.NodeNil { 498 s.errorf("indirection through explicit nil in %s", chain) 499 } 500 // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields. 501 pipe := s.evalArg(dot, nil, chain.Node) 502 return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final) 503 } 504 505 func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { 506 // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. 507 s.at(variable) 508 value := s.varValue(variable.Ident[0]) 509 if len(variable.Ident) == 1 { 510 s.notAFunction(args, final) 511 return value 512 } 513 return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final) 514 } 515 516 // evalFieldChain evaluates .X.Y.Z possibly followed by arguments. 517 // dot is the environment in which to evaluate arguments, while 518 // receiver is the value being walked along the chain. 519 func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value { 520 n := len(ident) 521 for i := 0; i < n-1; i++ { 522 receiver = s.evalField(dot, ident[i], node, nil, zero, receiver) 523 } 524 // Now if it's a method, it gets the arguments. 525 return s.evalField(dot, ident[n-1], node, args, final, receiver) 526 } 527 528 func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { 529 s.at(node) 530 name := node.Ident 531 function, ok := findFunction(name, s.tmpl) 532 if !ok { 533 s.errorf("%q is not a defined function", name) 534 } 535 return s.evalCall(dot, function, cmd, name, args, final) 536 } 537 538 // evalField evaluates an expression like (.Field) or (.Field arg1 arg2). 539 // The 'final' argument represents the return value from the preceding 540 // value of the pipeline, if any. 541 func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { 542 if !receiver.IsValid() { 543 if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key. 544 s.errorf("nil data; no entry for key %q", fieldName) 545 } 546 return zero 547 } 548 typ := receiver.Type() 549 receiver, isNil := indirect(receiver) 550 // Unless it's an interface, need to get to a value of type *T to guarantee 551 // we see all methods of T and *T. 552 ptr := receiver 553 if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Ptr && ptr.CanAddr() { 554 ptr = ptr.Addr() 555 } 556 if method := ptr.MethodByName(fieldName); method.IsValid() { 557 return s.evalCall(dot, method, node, fieldName, args, final) 558 } 559 hasArgs := len(args) > 1 || final.IsValid() 560 // It's not a method; must be a field of a struct or an element of a map. 561 switch receiver.Kind() { 562 case reflect.Struct: 563 tField, ok := receiver.Type().FieldByName(fieldName) 564 if ok { 565 if isNil { 566 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 567 } 568 field := receiver.FieldByIndex(tField.Index) 569 if tField.PkgPath != "" { // field is unexported 570 s.errorf("%s is an unexported field of struct type %s", fieldName, typ) 571 } 572 // If it's a function, we must call it. 573 if hasArgs { 574 s.errorf("%s has arguments but cannot be invoked as function", fieldName) 575 } 576 return field 577 } 578 case reflect.Map: 579 if isNil { 580 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 581 } 582 // If it's a map, attempt to use the field name as a key. 583 nameVal := reflect.ValueOf(fieldName) 584 if nameVal.Type().AssignableTo(receiver.Type().Key()) { 585 if hasArgs { 586 s.errorf("%s is not a method but has arguments", fieldName) 587 } 588 result := receiver.MapIndex(nameVal) 589 if !result.IsValid() { 590 switch s.tmpl.option.missingKey { 591 case mapInvalid: 592 // Just use the invalid value. 593 case mapZeroValue: 594 result = reflect.Zero(receiver.Type().Elem()) 595 case mapError: 596 s.errorf("map has no entry for key %q", fieldName) 597 } 598 } 599 return result 600 } 601 } 602 s.errorf("can't evaluate field %s in type %s", fieldName, typ) 603 panic("not reached") 604 } 605 606 var ( 607 errorType = reflect.TypeOf((*error)(nil)).Elem() 608 fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() 609 reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem() 610 ) 611 612 // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so 613 // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] 614 // as the function itself. 615 func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value { 616 if args != nil { 617 args = args[1:] // Zeroth arg is function name/node; not passed to function. 618 } 619 typ := fun.Type() 620 numIn := len(args) 621 if final.IsValid() { 622 numIn++ 623 } 624 numFixed := len(args) 625 if typ.IsVariadic() { 626 numFixed = typ.NumIn() - 1 // last arg is the variadic one. 627 if numIn < numFixed { 628 s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) 629 } 630 } else if numIn != typ.NumIn() { 631 s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args)) 632 } 633 if !goodFunc(typ) { 634 // TODO: This could still be a confusing error; maybe goodFunc should provide info. 635 s.errorf("can't call method/function %q with %d results", name, typ.NumOut()) 636 } 637 // Build the arg list. 638 argv := make([]reflect.Value, numIn) 639 // Args must be evaluated. Fixed args first. 640 i := 0 641 for ; i < numFixed && i < len(args); i++ { 642 argv[i] = s.evalArg(dot, typ.In(i), args[i]) 643 } 644 // Now the ... args. 645 if typ.IsVariadic() { 646 argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. 647 for ; i < len(args); i++ { 648 argv[i] = s.evalArg(dot, argType, args[i]) 649 } 650 } 651 // Add final value if necessary. 652 if final.IsValid() { 653 t := typ.In(typ.NumIn() - 1) 654 if typ.IsVariadic() { 655 if numIn-1 < numFixed { 656 // The added final argument corresponds to a fixed parameter of the function. 657 // Validate against the type of the actual parameter. 658 t = typ.In(numIn - 1) 659 } else { 660 // The added final argument corresponds to the variadic part. 661 // Validate against the type of the elements of the variadic slice. 662 t = t.Elem() 663 } 664 } 665 argv[i] = s.validateType(final, t) 666 } 667 result := fun.Call(argv) 668 // If we have an error that is not nil, stop execution and return that error to the caller. 669 if len(result) == 2 && !result[1].IsNil() { 670 s.at(node) 671 s.errorf("error calling %s: %s", name, result[1].Interface().(error)) 672 } 673 v := result[0] 674 if v.Type() == reflectValueType { 675 v = v.Interface().(reflect.Value) 676 } 677 return v 678 } 679 680 // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero. 681 func canBeNil(typ reflect.Type) bool { 682 switch typ.Kind() { 683 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice: 684 return true 685 case reflect.Struct: 686 return typ == reflectValueType 687 } 688 return false 689 } 690 691 // validateType guarantees that the value is valid and assignable to the type. 692 func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { 693 if !value.IsValid() { 694 if typ == nil || canBeNil(typ) { 695 // An untyped nil interface{}. Accept as a proper nil value. 696 return reflect.Zero(typ) 697 } 698 s.errorf("invalid value; expected %s", typ) 699 } 700 if typ == reflectValueType && value.Type() != typ { 701 return reflect.ValueOf(value) 702 } 703 if typ != nil && !value.Type().AssignableTo(typ) { 704 if value.Kind() == reflect.Interface && !value.IsNil() { 705 value = value.Elem() 706 if value.Type().AssignableTo(typ) { 707 return value 708 } 709 // fallthrough 710 } 711 // Does one dereference or indirection work? We could do more, as we 712 // do with method receivers, but that gets messy and method receivers 713 // are much more constrained, so it makes more sense there than here. 714 // Besides, one is almost always all you need. 715 switch { 716 case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ): 717 value = value.Elem() 718 if !value.IsValid() { 719 s.errorf("dereference of nil pointer of type %s", typ) 720 } 721 case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr(): 722 value = value.Addr() 723 default: 724 s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) 725 } 726 } 727 return value 728 } 729 730 func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { 731 s.at(n) 732 switch arg := n.(type) { 733 case *parse.DotNode: 734 return s.validateType(dot, typ) 735 case *parse.NilNode: 736 if canBeNil(typ) { 737 return reflect.Zero(typ) 738 } 739 s.errorf("cannot assign nil to %s", typ) 740 case *parse.FieldNode: 741 return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ) 742 case *parse.VariableNode: 743 return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ) 744 case *parse.PipeNode: 745 return s.validateType(s.evalPipeline(dot, arg), typ) 746 case *parse.IdentifierNode: 747 return s.validateType(s.evalFunction(dot, arg, arg, nil, zero), typ) 748 case *parse.ChainNode: 749 return s.validateType(s.evalChainNode(dot, arg, nil, zero), typ) 750 } 751 switch typ.Kind() { 752 case reflect.Bool: 753 return s.evalBool(typ, n) 754 case reflect.Complex64, reflect.Complex128: 755 return s.evalComplex(typ, n) 756 case reflect.Float32, reflect.Float64: 757 return s.evalFloat(typ, n) 758 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 759 return s.evalInteger(typ, n) 760 case reflect.Interface: 761 if typ.NumMethod() == 0 { 762 return s.evalEmptyInterface(dot, n) 763 } 764 case reflect.Struct: 765 if typ == reflectValueType { 766 return reflect.ValueOf(s.evalEmptyInterface(dot, n)) 767 } 768 case reflect.String: 769 return s.evalString(typ, n) 770 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 771 return s.evalUnsignedInteger(typ, n) 772 } 773 s.errorf("can't handle %s for arg of type %s", n, typ) 774 panic("not reached") 775 } 776 777 func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { 778 s.at(n) 779 if n, ok := n.(*parse.BoolNode); ok { 780 value := reflect.New(typ).Elem() 781 value.SetBool(n.True) 782 return value 783 } 784 s.errorf("expected bool; found %s", n) 785 panic("not reached") 786 } 787 788 func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { 789 s.at(n) 790 if n, ok := n.(*parse.StringNode); ok { 791 value := reflect.New(typ).Elem() 792 value.SetString(n.Text) 793 return value 794 } 795 s.errorf("expected string; found %s", n) 796 panic("not reached") 797 } 798 799 func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { 800 s.at(n) 801 if n, ok := n.(*parse.NumberNode); ok && n.IsInt { 802 value := reflect.New(typ).Elem() 803 value.SetInt(n.Int64) 804 return value 805 } 806 s.errorf("expected integer; found %s", n) 807 panic("not reached") 808 } 809 810 func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { 811 s.at(n) 812 if n, ok := n.(*parse.NumberNode); ok && n.IsUint { 813 value := reflect.New(typ).Elem() 814 value.SetUint(n.Uint64) 815 return value 816 } 817 s.errorf("expected unsigned integer; found %s", n) 818 panic("not reached") 819 } 820 821 func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { 822 s.at(n) 823 if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { 824 value := reflect.New(typ).Elem() 825 value.SetFloat(n.Float64) 826 return value 827 } 828 s.errorf("expected float; found %s", n) 829 panic("not reached") 830 } 831 832 func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { 833 if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { 834 value := reflect.New(typ).Elem() 835 value.SetComplex(n.Complex128) 836 return value 837 } 838 s.errorf("expected complex; found %s", n) 839 panic("not reached") 840 } 841 842 func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { 843 s.at(n) 844 switch n := n.(type) { 845 case *parse.BoolNode: 846 return reflect.ValueOf(n.True) 847 case *parse.DotNode: 848 return dot 849 case *parse.FieldNode: 850 return s.evalFieldNode(dot, n, nil, zero) 851 case *parse.IdentifierNode: 852 return s.evalFunction(dot, n, n, nil, zero) 853 case *parse.NilNode: 854 // NilNode is handled in evalArg, the only place that calls here. 855 s.errorf("evalEmptyInterface: nil (can't happen)") 856 case *parse.NumberNode: 857 return s.idealConstant(n) 858 case *parse.StringNode: 859 return reflect.ValueOf(n.Text) 860 case *parse.VariableNode: 861 return s.evalVariableNode(dot, n, nil, zero) 862 case *parse.PipeNode: 863 return s.evalPipeline(dot, n) 864 } 865 s.errorf("can't handle assignment of %s to empty interface argument", n) 866 panic("not reached") 867 } 868 869 // indirect returns the item at the end of indirection, and a bool to indicate if it's nil. 870 func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { 871 for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() { 872 if v.IsNil() { 873 return v, true 874 } 875 } 876 return v, false 877 } 878 879 // indirectInterface returns the concrete value in an interface value, 880 // or else the zero reflect.Value. 881 // That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x): 882 // the fact that x was an interface value is forgotten. 883 func indirectInterface(v reflect.Value) reflect.Value { 884 if v.Kind() != reflect.Interface { 885 return v 886 } 887 if v.IsNil() { 888 return reflect.Value{} 889 } 890 return v.Elem() 891 } 892 893 // printValue writes the textual representation of the value to the output of 894 // the template. 895 func (s *state) printValue(n parse.Node, v reflect.Value) { 896 s.at(n) 897 iface, ok := printableValue(v) 898 if !ok { 899 s.errorf("can't print %s of type %s", n, v.Type()) 900 } 901 _, err := fmt.Fprint(s.wr, iface) 902 if err != nil { 903 s.writeError(err) 904 } 905 } 906 907 // printableValue returns the, possibly indirected, interface value inside v that 908 // is best for a call to formatted printer. 909 func printableValue(v reflect.Value) (interface{}, bool) { 910 if v.Kind() == reflect.Ptr { 911 v, _ = indirect(v) // fmt.Fprint handles nil. 912 } 913 if !v.IsValid() { 914 return "<no value>", true 915 } 916 917 if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { 918 if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) { 919 v = v.Addr() 920 } else { 921 switch v.Kind() { 922 case reflect.Chan, reflect.Func: 923 return nil, false 924 } 925 } 926 } 927 return v.Interface(), true 928 } 929 930 // sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys. 931 func sortKeys(v []reflect.Value) []reflect.Value { 932 if len(v) <= 1 { 933 return v 934 } 935 switch v[0].Kind() { 936 case reflect.Float32, reflect.Float64: 937 sort.Slice(v, func(i, j int) bool { 938 return v[i].Float() < v[j].Float() 939 }) 940 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 941 sort.Slice(v, func(i, j int) bool { 942 return v[i].Int() < v[j].Int() 943 }) 944 case reflect.String: 945 sort.Slice(v, func(i, j int) bool { 946 return v[i].String() < v[j].String() 947 }) 948 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 949 sort.Slice(v, func(i, j int) bool { 950 return v[i].Uint() < v[j].Uint() 951 }) 952 } 953 return v 954 }