github.com/luckypickle/go-ethereum-vet@v1.14.2/crypto/secp256k1/curve.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Copyright 2011 ThePiachu. All rights reserved.
     3  // Copyright 2015 Jeffrey Wilcke, Felix Lange, Gustav Simonsson. All rights reserved.
     4  //
     5  // Redistribution and use in source and binary forms, with or without
     6  // modification, are permitted provided that the following conditions are
     7  // met:
     8  //
     9  // * Redistributions of source code must retain the above copyright
    10  //   notice, this list of conditions and the following disclaimer.
    11  // * Redistributions in binary form must reproduce the above
    12  //   copyright notice, this list of conditions and the following disclaimer
    13  //   in the documentation and/or other materials provided with the
    14  //   distribution.
    15  // * Neither the name of Google Inc. nor the names of its
    16  //   contributors may be used to endorse or promote products derived from
    17  //   this software without specific prior written permission.
    18  // * The name of ThePiachu may not be used to endorse or promote products
    19  //   derived from this software without specific prior written permission.
    20  //
    21  // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    22  // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    23  // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    24  // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    25  // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    26  // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    27  // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    28  // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    29  // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    30  // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    31  // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    32  
    33  package secp256k1
    34  
    35  import (
    36  	"crypto/elliptic"
    37  	"math/big"
    38  )
    39  
    40  const (
    41  	// number of bits in a big.Word
    42  	wordBits = 32 << (uint64(^big.Word(0)) >> 63)
    43  	// number of bytes in a big.Word
    44  	wordBytes = wordBits / 8
    45  )
    46  
    47  // readBits encodes the absolute value of bigint as big-endian bytes. Callers
    48  // must ensure that buf has enough space. If buf is too short the result will
    49  // be incomplete.
    50  func readBits(bigint *big.Int, buf []byte) {
    51  	i := len(buf)
    52  	for _, d := range bigint.Bits() {
    53  		for j := 0; j < wordBytes && i > 0; j++ {
    54  			i--
    55  			buf[i] = byte(d)
    56  			d >>= 8
    57  		}
    58  	}
    59  }
    60  
    61  // This code is from https://github.com/ThePiachu/GoBit and implements
    62  // several Koblitz elliptic curves over prime fields.
    63  //
    64  // The curve methods, internally, on Jacobian coordinates. For a given
    65  // (x, y) position on the curve, the Jacobian coordinates are (x1, y1,
    66  // z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come
    67  // when the whole calculation can be performed within the transform
    68  // (as in ScalarMult and ScalarBaseMult). But even for Add and Double,
    69  // it's faster to apply and reverse the transform than to operate in
    70  // affine coordinates.
    71  
    72  // A BitCurve represents a Koblitz Curve with a=0.
    73  // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
    74  type BitCurve struct {
    75  	P       *big.Int // the order of the underlying field
    76  	N       *big.Int // the order of the base point
    77  	B       *big.Int // the constant of the BitCurve equation
    78  	Gx, Gy  *big.Int // (x,y) of the base point
    79  	BitSize int      // the size of the underlying field
    80  }
    81  
    82  func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
    83  	return &elliptic.CurveParams{
    84  		P:       BitCurve.P,
    85  		N:       BitCurve.N,
    86  		B:       BitCurve.B,
    87  		Gx:      BitCurve.Gx,
    88  		Gy:      BitCurve.Gy,
    89  		BitSize: BitCurve.BitSize,
    90  	}
    91  }
    92  
    93  // IsOnCurve returns true if the given (x,y) lies on the BitCurve.
    94  func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
    95  	// y² = x³ + b
    96  	y2 := new(big.Int).Mul(y, y) //y²
    97  	y2.Mod(y2, BitCurve.P)       //y²%P
    98  
    99  	x3 := new(big.Int).Mul(x, x) //x²
   100  	x3.Mul(x3, x)                //x³
   101  
   102  	x3.Add(x3, BitCurve.B) //x³+B
   103  	x3.Mod(x3, BitCurve.P) //(x³+B)%P
   104  
   105  	return x3.Cmp(y2) == 0
   106  }
   107  
   108  //TODO: double check if the function is okay
   109  // affineFromJacobian reverses the Jacobian transform. See the comment at the
   110  // top of the file.
   111  func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
   112  	if z.Sign() == 0 {
   113  		return new(big.Int), new(big.Int)
   114  	}
   115  
   116  	zinv := new(big.Int).ModInverse(z, BitCurve.P)
   117  	zinvsq := new(big.Int).Mul(zinv, zinv)
   118  
   119  	xOut = new(big.Int).Mul(x, zinvsq)
   120  	xOut.Mod(xOut, BitCurve.P)
   121  	zinvsq.Mul(zinvsq, zinv)
   122  	yOut = new(big.Int).Mul(y, zinvsq)
   123  	yOut.Mod(yOut, BitCurve.P)
   124  	return
   125  }
   126  
   127  // Add returns the sum of (x1,y1) and (x2,y2)
   128  func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
   129  	// If one point is at infinity, return the other point.
   130  	// Adding the point at infinity to any point will preserve the other point.
   131  	if x1.Sign() == 0 && y1.Sign() == 0 {
   132  		return x2, y2
   133  	}
   134  	if x2.Sign() == 0 && y2.Sign() == 0 {
   135  		return x1, y1
   136  	}
   137  	z := new(big.Int).SetInt64(1)
   138  	if x1.Cmp(x2) == 0 && y1.Cmp(y2) == 0 {
   139  		return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z))
   140  	}
   141  	return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
   142  }
   143  
   144  // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
   145  // (x2, y2, z2) and returns their sum, also in Jacobian form.
   146  func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
   147  	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
   148  	z1z1 := new(big.Int).Mul(z1, z1)
   149  	z1z1.Mod(z1z1, BitCurve.P)
   150  	z2z2 := new(big.Int).Mul(z2, z2)
   151  	z2z2.Mod(z2z2, BitCurve.P)
   152  
   153  	u1 := new(big.Int).Mul(x1, z2z2)
   154  	u1.Mod(u1, BitCurve.P)
   155  	u2 := new(big.Int).Mul(x2, z1z1)
   156  	u2.Mod(u2, BitCurve.P)
   157  	h := new(big.Int).Sub(u2, u1)
   158  	if h.Sign() == -1 {
   159  		h.Add(h, BitCurve.P)
   160  	}
   161  	i := new(big.Int).Lsh(h, 1)
   162  	i.Mul(i, i)
   163  	j := new(big.Int).Mul(h, i)
   164  
   165  	s1 := new(big.Int).Mul(y1, z2)
   166  	s1.Mul(s1, z2z2)
   167  	s1.Mod(s1, BitCurve.P)
   168  	s2 := new(big.Int).Mul(y2, z1)
   169  	s2.Mul(s2, z1z1)
   170  	s2.Mod(s2, BitCurve.P)
   171  	r := new(big.Int).Sub(s2, s1)
   172  	if r.Sign() == -1 {
   173  		r.Add(r, BitCurve.P)
   174  	}
   175  	r.Lsh(r, 1)
   176  	v := new(big.Int).Mul(u1, i)
   177  
   178  	x3 := new(big.Int).Set(r)
   179  	x3.Mul(x3, x3)
   180  	x3.Sub(x3, j)
   181  	x3.Sub(x3, v)
   182  	x3.Sub(x3, v)
   183  	x3.Mod(x3, BitCurve.P)
   184  
   185  	y3 := new(big.Int).Set(r)
   186  	v.Sub(v, x3)
   187  	y3.Mul(y3, v)
   188  	s1.Mul(s1, j)
   189  	s1.Lsh(s1, 1)
   190  	y3.Sub(y3, s1)
   191  	y3.Mod(y3, BitCurve.P)
   192  
   193  	z3 := new(big.Int).Add(z1, z2)
   194  	z3.Mul(z3, z3)
   195  	z3.Sub(z3, z1z1)
   196  	if z3.Sign() == -1 {
   197  		z3.Add(z3, BitCurve.P)
   198  	}
   199  	z3.Sub(z3, z2z2)
   200  	if z3.Sign() == -1 {
   201  		z3.Add(z3, BitCurve.P)
   202  	}
   203  	z3.Mul(z3, h)
   204  	z3.Mod(z3, BitCurve.P)
   205  
   206  	return x3, y3, z3
   207  }
   208  
   209  // Double returns 2*(x,y)
   210  func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
   211  	z1 := new(big.Int).SetInt64(1)
   212  	return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
   213  }
   214  
   215  // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
   216  // returns its double, also in Jacobian form.
   217  func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
   218  	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
   219  
   220  	a := new(big.Int).Mul(x, x) //X1²
   221  	b := new(big.Int).Mul(y, y) //Y1²
   222  	c := new(big.Int).Mul(b, b) //B²
   223  
   224  	d := new(big.Int).Add(x, b) //X1+B
   225  	d.Mul(d, d)                 //(X1+B)²
   226  	d.Sub(d, a)                 //(X1+B)²-A
   227  	d.Sub(d, c)                 //(X1+B)²-A-C
   228  	d.Mul(d, big.NewInt(2))     //2*((X1+B)²-A-C)
   229  
   230  	e := new(big.Int).Mul(big.NewInt(3), a) //3*A
   231  	f := new(big.Int).Mul(e, e)             //E²
   232  
   233  	x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
   234  	x3.Sub(f, x3)                            //F-2*D
   235  	x3.Mod(x3, BitCurve.P)
   236  
   237  	y3 := new(big.Int).Sub(d, x3)                  //D-X3
   238  	y3.Mul(e, y3)                                  //E*(D-X3)
   239  	y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
   240  	y3.Mod(y3, BitCurve.P)
   241  
   242  	z3 := new(big.Int).Mul(y, z) //Y1*Z1
   243  	z3.Mul(big.NewInt(2), z3)    //3*Y1*Z1
   244  	z3.Mod(z3, BitCurve.P)
   245  
   246  	return x3, y3, z3
   247  }
   248  
   249  // ScalarBaseMult returns k*G, where G is the base point of the group and k is
   250  // an integer in big-endian form.
   251  func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
   252  	return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
   253  }
   254  
   255  // Marshal converts a point into the form specified in section 4.3.6 of ANSI
   256  // X9.62.
   257  func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
   258  	byteLen := (BitCurve.BitSize + 7) >> 3
   259  	ret := make([]byte, 1+2*byteLen)
   260  	ret[0] = 4 // uncompressed point flag
   261  	readBits(x, ret[1:1+byteLen])
   262  	readBits(y, ret[1+byteLen:])
   263  	return ret
   264  }
   265  
   266  // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
   267  // error, x = nil.
   268  func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
   269  	byteLen := (BitCurve.BitSize + 7) >> 3
   270  	if len(data) != 1+2*byteLen {
   271  		return
   272  	}
   273  	if data[0] != 4 { // uncompressed form
   274  		return
   275  	}
   276  	x = new(big.Int).SetBytes(data[1 : 1+byteLen])
   277  	y = new(big.Int).SetBytes(data[1+byteLen:])
   278  	return
   279  }
   280  
   281  var theCurve = new(BitCurve)
   282  
   283  func init() {
   284  	// See SEC 2 section 2.7.1
   285  	// curve parameters taken from:
   286  	// http://www.secg.org/sec2-v2.pdf
   287  	theCurve.P, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 0)
   288  	theCurve.N, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 0)
   289  	theCurve.B, _ = new(big.Int).SetString("0x0000000000000000000000000000000000000000000000000000000000000007", 0)
   290  	theCurve.Gx, _ = new(big.Int).SetString("0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 0)
   291  	theCurve.Gy, _ = new(big.Int).SetString("0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 0)
   292  	theCurve.BitSize = 256
   293  }
   294  
   295  // S256 returns a BitCurve which implements secp256k1.
   296  func S256() *BitCurve {
   297  	return theCurve
   298  }