github.com/luckypickle/go-ethereum-vet@v1.14.2/crypto/signature_cgo.go (about) 1 // Copyright 2017 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 //go:build !nacl && !js && !nocgo 18 // +build !nacl,!js,!nocgo 19 20 package crypto 21 22 import ( 23 "crypto/ecdsa" 24 "crypto/elliptic" 25 "fmt" 26 27 "github.com/luckypickle/go-ethereum-vet/common/math" 28 "github.com/luckypickle/go-ethereum-vet/crypto/secp256k1" 29 ) 30 31 // Ecrecover returns the uncompressed public key that created the given signature. 32 func Ecrecover(hash, sig []byte) ([]byte, error) { 33 return secp256k1.RecoverPubkey(hash, sig) 34 } 35 36 // SigToPub returns the public key that created the given signature. 37 func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) { 38 s, err := Ecrecover(hash, sig) 39 if err != nil { 40 return nil, err 41 } 42 43 x, y := elliptic.Unmarshal(S256(), s) 44 return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil 45 } 46 47 // Sign calculates an ECDSA signature. 48 // 49 // This function is susceptible to chosen plaintext attacks that can leak 50 // information about the private key that is used for signing. Callers must 51 // be aware that the given hash cannot be chosen by an adversery. Common 52 // solution is to hash any input before calculating the signature. 53 // 54 // The produced signature is in the [R || S || V] format where V is 0 or 1. 55 func Sign(hash []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) { 56 if len(hash) != 32 { 57 return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash)) 58 } 59 seckey := math.PaddedBigBytes(prv.D, prv.Params().BitSize/8) 60 defer zeroBytes(seckey) 61 return secp256k1.Sign(hash, seckey) 62 } 63 64 // VerifySignature checks that the given public key created signature over hash. 65 // The public key should be in compressed (33 bytes) or uncompressed (65 bytes) format. 66 // The signature should have the 64 byte [R || S] format. 67 func VerifySignature(pubkey, hash, signature []byte) bool { 68 return secp256k1.VerifySignature(pubkey, hash, signature) 69 } 70 71 // DecompressPubkey parses a public key in the 33-byte compressed format. 72 func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) { 73 x, y := secp256k1.DecompressPubkey(pubkey) 74 if x == nil { 75 return nil, fmt.Errorf("invalid public key") 76 } 77 return &ecdsa.PublicKey{X: x, Y: y, Curve: S256()}, nil 78 } 79 80 // CompressPubkey encodes a public key to the 33-byte compressed format. 81 func CompressPubkey(pubkey *ecdsa.PublicKey) []byte { 82 return secp256k1.CompressPubkey(pubkey.X, pubkey.Y) 83 } 84 85 // S256 returns an instance of the secp256k1 curve. 86 func S256() elliptic.Curve { 87 return secp256k1.S256() 88 }