github.com/luckypickle/go-ethereum-vet@v1.14.2/crypto/secp256k1/libsecp256k1/src/scalar_impl.h (about) 1 /********************************************************************** 2 * Copyright (c) 2014 Pieter Wuille * 3 * Distributed under the MIT software license, see the accompanying * 4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.* 5 **********************************************************************/ 6 7 #ifndef _SECP256K1_SCALAR_IMPL_H_ 8 #define _SECP256K1_SCALAR_IMPL_H_ 9 10 #include "group.h" 11 #include "scalar.h" 12 13 #if defined HAVE_CONFIG_H 14 #include "libsecp256k1-config.h" 15 #endif 16 17 #if defined(EXHAUSTIVE_TEST_ORDER) 18 #include "scalar_low_impl.h" 19 #elif defined(USE_SCALAR_4X64) 20 #include "scalar_4x64_impl.h" 21 #elif defined(USE_SCALAR_8X32) 22 #include "scalar_8x32_impl.h" 23 #else 24 #error "Please select scalar implementation" 25 #endif 26 27 #ifndef USE_NUM_NONE 28 static void vet_secp256k1_scalar_get_num(vet_secp256k1_num *r, const vet_secp256k1_scalar *a) { 29 unsigned char c[32]; 30 vet_secp256k1_scalar_get_b32(c, a); 31 vet_secp256k1_num_set_bin(r, c, 32); 32 } 33 34 /** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */ 35 static void vet_secp256k1_scalar_order_get_num(vet_secp256k1_num *r) { 36 #if defined(EXHAUSTIVE_TEST_ORDER) 37 static const unsigned char order[32] = { 38 0,0,0,0,0,0,0,0, 39 0,0,0,0,0,0,0,0, 40 0,0,0,0,0,0,0,0, 41 0,0,0,0,0,0,0,EXHAUSTIVE_TEST_ORDER 42 }; 43 #else 44 static const unsigned char order[32] = { 45 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 46 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, 47 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, 48 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41 49 }; 50 #endif 51 vet_secp256k1_num_set_bin(r, order, 32); 52 } 53 #endif 54 55 static void vet_secp256k1_scalar_inverse(vet_secp256k1_scalar *r, const vet_secp256k1_scalar *x) { 56 #if defined(EXHAUSTIVE_TEST_ORDER) 57 int i; 58 *r = 0; 59 for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) 60 if ((i * *x) % EXHAUSTIVE_TEST_ORDER == 1) 61 *r = i; 62 /* If this VERIFY_CHECK triggers we were given a noninvertible scalar (and thus 63 * have a composite group order; fix it in exhaustive_tests.c). */ 64 VERIFY_CHECK(*r != 0); 65 } 66 #else 67 vet_secp256k1_scalar *t; 68 int i; 69 /* First compute x ^ (2^N - 1) for some values of N. */ 70 vet_secp256k1_scalar x2, x3, x4, x6, x7, x8, x15, x30, x60, x120, x127; 71 72 vet_secp256k1_scalar_sqr(&x2, x); 73 vet_secp256k1_scalar_mul(&x2, &x2, x); 74 75 vet_secp256k1_scalar_sqr(&x3, &x2); 76 vet_secp256k1_scalar_mul(&x3, &x3, x); 77 78 vet_secp256k1_scalar_sqr(&x4, &x3); 79 vet_secp256k1_scalar_mul(&x4, &x4, x); 80 81 vet_secp256k1_scalar_sqr(&x6, &x4); 82 vet_secp256k1_scalar_sqr(&x6, &x6); 83 vet_secp256k1_scalar_mul(&x6, &x6, &x2); 84 85 vet_secp256k1_scalar_sqr(&x7, &x6); 86 vet_secp256k1_scalar_mul(&x7, &x7, x); 87 88 vet_secp256k1_scalar_sqr(&x8, &x7); 89 vet_secp256k1_scalar_mul(&x8, &x8, x); 90 91 vet_secp256k1_scalar_sqr(&x15, &x8); 92 for (i = 0; i < 6; i++) { 93 vet_secp256k1_scalar_sqr(&x15, &x15); 94 } 95 vet_secp256k1_scalar_mul(&x15, &x15, &x7); 96 97 vet_secp256k1_scalar_sqr(&x30, &x15); 98 for (i = 0; i < 14; i++) { 99 vet_secp256k1_scalar_sqr(&x30, &x30); 100 } 101 vet_secp256k1_scalar_mul(&x30, &x30, &x15); 102 103 vet_secp256k1_scalar_sqr(&x60, &x30); 104 for (i = 0; i < 29; i++) { 105 vet_secp256k1_scalar_sqr(&x60, &x60); 106 } 107 vet_secp256k1_scalar_mul(&x60, &x60, &x30); 108 109 vet_secp256k1_scalar_sqr(&x120, &x60); 110 for (i = 0; i < 59; i++) { 111 vet_secp256k1_scalar_sqr(&x120, &x120); 112 } 113 vet_secp256k1_scalar_mul(&x120, &x120, &x60); 114 115 vet_secp256k1_scalar_sqr(&x127, &x120); 116 for (i = 0; i < 6; i++) { 117 vet_secp256k1_scalar_sqr(&x127, &x127); 118 } 119 vet_secp256k1_scalar_mul(&x127, &x127, &x7); 120 121 /* Then accumulate the final result (t starts at x127). */ 122 t = &x127; 123 for (i = 0; i < 2; i++) { /* 0 */ 124 vet_secp256k1_scalar_sqr(t, t); 125 } 126 vet_secp256k1_scalar_mul(t, t, x); /* 1 */ 127 for (i = 0; i < 4; i++) { /* 0 */ 128 vet_secp256k1_scalar_sqr(t, t); 129 } 130 vet_secp256k1_scalar_mul(t, t, &x3); /* 111 */ 131 for (i = 0; i < 2; i++) { /* 0 */ 132 vet_secp256k1_scalar_sqr(t, t); 133 } 134 vet_secp256k1_scalar_mul(t, t, x); /* 1 */ 135 for (i = 0; i < 2; i++) { /* 0 */ 136 vet_secp256k1_scalar_sqr(t, t); 137 } 138 vet_secp256k1_scalar_mul(t, t, x); /* 1 */ 139 for (i = 0; i < 2; i++) { /* 0 */ 140 vet_secp256k1_scalar_sqr(t, t); 141 } 142 vet_secp256k1_scalar_mul(t, t, x); /* 1 */ 143 for (i = 0; i < 4; i++) { /* 0 */ 144 vet_secp256k1_scalar_sqr(t, t); 145 } 146 vet_secp256k1_scalar_mul(t, t, &x3); /* 111 */ 147 for (i = 0; i < 3; i++) { /* 0 */ 148 vet_secp256k1_scalar_sqr(t, t); 149 } 150 vet_secp256k1_scalar_mul(t, t, &x2); /* 11 */ 151 for (i = 0; i < 4; i++) { /* 0 */ 152 vet_secp256k1_scalar_sqr(t, t); 153 } 154 vet_secp256k1_scalar_mul(t, t, &x3); /* 111 */ 155 for (i = 0; i < 5; i++) { /* 00 */ 156 vet_secp256k1_scalar_sqr(t, t); 157 } 158 vet_secp256k1_scalar_mul(t, t, &x3); /* 111 */ 159 for (i = 0; i < 4; i++) { /* 00 */ 160 vet_secp256k1_scalar_sqr(t, t); 161 } 162 vet_secp256k1_scalar_mul(t, t, &x2); /* 11 */ 163 for (i = 0; i < 2; i++) { /* 0 */ 164 vet_secp256k1_scalar_sqr(t, t); 165 } 166 vet_secp256k1_scalar_mul(t, t, x); /* 1 */ 167 for (i = 0; i < 2; i++) { /* 0 */ 168 vet_secp256k1_scalar_sqr(t, t); 169 } 170 vet_secp256k1_scalar_mul(t, t, x); /* 1 */ 171 for (i = 0; i < 5; i++) { /* 0 */ 172 vet_secp256k1_scalar_sqr(t, t); 173 } 174 vet_secp256k1_scalar_mul(t, t, &x4); /* 1111 */ 175 for (i = 0; i < 2; i++) { /* 0 */ 176 vet_secp256k1_scalar_sqr(t, t); 177 } 178 vet_secp256k1_scalar_mul(t, t, x); /* 1 */ 179 for (i = 0; i < 3; i++) { /* 00 */ 180 vet_secp256k1_scalar_sqr(t, t); 181 } 182 vet_secp256k1_scalar_mul(t, t, x); /* 1 */ 183 for (i = 0; i < 4; i++) { /* 000 */ 184 vet_secp256k1_scalar_sqr(t, t); 185 } 186 vet_secp256k1_scalar_mul(t, t, x); /* 1 */ 187 for (i = 0; i < 2; i++) { /* 0 */ 188 vet_secp256k1_scalar_sqr(t, t); 189 } 190 vet_secp256k1_scalar_mul(t, t, x); /* 1 */ 191 for (i = 0; i < 10; i++) { /* 0000000 */ 192 vet_secp256k1_scalar_sqr(t, t); 193 } 194 vet_secp256k1_scalar_mul(t, t, &x3); /* 111 */ 195 for (i = 0; i < 4; i++) { /* 0 */ 196 vet_secp256k1_scalar_sqr(t, t); 197 } 198 vet_secp256k1_scalar_mul(t, t, &x3); /* 111 */ 199 for (i = 0; i < 9; i++) { /* 0 */ 200 vet_secp256k1_scalar_sqr(t, t); 201 } 202 vet_secp256k1_scalar_mul(t, t, &x8); /* 11111111 */ 203 for (i = 0; i < 2; i++) { /* 0 */ 204 vet_secp256k1_scalar_sqr(t, t); 205 } 206 vet_secp256k1_scalar_mul(t, t, x); /* 1 */ 207 for (i = 0; i < 3; i++) { /* 00 */ 208 vet_secp256k1_scalar_sqr(t, t); 209 } 210 vet_secp256k1_scalar_mul(t, t, x); /* 1 */ 211 for (i = 0; i < 3; i++) { /* 00 */ 212 vet_secp256k1_scalar_sqr(t, t); 213 } 214 vet_secp256k1_scalar_mul(t, t, x); /* 1 */ 215 for (i = 0; i < 5; i++) { /* 0 */ 216 vet_secp256k1_scalar_sqr(t, t); 217 } 218 vet_secp256k1_scalar_mul(t, t, &x4); /* 1111 */ 219 for (i = 0; i < 2; i++) { /* 0 */ 220 vet_secp256k1_scalar_sqr(t, t); 221 } 222 vet_secp256k1_scalar_mul(t, t, x); /* 1 */ 223 for (i = 0; i < 5; i++) { /* 000 */ 224 vet_secp256k1_scalar_sqr(t, t); 225 } 226 vet_secp256k1_scalar_mul(t, t, &x2); /* 11 */ 227 for (i = 0; i < 4; i++) { /* 00 */ 228 vet_secp256k1_scalar_sqr(t, t); 229 } 230 vet_secp256k1_scalar_mul(t, t, &x2); /* 11 */ 231 for (i = 0; i < 2; i++) { /* 0 */ 232 vet_secp256k1_scalar_sqr(t, t); 233 } 234 vet_secp256k1_scalar_mul(t, t, x); /* 1 */ 235 for (i = 0; i < 8; i++) { /* 000000 */ 236 vet_secp256k1_scalar_sqr(t, t); 237 } 238 vet_secp256k1_scalar_mul(t, t, &x2); /* 11 */ 239 for (i = 0; i < 3; i++) { /* 0 */ 240 vet_secp256k1_scalar_sqr(t, t); 241 } 242 vet_secp256k1_scalar_mul(t, t, &x2); /* 11 */ 243 for (i = 0; i < 3; i++) { /* 00 */ 244 vet_secp256k1_scalar_sqr(t, t); 245 } 246 vet_secp256k1_scalar_mul(t, t, x); /* 1 */ 247 for (i = 0; i < 6; i++) { /* 00000 */ 248 vet_secp256k1_scalar_sqr(t, t); 249 } 250 vet_secp256k1_scalar_mul(t, t, x); /* 1 */ 251 for (i = 0; i < 8; i++) { /* 00 */ 252 vet_secp256k1_scalar_sqr(t, t); 253 } 254 vet_secp256k1_scalar_mul(r, t, &x6); /* 111111 */ 255 } 256 257 SECP256K1_INLINE static int vet_secp256k1_scalar_is_even(const vet_secp256k1_scalar *a) { 258 return !(a->d[0] & 1); 259 } 260 #endif 261 262 static void vet_secp256k1_scalar_inverse_var(vet_secp256k1_scalar *r, const vet_secp256k1_scalar *x) { 263 #if defined(USE_SCALAR_INV_BUILTIN) 264 vet_secp256k1_scalar_inverse(r, x); 265 #elif defined(USE_SCALAR_INV_NUM) 266 unsigned char b[32]; 267 vet_secp256k1_num n, m; 268 vet_secp256k1_scalar t = *x; 269 vet_secp256k1_scalar_get_b32(b, &t); 270 vet_secp256k1_num_set_bin(&n, b, 32); 271 vet_secp256k1_scalar_order_get_num(&m); 272 vet_secp256k1_num_mod_inverse(&n, &n, &m); 273 vet_secp256k1_num_get_bin(b, 32, &n); 274 vet_secp256k1_scalar_set_b32(r, b, NULL); 275 /* Verify that the inverse was computed correctly, without GMP code. */ 276 vet_secp256k1_scalar_mul(&t, &t, r); 277 CHECK(vet_secp256k1_scalar_is_one(&t)); 278 #else 279 #error "Please select scalar inverse implementation" 280 #endif 281 } 282 283 #ifdef USE_ENDOMORPHISM 284 #if defined(EXHAUSTIVE_TEST_ORDER) 285 /** 286 * Find k1 and k2 given k, such that k1 + k2 * lambda == k mod n; unlike in the 287 * full case we don't bother making k1 and k2 be small, we just want them to be 288 * nontrivial to get full test coverage for the exhaustive tests. We therefore 289 * (arbitrarily) set k2 = k + 5 and k1 = k - k2 * lambda. 290 */ 291 static void vet_secp256k1_scalar_split_lambda(vet_secp256k1_scalar *r1, vet_secp256k1_scalar *r2, const vet_secp256k1_scalar *a) { 292 *r2 = (*a + 5) % EXHAUSTIVE_TEST_ORDER; 293 *r1 = (*a + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER; 294 } 295 #else 296 /** 297 * The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where 298 * lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a, 299 * 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72} 300 * 301 * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm 302 * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1 303 * and k2 have a small size. 304 * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are: 305 * 306 * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} 307 * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3} 308 * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8} 309 * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} 310 * 311 * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives 312 * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and 313 * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2. 314 * 315 * g1, g2 are precomputed constants used to replace division with a rounded multiplication 316 * when decomposing the scalar for an endomorphism-based point multiplication. 317 * 318 * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve 319 * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5. 320 * 321 * The derivation is described in the paper "Efficient Software Implementation of Public-Key 322 * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez), 323 * Section 4.3 (here we use a somewhat higher-precision estimate): 324 * d = a1*b2 - b1*a2 325 * g1 = round((2^272)*b2/d) 326 * g2 = round((2^272)*b1/d) 327 * 328 * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found 329 * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda'). 330 * 331 * The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order). 332 */ 333 334 static void vet_secp256k1_scalar_split_lambda(vet_secp256k1_scalar *r1, vet_secp256k1_scalar *r2, const vet_secp256k1_scalar *a) { 335 vet_secp256k1_scalar c1, c2; 336 static const vet_secp256k1_scalar minus_lambda = SECP256K1_SCALAR_CONST( 337 0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL, 338 0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL 339 ); 340 static const vet_secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST( 341 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL, 342 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL 343 ); 344 static const vet_secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST( 345 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 346 0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL 347 ); 348 static const vet_secp256k1_scalar g1 = SECP256K1_SCALAR_CONST( 349 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL, 350 0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL 351 ); 352 static const vet_secp256k1_scalar g2 = SECP256K1_SCALAR_CONST( 353 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL, 354 0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL 355 ); 356 VERIFY_CHECK(r1 != a); 357 VERIFY_CHECK(r2 != a); 358 /* these _var calls are constant time since the shift amount is constant */ 359 vet_secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272); 360 vet_secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272); 361 vet_secp256k1_scalar_mul(&c1, &c1, &minus_b1); 362 vet_secp256k1_scalar_mul(&c2, &c2, &minus_b2); 363 vet_secp256k1_scalar_add(r2, &c1, &c2); 364 vet_secp256k1_scalar_mul(r1, r2, &minus_lambda); 365 vet_secp256k1_scalar_add(r1, r1, a); 366 } 367 #endif 368 #endif 369 370 #endif