github.com/luckypickle/go-ethereum-vet@v1.14.2/crypto/bn256/cloudflare/bn256.go (about)

     1  // Package bn256 implements a particular bilinear group at the 128-bit security
     2  // level.
     3  //
     4  // Bilinear groups are the basis of many of the new cryptographic protocols that
     5  // have been proposed over the past decade. They consist of a triplet of groups
     6  // (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ (where gₓ
     7  // is a generator of the respective group). That function is called a pairing
     8  // function.
     9  //
    10  // This package specifically implements the Optimal Ate pairing over a 256-bit
    11  // Barreto-Naehrig curve as described in
    12  // http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is not
    13  // compatible with the implementation described in that paper, as different
    14  // parameters are chosen.
    15  //
    16  // (This package previously claimed to operate at a 128-bit security level.
    17  // However, recent improvements in attacks mean that is no longer true. See
    18  // https://moderncrypto.org/mail-archive/curves/2016/000740.html.)
    19  package bn256
    20  
    21  import (
    22  	"crypto/rand"
    23  	"errors"
    24  	"io"
    25  	"math/big"
    26  )
    27  
    28  func randomK(r io.Reader) (k *big.Int, err error) {
    29  	for {
    30  		k, err = rand.Int(r, Order)
    31  		if err != nil || k.Sign() > 0 {
    32  			return
    33  		}
    34  	}
    35  }
    36  
    37  // G1 is an abstract cyclic group. The zero value is suitable for use as the
    38  // output of an operation, but cannot be used as an input.
    39  type G1 struct {
    40  	p *curvePoint
    41  }
    42  
    43  // RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
    44  func RandomG1(r io.Reader) (*big.Int, *G1, error) {
    45  	k, err := randomK(r)
    46  	if err != nil {
    47  		return nil, nil, err
    48  	}
    49  
    50  	return k, new(G1).ScalarBaseMult(k), nil
    51  }
    52  
    53  func (g *G1) String() string {
    54  	return "bn256.G1" + g.p.String()
    55  }
    56  
    57  // ScalarBaseMult sets e to g*k where g is the generator of the group and then
    58  // returns e.
    59  func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
    60  	if e.p == nil {
    61  		e.p = &curvePoint{}
    62  	}
    63  	e.p.Mul(curveGen, k)
    64  	return e
    65  }
    66  
    67  // ScalarMult sets e to a*k and then returns e.
    68  func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
    69  	if e.p == nil {
    70  		e.p = &curvePoint{}
    71  	}
    72  	e.p.Mul(a.p, k)
    73  	return e
    74  }
    75  
    76  // Add sets e to a+b and then returns e.
    77  func (e *G1) Add(a, b *G1) *G1 {
    78  	if e.p == nil {
    79  		e.p = &curvePoint{}
    80  	}
    81  	e.p.Add(a.p, b.p)
    82  	return e
    83  }
    84  
    85  // Neg sets e to -a and then returns e.
    86  func (e *G1) Neg(a *G1) *G1 {
    87  	if e.p == nil {
    88  		e.p = &curvePoint{}
    89  	}
    90  	e.p.Neg(a.p)
    91  	return e
    92  }
    93  
    94  // Set sets e to a and then returns e.
    95  func (e *G1) Set(a *G1) *G1 {
    96  	if e.p == nil {
    97  		e.p = &curvePoint{}
    98  	}
    99  	e.p.Set(a.p)
   100  	return e
   101  }
   102  
   103  // Marshal converts e to a byte slice.
   104  func (e *G1) Marshal() []byte {
   105  	// Each value is a 256-bit number.
   106  	const numBytes = 256 / 8
   107  
   108  	if e.p == nil {
   109  		e.p = &curvePoint{}
   110  	}
   111  
   112  	e.p.MakeAffine()
   113  	ret := make([]byte, numBytes*2)
   114  	if e.p.IsInfinity() {
   115  		return ret
   116  	}
   117  	temp := &gfP{}
   118  
   119  	montDecode(temp, &e.p.x)
   120  	temp.Marshal(ret)
   121  	montDecode(temp, &e.p.y)
   122  	temp.Marshal(ret[numBytes:])
   123  
   124  	return ret
   125  }
   126  
   127  // Unmarshal sets e to the result of converting the output of Marshal back into
   128  // a group element and then returns e.
   129  func (e *G1) Unmarshal(m []byte) ([]byte, error) {
   130  	// Each value is a 256-bit number.
   131  	const numBytes = 256 / 8
   132  	if len(m) < 2*numBytes {
   133  		return nil, errors.New("bn256: not enough data")
   134  	}
   135  	// Unmarshal the points and check their caps
   136  	if e.p == nil {
   137  		e.p = &curvePoint{}
   138  	} else {
   139  		e.p.x, e.p.y = gfP{0}, gfP{0}
   140  	}
   141  	var err error
   142  	if err = e.p.x.Unmarshal(m); err != nil {
   143  		return nil, err
   144  	}
   145  	if err = e.p.y.Unmarshal(m[numBytes:]); err != nil {
   146  		return nil, err
   147  	}
   148  	// Encode into Montgomery form and ensure it's on the curve
   149  	montEncode(&e.p.x, &e.p.x)
   150  	montEncode(&e.p.y, &e.p.y)
   151  
   152  	zero := gfP{0}
   153  	if e.p.x == zero && e.p.y == zero {
   154  		// This is the point at infinity.
   155  		e.p.y = *newGFp(1)
   156  		e.p.z = gfP{0}
   157  		e.p.t = gfP{0}
   158  	} else {
   159  		e.p.z = *newGFp(1)
   160  		e.p.t = *newGFp(1)
   161  
   162  		if !e.p.IsOnCurve() {
   163  			return nil, errors.New("bn256: malformed point")
   164  		}
   165  	}
   166  	return m[2*numBytes:], nil
   167  }
   168  
   169  // G2 is an abstract cyclic group. The zero value is suitable for use as the
   170  // output of an operation, but cannot be used as an input.
   171  type G2 struct {
   172  	p *twistPoint
   173  }
   174  
   175  // RandomG2 returns x and g₂ˣ where x is a random, non-zero number read from r.
   176  func RandomG2(r io.Reader) (*big.Int, *G2, error) {
   177  	k, err := randomK(r)
   178  	if err != nil {
   179  		return nil, nil, err
   180  	}
   181  
   182  	return k, new(G2).ScalarBaseMult(k), nil
   183  }
   184  
   185  func (e *G2) String() string {
   186  	return "bn256.G2" + e.p.String()
   187  }
   188  
   189  // ScalarBaseMult sets e to g*k where g is the generator of the group and then
   190  // returns out.
   191  func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
   192  	if e.p == nil {
   193  		e.p = &twistPoint{}
   194  	}
   195  	e.p.Mul(twistGen, k)
   196  	return e
   197  }
   198  
   199  // ScalarMult sets e to a*k and then returns e.
   200  func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
   201  	if e.p == nil {
   202  		e.p = &twistPoint{}
   203  	}
   204  	e.p.Mul(a.p, k)
   205  	return e
   206  }
   207  
   208  // Add sets e to a+b and then returns e.
   209  func (e *G2) Add(a, b *G2) *G2 {
   210  	if e.p == nil {
   211  		e.p = &twistPoint{}
   212  	}
   213  	e.p.Add(a.p, b.p)
   214  	return e
   215  }
   216  
   217  // Neg sets e to -a and then returns e.
   218  func (e *G2) Neg(a *G2) *G2 {
   219  	if e.p == nil {
   220  		e.p = &twistPoint{}
   221  	}
   222  	e.p.Neg(a.p)
   223  	return e
   224  }
   225  
   226  // Set sets e to a and then returns e.
   227  func (e *G2) Set(a *G2) *G2 {
   228  	if e.p == nil {
   229  		e.p = &twistPoint{}
   230  	}
   231  	e.p.Set(a.p)
   232  	return e
   233  }
   234  
   235  // Marshal converts e into a byte slice.
   236  func (e *G2) Marshal() []byte {
   237  	// Each value is a 256-bit number.
   238  	const numBytes = 256 / 8
   239  
   240  	if e.p == nil {
   241  		e.p = &twistPoint{}
   242  	}
   243  
   244  	e.p.MakeAffine()
   245  	ret := make([]byte, numBytes*4)
   246  	if e.p.IsInfinity() {
   247  		return ret
   248  	}
   249  	temp := &gfP{}
   250  
   251  	montDecode(temp, &e.p.x.x)
   252  	temp.Marshal(ret)
   253  	montDecode(temp, &e.p.x.y)
   254  	temp.Marshal(ret[numBytes:])
   255  	montDecode(temp, &e.p.y.x)
   256  	temp.Marshal(ret[2*numBytes:])
   257  	montDecode(temp, &e.p.y.y)
   258  	temp.Marshal(ret[3*numBytes:])
   259  
   260  	return ret
   261  }
   262  
   263  // Unmarshal sets e to the result of converting the output of Marshal back into
   264  // a group element and then returns e.
   265  func (e *G2) Unmarshal(m []byte) ([]byte, error) {
   266  	// Each value is a 256-bit number.
   267  	const numBytes = 256 / 8
   268  	if len(m) < 4*numBytes {
   269  		return nil, errors.New("bn256: not enough data")
   270  	}
   271  	// Unmarshal the points and check their caps
   272  	if e.p == nil {
   273  		e.p = &twistPoint{}
   274  	}
   275  	var err error
   276  	if err = e.p.x.x.Unmarshal(m); err != nil {
   277  		return nil, err
   278  	}
   279  	if err = e.p.x.y.Unmarshal(m[numBytes:]); err != nil {
   280  		return nil, err
   281  	}
   282  	if err = e.p.y.x.Unmarshal(m[2*numBytes:]); err != nil {
   283  		return nil, err
   284  	}
   285  	if err = e.p.y.y.Unmarshal(m[3*numBytes:]); err != nil {
   286  		return nil, err
   287  	}
   288  	// Encode into Montgomery form and ensure it's on the curve
   289  	montEncode(&e.p.x.x, &e.p.x.x)
   290  	montEncode(&e.p.x.y, &e.p.x.y)
   291  	montEncode(&e.p.y.x, &e.p.y.x)
   292  	montEncode(&e.p.y.y, &e.p.y.y)
   293  
   294  	if e.p.x.IsZero() && e.p.y.IsZero() {
   295  		// This is the point at infinity.
   296  		e.p.y.SetOne()
   297  		e.p.z.SetZero()
   298  		e.p.t.SetZero()
   299  	} else {
   300  		e.p.z.SetOne()
   301  		e.p.t.SetOne()
   302  
   303  		if !e.p.IsOnCurve() {
   304  			return nil, errors.New("bn256: malformed point")
   305  		}
   306  	}
   307  	return m[4*numBytes:], nil
   308  }
   309  
   310  // GT is an abstract cyclic group. The zero value is suitable for use as the
   311  // output of an operation, but cannot be used as an input.
   312  type GT struct {
   313  	p *gfP12
   314  }
   315  
   316  // Pair calculates an Optimal Ate pairing.
   317  func Pair(g1 *G1, g2 *G2) *GT {
   318  	return &GT{optimalAte(g2.p, g1.p)}
   319  }
   320  
   321  // PairingCheck calculates the Optimal Ate pairing for a set of points.
   322  func PairingCheck(a []*G1, b []*G2) bool {
   323  	acc := new(gfP12)
   324  	acc.SetOne()
   325  
   326  	for i := 0; i < len(a); i++ {
   327  		if a[i].p.IsInfinity() || b[i].p.IsInfinity() {
   328  			continue
   329  		}
   330  		acc.Mul(acc, miller(b[i].p, a[i].p))
   331  	}
   332  	return finalExponentiation(acc).IsOne()
   333  }
   334  
   335  // Miller applies Miller's algorithm, which is a bilinear function from the
   336  // source groups to F_p^12. Miller(g1, g2).Finalize() is equivalent to Pair(g1,
   337  // g2).
   338  func Miller(g1 *G1, g2 *G2) *GT {
   339  	return &GT{miller(g2.p, g1.p)}
   340  }
   341  
   342  func (g *GT) String() string {
   343  	return "bn256.GT" + g.p.String()
   344  }
   345  
   346  // ScalarMult sets e to a*k and then returns e.
   347  func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
   348  	if e.p == nil {
   349  		e.p = &gfP12{}
   350  	}
   351  	e.p.Exp(a.p, k)
   352  	return e
   353  }
   354  
   355  // Add sets e to a+b and then returns e.
   356  func (e *GT) Add(a, b *GT) *GT {
   357  	if e.p == nil {
   358  		e.p = &gfP12{}
   359  	}
   360  	e.p.Mul(a.p, b.p)
   361  	return e
   362  }
   363  
   364  // Neg sets e to -a and then returns e.
   365  func (e *GT) Neg(a *GT) *GT {
   366  	if e.p == nil {
   367  		e.p = &gfP12{}
   368  	}
   369  	e.p.Conjugate(a.p)
   370  	return e
   371  }
   372  
   373  // Set sets e to a and then returns e.
   374  func (e *GT) Set(a *GT) *GT {
   375  	if e.p == nil {
   376  		e.p = &gfP12{}
   377  	}
   378  	e.p.Set(a.p)
   379  	return e
   380  }
   381  
   382  // Finalize is a linear function from F_p^12 to GT.
   383  func (e *GT) Finalize() *GT {
   384  	ret := finalExponentiation(e.p)
   385  	e.p.Set(ret)
   386  	return e
   387  }
   388  
   389  // Marshal converts e into a byte slice.
   390  func (e *GT) Marshal() []byte {
   391  	// Each value is a 256-bit number.
   392  	const numBytes = 256 / 8
   393  
   394  	if e.p == nil {
   395  		e.p = &gfP12{}
   396  		e.p.SetOne()
   397  	}
   398  
   399  	ret := make([]byte, numBytes*12)
   400  	temp := &gfP{}
   401  
   402  	montDecode(temp, &e.p.x.x.x)
   403  	temp.Marshal(ret)
   404  	montDecode(temp, &e.p.x.x.y)
   405  	temp.Marshal(ret[numBytes:])
   406  	montDecode(temp, &e.p.x.y.x)
   407  	temp.Marshal(ret[2*numBytes:])
   408  	montDecode(temp, &e.p.x.y.y)
   409  	temp.Marshal(ret[3*numBytes:])
   410  	montDecode(temp, &e.p.x.z.x)
   411  	temp.Marshal(ret[4*numBytes:])
   412  	montDecode(temp, &e.p.x.z.y)
   413  	temp.Marshal(ret[5*numBytes:])
   414  	montDecode(temp, &e.p.y.x.x)
   415  	temp.Marshal(ret[6*numBytes:])
   416  	montDecode(temp, &e.p.y.x.y)
   417  	temp.Marshal(ret[7*numBytes:])
   418  	montDecode(temp, &e.p.y.y.x)
   419  	temp.Marshal(ret[8*numBytes:])
   420  	montDecode(temp, &e.p.y.y.y)
   421  	temp.Marshal(ret[9*numBytes:])
   422  	montDecode(temp, &e.p.y.z.x)
   423  	temp.Marshal(ret[10*numBytes:])
   424  	montDecode(temp, &e.p.y.z.y)
   425  	temp.Marshal(ret[11*numBytes:])
   426  
   427  	return ret
   428  }
   429  
   430  // Unmarshal sets e to the result of converting the output of Marshal back into
   431  // a group element and then returns e.
   432  func (e *GT) Unmarshal(m []byte) ([]byte, error) {
   433  	// Each value is a 256-bit number.
   434  	const numBytes = 256 / 8
   435  
   436  	if len(m) < 12*numBytes {
   437  		return nil, errors.New("bn256: not enough data")
   438  	}
   439  
   440  	if e.p == nil {
   441  		e.p = &gfP12{}
   442  	}
   443  
   444  	var err error
   445  	if err = e.p.x.x.x.Unmarshal(m); err != nil {
   446  		return nil, err
   447  	}
   448  	if err = e.p.x.x.y.Unmarshal(m[numBytes:]); err != nil {
   449  		return nil, err
   450  	}
   451  	if err = e.p.x.y.x.Unmarshal(m[2*numBytes:]); err != nil {
   452  		return nil, err
   453  	}
   454  	if err = e.p.x.y.y.Unmarshal(m[3*numBytes:]); err != nil {
   455  		return nil, err
   456  	}
   457  	if err = e.p.x.z.x.Unmarshal(m[4*numBytes:]); err != nil {
   458  		return nil, err
   459  	}
   460  	if err = e.p.x.z.y.Unmarshal(m[5*numBytes:]); err != nil {
   461  		return nil, err
   462  	}
   463  	if err = e.p.y.x.x.Unmarshal(m[6*numBytes:]); err != nil {
   464  		return nil, err
   465  	}
   466  	if err = e.p.y.x.y.Unmarshal(m[7*numBytes:]); err != nil {
   467  		return nil, err
   468  	}
   469  	if err = e.p.y.y.x.Unmarshal(m[8*numBytes:]); err != nil {
   470  		return nil, err
   471  	}
   472  	if err = e.p.y.y.y.Unmarshal(m[9*numBytes:]); err != nil {
   473  		return nil, err
   474  	}
   475  	if err = e.p.y.z.x.Unmarshal(m[10*numBytes:]); err != nil {
   476  		return nil, err
   477  	}
   478  	if err = e.p.y.z.y.Unmarshal(m[11*numBytes:]); err != nil {
   479  		return nil, err
   480  	}
   481  	montEncode(&e.p.x.x.x, &e.p.x.x.x)
   482  	montEncode(&e.p.x.x.y, &e.p.x.x.y)
   483  	montEncode(&e.p.x.y.x, &e.p.x.y.x)
   484  	montEncode(&e.p.x.y.y, &e.p.x.y.y)
   485  	montEncode(&e.p.x.z.x, &e.p.x.z.x)
   486  	montEncode(&e.p.x.z.y, &e.p.x.z.y)
   487  	montEncode(&e.p.y.x.x, &e.p.y.x.x)
   488  	montEncode(&e.p.y.x.y, &e.p.y.x.y)
   489  	montEncode(&e.p.y.y.x, &e.p.y.y.x)
   490  	montEncode(&e.p.y.y.y, &e.p.y.y.y)
   491  	montEncode(&e.p.y.z.x, &e.p.y.z.x)
   492  	montEncode(&e.p.y.z.y, &e.p.y.z.y)
   493  
   494  	return m[12*numBytes:], nil
   495  }