github.com/luckypickle/go-ethereum-vet@v1.14.2/whisper/whisperv5/message.go (about) 1 // Copyright 2016 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 // Contains the Whisper protocol Message element. 18 19 package whisperv5 20 21 import ( 22 "crypto/aes" 23 "crypto/cipher" 24 "crypto/ecdsa" 25 crand "crypto/rand" 26 "encoding/binary" 27 "errors" 28 "strconv" 29 30 "github.com/luckypickle/go-ethereum-vet/common" 31 "github.com/luckypickle/go-ethereum-vet/crypto" 32 "github.com/luckypickle/go-ethereum-vet/crypto/ecies" 33 "github.com/luckypickle/go-ethereum-vet/log" 34 ) 35 36 // MessageParams specifies the exact way a message should be wrapped into an Envelope. 37 type MessageParams struct { 38 TTL uint32 39 Src *ecdsa.PrivateKey 40 Dst *ecdsa.PublicKey 41 KeySym []byte 42 Topic TopicType 43 WorkTime uint32 44 PoW float64 45 Payload []byte 46 Padding []byte 47 } 48 49 // SentMessage represents an end-user data packet to transmit through the 50 // Whisper protocol. These are wrapped into Envelopes that need not be 51 // understood by intermediate nodes, just forwarded. 52 type sentMessage struct { 53 Raw []byte 54 } 55 56 // ReceivedMessage represents a data packet to be received through the 57 // Whisper protocol. 58 type ReceivedMessage struct { 59 Raw []byte 60 61 Payload []byte 62 Padding []byte 63 Signature []byte 64 65 PoW float64 // Proof of work as described in the Whisper spec 66 Sent uint32 // Time when the message was posted into the network 67 TTL uint32 // Maximum time to live allowed for the message 68 Src *ecdsa.PublicKey // Message recipient (identity used to decode the message) 69 Dst *ecdsa.PublicKey // Message recipient (identity used to decode the message) 70 Topic TopicType 71 72 SymKeyHash common.Hash // The Keccak256Hash of the key, associated with the Topic 73 EnvelopeHash common.Hash // Message envelope hash to act as a unique id 74 EnvelopeVersion uint64 75 } 76 77 func isMessageSigned(flags byte) bool { 78 return (flags & signatureFlag) != 0 79 } 80 81 func (msg *ReceivedMessage) isSymmetricEncryption() bool { 82 return msg.SymKeyHash != common.Hash{} 83 } 84 85 func (msg *ReceivedMessage) isAsymmetricEncryption() bool { 86 return msg.Dst != nil 87 } 88 89 // NewSentMessage creates and initializes a non-signed, non-encrypted Whisper message. 90 func NewSentMessage(params *MessageParams) (*sentMessage, error) { 91 msg := sentMessage{} 92 msg.Raw = make([]byte, 1, len(params.Payload)+len(params.Padding)+signatureLength+padSizeLimit) 93 msg.Raw[0] = 0 // set all the flags to zero 94 err := msg.appendPadding(params) 95 if err != nil { 96 return nil, err 97 } 98 msg.Raw = append(msg.Raw, params.Payload...) 99 return &msg, nil 100 } 101 102 // getSizeOfLength returns the number of bytes necessary to encode the entire size padding (including these bytes) 103 func getSizeOfLength(b []byte) (sz int, err error) { 104 sz = intSize(len(b)) // first iteration 105 sz = intSize(len(b) + sz) // second iteration 106 if sz > 3 { 107 err = errors.New("oversized padding parameter") 108 } 109 return sz, err 110 } 111 112 // sizeOfIntSize returns minimal number of bytes necessary to encode an integer value 113 func intSize(i int) (s int) { 114 for s = 1; i >= 256; s++ { 115 i /= 256 116 } 117 return s 118 } 119 120 // appendPadding appends the pseudorandom padding bytes and sets the padding flag. 121 // The last byte contains the size of padding (thus, its size must not exceed 256). 122 func (msg *sentMessage) appendPadding(params *MessageParams) error { 123 rawSize := len(params.Payload) + 1 124 if params.Src != nil { 125 rawSize += signatureLength 126 } 127 odd := rawSize % padSizeLimit 128 129 if len(params.Padding) != 0 { 130 padSize := len(params.Padding) 131 padLengthSize, err := getSizeOfLength(params.Padding) 132 if err != nil { 133 return err 134 } 135 totalPadSize := padSize + padLengthSize 136 buf := make([]byte, 8) 137 binary.LittleEndian.PutUint32(buf, uint32(totalPadSize)) 138 buf = buf[:padLengthSize] 139 msg.Raw = append(msg.Raw, buf...) 140 msg.Raw = append(msg.Raw, params.Padding...) 141 msg.Raw[0] |= byte(padLengthSize) // number of bytes indicating the padding size 142 } else if odd != 0 { 143 totalPadSize := padSizeLimit - odd 144 if totalPadSize > 255 { 145 // this algorithm is only valid if padSizeLimit < 256. 146 // if padSizeLimit will ever change, please fix the algorithm 147 // (please see also ReceivedMessage.extractPadding() function). 148 panic("please fix the padding algorithm before releasing new version") 149 } 150 buf := make([]byte, totalPadSize) 151 _, err := crand.Read(buf[1:]) 152 if err != nil { 153 return err 154 } 155 if totalPadSize > 6 && !validateSymmetricKey(buf) { 156 return errors.New("failed to generate random padding of size " + strconv.Itoa(totalPadSize)) 157 } 158 buf[0] = byte(totalPadSize) 159 msg.Raw = append(msg.Raw, buf...) 160 msg.Raw[0] |= byte(0x1) // number of bytes indicating the padding size 161 } 162 return nil 163 } 164 165 // sign calculates and sets the cryptographic signature for the message, 166 // also setting the sign flag. 167 func (msg *sentMessage) sign(key *ecdsa.PrivateKey) error { 168 if isMessageSigned(msg.Raw[0]) { 169 // this should not happen, but no reason to panic 170 log.Error("failed to sign the message: already signed") 171 return nil 172 } 173 174 msg.Raw[0] |= signatureFlag 175 hash := crypto.Keccak256(msg.Raw) 176 signature, err := crypto.Sign(hash, key) 177 if err != nil { 178 msg.Raw[0] &= ^signatureFlag // clear the flag 179 return err 180 } 181 msg.Raw = append(msg.Raw, signature...) 182 return nil 183 } 184 185 // encryptAsymmetric encrypts a message with a public key. 186 func (msg *sentMessage) encryptAsymmetric(key *ecdsa.PublicKey) error { 187 if !ValidatePublicKey(key) { 188 return errors.New("invalid public key provided for asymmetric encryption") 189 } 190 encrypted, err := ecies.Encrypt(crand.Reader, ecies.ImportECDSAPublic(key), msg.Raw, nil, nil) 191 if err == nil { 192 msg.Raw = encrypted 193 } 194 return err 195 } 196 197 // encryptSymmetric encrypts a message with a topic key, using AES-GCM-256. 198 // nonce size should be 12 bytes (see cipher.gcmStandardNonceSize). 199 func (msg *sentMessage) encryptSymmetric(key []byte) (nonce []byte, err error) { 200 if !validateSymmetricKey(key) { 201 return nil, errors.New("invalid key provided for symmetric encryption") 202 } 203 204 block, err := aes.NewCipher(key) 205 if err != nil { 206 return nil, err 207 } 208 aesgcm, err := cipher.NewGCM(block) 209 if err != nil { 210 return nil, err 211 } 212 213 // never use more than 2^32 random nonces with a given key 214 nonce = make([]byte, aesgcm.NonceSize()) 215 _, err = crand.Read(nonce) 216 if err != nil { 217 return nil, err 218 } else if !validateSymmetricKey(nonce) { 219 return nil, errors.New("crypto/rand failed to generate nonce") 220 } 221 222 msg.Raw = aesgcm.Seal(nil, nonce, msg.Raw, nil) 223 return nonce, nil 224 } 225 226 // Wrap bundles the message into an Envelope to transmit over the network. 227 func (msg *sentMessage) Wrap(options *MessageParams) (envelope *Envelope, err error) { 228 if options.TTL == 0 { 229 options.TTL = DefaultTTL 230 } 231 if options.Src != nil { 232 if err = msg.sign(options.Src); err != nil { 233 return nil, err 234 } 235 } 236 var nonce []byte 237 if options.Dst != nil { 238 err = msg.encryptAsymmetric(options.Dst) 239 } else if options.KeySym != nil { 240 nonce, err = msg.encryptSymmetric(options.KeySym) 241 } else { 242 err = errors.New("unable to encrypt the message: neither symmetric nor assymmetric key provided") 243 } 244 if err != nil { 245 return nil, err 246 } 247 248 envelope = NewEnvelope(options.TTL, options.Topic, nonce, msg) 249 if err = envelope.Seal(options); err != nil { 250 return nil, err 251 } 252 return envelope, nil 253 } 254 255 // decryptSymmetric decrypts a message with a topic key, using AES-GCM-256. 256 // nonce size should be 12 bytes (see cipher.gcmStandardNonceSize). 257 func (msg *ReceivedMessage) decryptSymmetric(key []byte, nonce []byte) error { 258 block, err := aes.NewCipher(key) 259 if err != nil { 260 return err 261 } 262 aesgcm, err := cipher.NewGCM(block) 263 if err != nil { 264 return err 265 } 266 if len(nonce) != aesgcm.NonceSize() { 267 log.Error("decrypting the message", "AES nonce size", len(nonce)) 268 return errors.New("wrong AES nonce size") 269 } 270 decrypted, err := aesgcm.Open(nil, nonce, msg.Raw, nil) 271 if err != nil { 272 return err 273 } 274 msg.Raw = decrypted 275 return nil 276 } 277 278 // decryptAsymmetric decrypts an encrypted payload with a private key. 279 func (msg *ReceivedMessage) decryptAsymmetric(key *ecdsa.PrivateKey) error { 280 decrypted, err := ecies.ImportECDSA(key).Decrypt(msg.Raw, nil, nil) 281 if err == nil { 282 msg.Raw = decrypted 283 } 284 return err 285 } 286 287 // Validate checks the validity and extracts the fields in case of success 288 func (msg *ReceivedMessage) Validate() bool { 289 end := len(msg.Raw) 290 if end < 1 { 291 return false 292 } 293 294 if isMessageSigned(msg.Raw[0]) { 295 end -= signatureLength 296 if end <= 1 { 297 return false 298 } 299 msg.Signature = msg.Raw[end:] 300 msg.Src = msg.SigToPubKey() 301 if msg.Src == nil { 302 return false 303 } 304 } 305 306 padSize, ok := msg.extractPadding(end) 307 if !ok { 308 return false 309 } 310 311 msg.Payload = msg.Raw[1+padSize : end] 312 return true 313 } 314 315 // extractPadding extracts the padding from raw message. 316 // although we don't support sending messages with padding size 317 // exceeding 255 bytes, such messages are perfectly valid, and 318 // can be successfully decrypted. 319 func (msg *ReceivedMessage) extractPadding(end int) (int, bool) { 320 paddingSize := 0 321 sz := int(msg.Raw[0] & paddingMask) // number of bytes indicating the entire size of padding (including these bytes) 322 // could be zero -- it means no padding 323 if sz != 0 { 324 paddingSize = int(bytesToUintLittleEndian(msg.Raw[1 : 1+sz])) 325 if paddingSize < sz || paddingSize+1 > end { 326 return 0, false 327 } 328 msg.Padding = msg.Raw[1+sz : 1+paddingSize] 329 } 330 return paddingSize, true 331 } 332 333 // SigToPubKey retrieves the public key of the message signer. 334 func (msg *ReceivedMessage) SigToPubKey() *ecdsa.PublicKey { 335 defer func() { recover() }() // in case of invalid signature 336 337 pub, err := crypto.SigToPub(msg.hash(), msg.Signature) 338 if err != nil { 339 log.Error("failed to recover public key from signature", "err", err) 340 return nil 341 } 342 return pub 343 } 344 345 // hash calculates the SHA3 checksum of the message flags, payload and padding. 346 func (msg *ReceivedMessage) hash() []byte { 347 if isMessageSigned(msg.Raw[0]) { 348 sz := len(msg.Raw) - signatureLength 349 return crypto.Keccak256(msg.Raw[:sz]) 350 } 351 return crypto.Keccak256(msg.Raw) 352 }