github.com/luckypickle/go-ethereum-vet@v1.14.2/p2p/discover/node.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package discover
    18  
    19  import (
    20  	"crypto/ecdsa"
    21  	"crypto/elliptic"
    22  	"encoding/hex"
    23  	"errors"
    24  	"fmt"
    25  	"math/big"
    26  	"math/rand"
    27  	"net"
    28  	"net/url"
    29  	"regexp"
    30  	"strconv"
    31  	"strings"
    32  	"time"
    33  
    34  	"github.com/luckypickle/go-ethereum-vet/common"
    35  	"github.com/luckypickle/go-ethereum-vet/crypto"
    36  	"github.com/luckypickle/go-ethereum-vet/crypto/secp256k1"
    37  )
    38  
    39  const NodeIDBits = 512
    40  
    41  // Node represents a host on the network.
    42  // The fields of Node may not be modified.
    43  type Node struct {
    44  	IP       net.IP // len 4 for IPv4 or 16 for IPv6
    45  	UDP, TCP uint16 // port numbers
    46  	ID       NodeID // the node's public key
    47  
    48  	// This is a cached copy of sha3(ID) which is used for node
    49  	// distance calculations. This is part of Node in order to make it
    50  	// possible to write tests that need a node at a certain distance.
    51  	// In those tests, the content of sha will not actually correspond
    52  	// with ID.
    53  	sha common.Hash
    54  
    55  	// Time when the node was added to the table.
    56  	addedAt time.Time
    57  }
    58  
    59  // NewNode creates a new node. It is mostly meant to be used for
    60  // testing purposes.
    61  func NewNode(id NodeID, ip net.IP, udpPort, tcpPort uint16) *Node {
    62  	if ipv4 := ip.To4(); ipv4 != nil {
    63  		ip = ipv4
    64  	}
    65  	return &Node{
    66  		IP:  ip,
    67  		UDP: udpPort,
    68  		TCP: tcpPort,
    69  		ID:  id,
    70  		sha: crypto.Keccak256Hash(id[:]),
    71  	}
    72  }
    73  
    74  func (n *Node) addr() *net.UDPAddr {
    75  	return &net.UDPAddr{IP: n.IP, Port: int(n.UDP)}
    76  }
    77  
    78  // Incomplete returns true for nodes with no IP address.
    79  func (n *Node) Incomplete() bool {
    80  	return n.IP == nil
    81  }
    82  
    83  // checks whether n is a valid complete node.
    84  func (n *Node) validateComplete() error {
    85  	if n.Incomplete() {
    86  		return errors.New("incomplete node")
    87  	}
    88  	if n.UDP == 0 {
    89  		return errors.New("missing UDP port")
    90  	}
    91  	if n.TCP == 0 {
    92  		return errors.New("missing TCP port")
    93  	}
    94  	if n.IP.IsMulticast() || n.IP.IsUnspecified() {
    95  		return errors.New("invalid IP (multicast/unspecified)")
    96  	}
    97  	_, err := n.ID.Pubkey() // validate the key (on curve, etc.)
    98  	return err
    99  }
   100  
   101  // The string representation of a Node is a URL.
   102  // Please see ParseNode for a description of the format.
   103  func (n *Node) String() string {
   104  	u := url.URL{Scheme: "enode"}
   105  	if n.Incomplete() {
   106  		u.Host = fmt.Sprintf("%x", n.ID[:])
   107  	} else {
   108  		addr := net.TCPAddr{IP: n.IP, Port: int(n.TCP)}
   109  		u.User = url.User(fmt.Sprintf("%x", n.ID[:]))
   110  		u.Host = addr.String()
   111  		if n.UDP != n.TCP {
   112  			u.RawQuery = "discport=" + strconv.Itoa(int(n.UDP))
   113  		}
   114  	}
   115  	return u.String()
   116  }
   117  
   118  var incompleteNodeURL = regexp.MustCompile("(?i)^(?:enode://)?([0-9a-f]+)$")
   119  
   120  // ParseNode parses a node designator.
   121  //
   122  // There are two basic forms of node designators
   123  //   - incomplete nodes, which only have the public key (node ID)
   124  //   - complete nodes, which contain the public key and IP/Port information
   125  //
   126  // For incomplete nodes, the designator must look like one of these
   127  //
   128  //	enode://<hex node id>
   129  //	<hex node id>
   130  //
   131  // For complete nodes, the node ID is encoded in the username portion
   132  // of the URL, separated from the host by an @ sign. The hostname can
   133  // only be given as an IP address, DNS domain names are not allowed.
   134  // The port in the host name section is the TCP listening port. If the
   135  // TCP and UDP (discovery) ports differ, the UDP port is specified as
   136  // query parameter "discport".
   137  //
   138  // In the following example, the node URL describes
   139  // a node with IP address 10.3.58.6, TCP listening port 30303
   140  // and UDP discovery port 30301.
   141  //
   142  //	enode://<hex node id>@10.3.58.6:30303?discport=30301
   143  func ParseNode(rawurl string) (*Node, error) {
   144  	if m := incompleteNodeURL.FindStringSubmatch(rawurl); m != nil {
   145  		id, err := HexID(m[1])
   146  		if err != nil {
   147  			return nil, fmt.Errorf("invalid node ID (%v)", err)
   148  		}
   149  		return NewNode(id, nil, 0, 0), nil
   150  	}
   151  	return parseComplete(rawurl)
   152  }
   153  
   154  func parseComplete(rawurl string) (*Node, error) {
   155  	var (
   156  		id               NodeID
   157  		ip               net.IP
   158  		tcpPort, udpPort uint64
   159  	)
   160  	u, err := url.Parse(rawurl)
   161  	if err != nil {
   162  		return nil, err
   163  	}
   164  	if u.Scheme != "enode" {
   165  		return nil, errors.New("invalid URL scheme, want \"enode\"")
   166  	}
   167  	// Parse the Node ID from the user portion.
   168  	if u.User == nil {
   169  		return nil, errors.New("does not contain node ID")
   170  	}
   171  	if id, err = HexID(u.User.String()); err != nil {
   172  		return nil, fmt.Errorf("invalid node ID (%v)", err)
   173  	}
   174  	// Parse the IP address.
   175  	host, port, err := net.SplitHostPort(u.Host)
   176  	if err != nil {
   177  		return nil, fmt.Errorf("invalid host: %v", err)
   178  	}
   179  	if ip = net.ParseIP(host); ip == nil {
   180  		return nil, errors.New("invalid IP address")
   181  	}
   182  	// Ensure the IP is 4 bytes long for IPv4 addresses.
   183  	if ipv4 := ip.To4(); ipv4 != nil {
   184  		ip = ipv4
   185  	}
   186  	// Parse the port numbers.
   187  	if tcpPort, err = strconv.ParseUint(port, 10, 16); err != nil {
   188  		return nil, errors.New("invalid port")
   189  	}
   190  	udpPort = tcpPort
   191  	qv := u.Query()
   192  	if qv.Get("discport") != "" {
   193  		udpPort, err = strconv.ParseUint(qv.Get("discport"), 10, 16)
   194  		if err != nil {
   195  			return nil, errors.New("invalid discport in query")
   196  		}
   197  	}
   198  	return NewNode(id, ip, uint16(udpPort), uint16(tcpPort)), nil
   199  }
   200  
   201  // MustParseNode parses a node URL. It panics if the URL is not valid.
   202  func MustParseNode(rawurl string) *Node {
   203  	n, err := ParseNode(rawurl)
   204  	if err != nil {
   205  		panic("invalid node URL: " + err.Error())
   206  	}
   207  	return n
   208  }
   209  
   210  // MarshalText implements encoding.TextMarshaler.
   211  func (n *Node) MarshalText() ([]byte, error) {
   212  	return []byte(n.String()), nil
   213  }
   214  
   215  // UnmarshalText implements encoding.TextUnmarshaler.
   216  func (n *Node) UnmarshalText(text []byte) error {
   217  	dec, err := ParseNode(string(text))
   218  	if err == nil {
   219  		*n = *dec
   220  	}
   221  	return err
   222  }
   223  
   224  // NodeID is a unique identifier for each node.
   225  // The node identifier is a marshaled elliptic curve public key.
   226  type NodeID [NodeIDBits / 8]byte
   227  
   228  // Bytes returns a byte slice representation of the NodeID
   229  func (n NodeID) Bytes() []byte {
   230  	return n[:]
   231  }
   232  
   233  // NodeID prints as a long hexadecimal number.
   234  func (n NodeID) String() string {
   235  	return fmt.Sprintf("%x", n[:])
   236  }
   237  
   238  // The Go syntax representation of a NodeID is a call to HexID.
   239  func (n NodeID) GoString() string {
   240  	return fmt.Sprintf("discover.HexID(\"%x\")", n[:])
   241  }
   242  
   243  // TerminalString returns a shortened hex string for terminal logging.
   244  func (n NodeID) TerminalString() string {
   245  	return hex.EncodeToString(n[:8])
   246  }
   247  
   248  // MarshalText implements the encoding.TextMarshaler interface.
   249  func (n NodeID) MarshalText() ([]byte, error) {
   250  	return []byte(hex.EncodeToString(n[:])), nil
   251  }
   252  
   253  // UnmarshalText implements the encoding.TextUnmarshaler interface.
   254  func (n *NodeID) UnmarshalText(text []byte) error {
   255  	id, err := HexID(string(text))
   256  	if err != nil {
   257  		return err
   258  	}
   259  	*n = id
   260  	return nil
   261  }
   262  
   263  // BytesID converts a byte slice to a NodeID
   264  func BytesID(b []byte) (NodeID, error) {
   265  	var id NodeID
   266  	if len(b) != len(id) {
   267  		return id, fmt.Errorf("wrong length, want %d bytes", len(id))
   268  	}
   269  	copy(id[:], b)
   270  	return id, nil
   271  }
   272  
   273  // MustBytesID converts a byte slice to a NodeID.
   274  // It panics if the byte slice is not a valid NodeID.
   275  func MustBytesID(b []byte) NodeID {
   276  	id, err := BytesID(b)
   277  	if err != nil {
   278  		panic(err)
   279  	}
   280  	return id
   281  }
   282  
   283  // HexID converts a hex string to a NodeID.
   284  // The string may be prefixed with 0x.
   285  func HexID(in string) (NodeID, error) {
   286  	var id NodeID
   287  	b, err := hex.DecodeString(strings.TrimPrefix(in, "0x"))
   288  	if err != nil {
   289  		return id, err
   290  	} else if len(b) != len(id) {
   291  		return id, fmt.Errorf("wrong length, want %d hex chars", len(id)*2)
   292  	}
   293  	copy(id[:], b)
   294  	return id, nil
   295  }
   296  
   297  // MustHexID converts a hex string to a NodeID.
   298  // It panics if the string is not a valid NodeID.
   299  func MustHexID(in string) NodeID {
   300  	id, err := HexID(in)
   301  	if err != nil {
   302  		panic(err)
   303  	}
   304  	return id
   305  }
   306  
   307  // PubkeyID returns a marshaled representation of the given public key.
   308  func PubkeyID(pub *ecdsa.PublicKey) NodeID {
   309  	var id NodeID
   310  	pbytes := elliptic.Marshal(pub.Curve, pub.X, pub.Y)
   311  	if len(pbytes)-1 != len(id) {
   312  		panic(fmt.Errorf("need %d bit pubkey, got %d bits", (len(id)+1)*8, len(pbytes)))
   313  	}
   314  	copy(id[:], pbytes[1:])
   315  	return id
   316  }
   317  
   318  // Pubkey returns the public key represented by the node ID.
   319  // It returns an error if the ID is not a point on the curve.
   320  func (id NodeID) Pubkey() (*ecdsa.PublicKey, error) {
   321  	p := &ecdsa.PublicKey{Curve: crypto.S256(), X: new(big.Int), Y: new(big.Int)}
   322  	half := len(id) / 2
   323  	p.X.SetBytes(id[:half])
   324  	p.Y.SetBytes(id[half:])
   325  	if !p.Curve.IsOnCurve(p.X, p.Y) {
   326  		return nil, errors.New("id is invalid secp256k1 curve point")
   327  	}
   328  	return p, nil
   329  }
   330  
   331  // recoverNodeID computes the public key used to sign the
   332  // given hash from the signature.
   333  func recoverNodeID(hash, sig []byte) (id NodeID, err error) {
   334  	pubkey, err := secp256k1.RecoverPubkey(hash, sig)
   335  	if err != nil {
   336  		return id, err
   337  	}
   338  	if len(pubkey)-1 != len(id) {
   339  		return id, fmt.Errorf("recovered pubkey has %d bits, want %d bits", len(pubkey)*8, (len(id)+1)*8)
   340  	}
   341  	for i := range id {
   342  		id[i] = pubkey[i+1]
   343  	}
   344  	return id, nil
   345  }
   346  
   347  // distcmp compares the distances a->target and b->target.
   348  // Returns -1 if a is closer to target, 1 if b is closer to target
   349  // and 0 if they are equal.
   350  func distcmp(target, a, b common.Hash) int {
   351  	for i := range target {
   352  		da := a[i] ^ target[i]
   353  		db := b[i] ^ target[i]
   354  		if da > db {
   355  			return 1
   356  		} else if da < db {
   357  			return -1
   358  		}
   359  	}
   360  	return 0
   361  }
   362  
   363  // table of leading zero counts for bytes [0..255]
   364  var lzcount = [256]int{
   365  	8, 7, 6, 6, 5, 5, 5, 5,
   366  	4, 4, 4, 4, 4, 4, 4, 4,
   367  	3, 3, 3, 3, 3, 3, 3, 3,
   368  	3, 3, 3, 3, 3, 3, 3, 3,
   369  	2, 2, 2, 2, 2, 2, 2, 2,
   370  	2, 2, 2, 2, 2, 2, 2, 2,
   371  	2, 2, 2, 2, 2, 2, 2, 2,
   372  	2, 2, 2, 2, 2, 2, 2, 2,
   373  	1, 1, 1, 1, 1, 1, 1, 1,
   374  	1, 1, 1, 1, 1, 1, 1, 1,
   375  	1, 1, 1, 1, 1, 1, 1, 1,
   376  	1, 1, 1, 1, 1, 1, 1, 1,
   377  	1, 1, 1, 1, 1, 1, 1, 1,
   378  	1, 1, 1, 1, 1, 1, 1, 1,
   379  	1, 1, 1, 1, 1, 1, 1, 1,
   380  	1, 1, 1, 1, 1, 1, 1, 1,
   381  	0, 0, 0, 0, 0, 0, 0, 0,
   382  	0, 0, 0, 0, 0, 0, 0, 0,
   383  	0, 0, 0, 0, 0, 0, 0, 0,
   384  	0, 0, 0, 0, 0, 0, 0, 0,
   385  	0, 0, 0, 0, 0, 0, 0, 0,
   386  	0, 0, 0, 0, 0, 0, 0, 0,
   387  	0, 0, 0, 0, 0, 0, 0, 0,
   388  	0, 0, 0, 0, 0, 0, 0, 0,
   389  	0, 0, 0, 0, 0, 0, 0, 0,
   390  	0, 0, 0, 0, 0, 0, 0, 0,
   391  	0, 0, 0, 0, 0, 0, 0, 0,
   392  	0, 0, 0, 0, 0, 0, 0, 0,
   393  	0, 0, 0, 0, 0, 0, 0, 0,
   394  	0, 0, 0, 0, 0, 0, 0, 0,
   395  	0, 0, 0, 0, 0, 0, 0, 0,
   396  	0, 0, 0, 0, 0, 0, 0, 0,
   397  }
   398  
   399  // logdist returns the logarithmic distance between a and b, log2(a ^ b).
   400  func logdist(a, b common.Hash) int {
   401  	lz := 0
   402  	for i := range a {
   403  		x := a[i] ^ b[i]
   404  		if x == 0 {
   405  			lz += 8
   406  		} else {
   407  			lz += lzcount[x]
   408  			break
   409  		}
   410  	}
   411  	return len(a)*8 - lz
   412  }
   413  
   414  // hashAtDistance returns a random hash such that logdist(a, b) == n
   415  func hashAtDistance(a common.Hash, n int) (b common.Hash) {
   416  	if n == 0 {
   417  		return a
   418  	}
   419  	// flip bit at position n, fill the rest with random bits
   420  	b = a
   421  	pos := len(a) - n/8 - 1
   422  	bit := byte(0x01) << (byte(n%8) - 1)
   423  	if bit == 0 {
   424  		pos++
   425  		bit = 0x80
   426  	}
   427  	b[pos] = a[pos]&^bit | ^a[pos]&bit // TODO: randomize end bits
   428  	for i := pos + 1; i < len(a); i++ {
   429  		b[i] = byte(rand.Intn(255))
   430  	}
   431  	return b
   432  }