github.com/luckypickle/go-ethereum-vet@v1.14.2/whisper/whisperv5/envelope.go (about)

     1  // Copyright 2016 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Contains the Whisper protocol Envelope element.
    18  
    19  package whisperv5
    20  
    21  import (
    22  	"crypto/ecdsa"
    23  	"encoding/binary"
    24  	"fmt"
    25  	gmath "math"
    26  	"math/big"
    27  	"time"
    28  
    29  	"github.com/luckypickle/go-ethereum-vet/common"
    30  	"github.com/luckypickle/go-ethereum-vet/common/math"
    31  	"github.com/luckypickle/go-ethereum-vet/crypto"
    32  	"github.com/luckypickle/go-ethereum-vet/crypto/ecies"
    33  	"github.com/luckypickle/go-ethereum-vet/rlp"
    34  )
    35  
    36  // Envelope represents a clear-text data packet to transmit through the Whisper
    37  // network. Its contents may or may not be encrypted and signed.
    38  type Envelope struct {
    39  	Version  []byte
    40  	Expiry   uint32
    41  	TTL      uint32
    42  	Topic    TopicType
    43  	AESNonce []byte
    44  	Data     []byte
    45  	EnvNonce uint64
    46  
    47  	pow  float64     // Message-specific PoW as described in the Whisper specification.
    48  	hash common.Hash // Cached hash of the envelope to avoid rehashing every time.
    49  	// Don't access hash directly, use Hash() function instead.
    50  }
    51  
    52  // size returns the size of envelope as it is sent (i.e. public fields only)
    53  func (e *Envelope) size() int {
    54  	return 20 + len(e.Version) + len(e.AESNonce) + len(e.Data)
    55  }
    56  
    57  // rlpWithoutNonce returns the RLP encoded envelope contents, except the nonce.
    58  func (e *Envelope) rlpWithoutNonce() []byte {
    59  	res, _ := rlp.EncodeToBytes([]interface{}{e.Version, e.Expiry, e.TTL, e.Topic, e.AESNonce, e.Data})
    60  	return res
    61  }
    62  
    63  // NewEnvelope wraps a Whisper message with expiration and destination data
    64  // included into an envelope for network forwarding.
    65  func NewEnvelope(ttl uint32, topic TopicType, aesNonce []byte, msg *sentMessage) *Envelope {
    66  	env := Envelope{
    67  		Version:  make([]byte, 1),
    68  		Expiry:   uint32(time.Now().Add(time.Second * time.Duration(ttl)).Unix()),
    69  		TTL:      ttl,
    70  		Topic:    topic,
    71  		AESNonce: aesNonce,
    72  		Data:     msg.Raw,
    73  		EnvNonce: 0,
    74  	}
    75  
    76  	if EnvelopeVersion < 256 {
    77  		env.Version[0] = byte(EnvelopeVersion)
    78  	} else {
    79  		panic("please increase the size of Envelope.Version before releasing this version")
    80  	}
    81  
    82  	return &env
    83  }
    84  
    85  func (e *Envelope) IsSymmetric() bool {
    86  	return len(e.AESNonce) > 0
    87  }
    88  
    89  func (e *Envelope) isAsymmetric() bool {
    90  	return !e.IsSymmetric()
    91  }
    92  
    93  func (e *Envelope) Ver() uint64 {
    94  	return bytesToUintLittleEndian(e.Version)
    95  }
    96  
    97  // Seal closes the envelope by spending the requested amount of time as a proof
    98  // of work on hashing the data.
    99  func (e *Envelope) Seal(options *MessageParams) error {
   100  	var target, bestBit int
   101  	if options.PoW == 0 {
   102  		// adjust for the duration of Seal() execution only if execution time is predefined unconditionally
   103  		e.Expiry += options.WorkTime
   104  	} else {
   105  		target = e.powToFirstBit(options.PoW)
   106  		if target < 1 {
   107  			target = 1
   108  		}
   109  	}
   110  
   111  	buf := make([]byte, 64)
   112  	h := crypto.Keccak256(e.rlpWithoutNonce())
   113  	copy(buf[:32], h)
   114  
   115  	finish := time.Now().Add(time.Duration(options.WorkTime) * time.Second).UnixNano()
   116  	for nonce := uint64(0); time.Now().UnixNano() < finish; {
   117  		for i := 0; i < 1024; i++ {
   118  			binary.BigEndian.PutUint64(buf[56:], nonce)
   119  			d := new(big.Int).SetBytes(crypto.Keccak256(buf))
   120  			firstBit := math.FirstBitSet(d)
   121  			if firstBit > bestBit {
   122  				e.EnvNonce, bestBit = nonce, firstBit
   123  				if target > 0 && bestBit >= target {
   124  					return nil
   125  				}
   126  			}
   127  			nonce++
   128  		}
   129  	}
   130  
   131  	if target > 0 && bestBit < target {
   132  		return fmt.Errorf("failed to reach the PoW target, specified pow time (%d seconds) was insufficient", options.WorkTime)
   133  	}
   134  
   135  	return nil
   136  }
   137  
   138  func (e *Envelope) PoW() float64 {
   139  	if e.pow == 0 {
   140  		e.calculatePoW(0)
   141  	}
   142  	return e.pow
   143  }
   144  
   145  func (e *Envelope) calculatePoW(diff uint32) {
   146  	buf := make([]byte, 64)
   147  	h := crypto.Keccak256(e.rlpWithoutNonce())
   148  	copy(buf[:32], h)
   149  	binary.BigEndian.PutUint64(buf[56:], e.EnvNonce)
   150  	d := new(big.Int).SetBytes(crypto.Keccak256(buf))
   151  	firstBit := math.FirstBitSet(d)
   152  	x := gmath.Pow(2, float64(firstBit))
   153  	x /= float64(e.size())
   154  	x /= float64(e.TTL + diff)
   155  	e.pow = x
   156  }
   157  
   158  func (e *Envelope) powToFirstBit(pow float64) int {
   159  	x := pow
   160  	x *= float64(e.size())
   161  	x *= float64(e.TTL)
   162  	bits := gmath.Log2(x)
   163  	bits = gmath.Ceil(bits)
   164  	return int(bits)
   165  }
   166  
   167  // Hash returns the SHA3 hash of the envelope, calculating it if not yet done.
   168  func (e *Envelope) Hash() common.Hash {
   169  	if (e.hash == common.Hash{}) {
   170  		encoded, _ := rlp.EncodeToBytes(e)
   171  		e.hash = crypto.Keccak256Hash(encoded)
   172  	}
   173  	return e.hash
   174  }
   175  
   176  // DecodeRLP decodes an Envelope from an RLP data stream.
   177  func (e *Envelope) DecodeRLP(s *rlp.Stream) error {
   178  	raw, err := s.Raw()
   179  	if err != nil {
   180  		return err
   181  	}
   182  	// The decoding of Envelope uses the struct fields but also needs
   183  	// to compute the hash of the whole RLP-encoded envelope. This
   184  	// type has the same structure as Envelope but is not an
   185  	// rlp.Decoder (does not implement DecodeRLP function).
   186  	// Only public members will be encoded.
   187  	type rlpenv Envelope
   188  	if err := rlp.DecodeBytes(raw, (*rlpenv)(e)); err != nil {
   189  		return err
   190  	}
   191  	e.hash = crypto.Keccak256Hash(raw)
   192  	return nil
   193  }
   194  
   195  // OpenAsymmetric tries to decrypt an envelope, potentially encrypted with a particular key.
   196  func (e *Envelope) OpenAsymmetric(key *ecdsa.PrivateKey) (*ReceivedMessage, error) {
   197  	message := &ReceivedMessage{Raw: e.Data}
   198  	err := message.decryptAsymmetric(key)
   199  	switch err {
   200  	case nil:
   201  		return message, nil
   202  	case ecies.ErrInvalidPublicKey: // addressed to somebody else
   203  		return nil, err
   204  	default:
   205  		return nil, fmt.Errorf("unable to open envelope, decrypt failed: %v", err)
   206  	}
   207  }
   208  
   209  // OpenSymmetric tries to decrypt an envelope, potentially encrypted with a particular key.
   210  func (e *Envelope) OpenSymmetric(key []byte) (msg *ReceivedMessage, err error) {
   211  	msg = &ReceivedMessage{Raw: e.Data}
   212  	err = msg.decryptSymmetric(key, e.AESNonce)
   213  	if err != nil {
   214  		msg = nil
   215  	}
   216  	return msg, err
   217  }
   218  
   219  // Open tries to decrypt an envelope, and populates the message fields in case of success.
   220  func (e *Envelope) Open(watcher *Filter) (msg *ReceivedMessage) {
   221  	if e.isAsymmetric() {
   222  		msg, _ = e.OpenAsymmetric(watcher.KeyAsym)
   223  		if msg != nil {
   224  			msg.Dst = &watcher.KeyAsym.PublicKey
   225  		}
   226  	} else if e.IsSymmetric() {
   227  		msg, _ = e.OpenSymmetric(watcher.KeySym)
   228  		if msg != nil {
   229  			msg.SymKeyHash = crypto.Keccak256Hash(watcher.KeySym)
   230  		}
   231  	}
   232  
   233  	if msg != nil {
   234  		ok := msg.Validate()
   235  		if !ok {
   236  			return nil
   237  		}
   238  		msg.Topic = e.Topic
   239  		msg.PoW = e.PoW()
   240  		msg.TTL = e.TTL
   241  		msg.Sent = e.Expiry - e.TTL
   242  		msg.EnvelopeHash = e.Hash()
   243  		msg.EnvelopeVersion = e.Ver()
   244  	}
   245  	return msg
   246  }