github.com/m3db/m3@v1.5.1-0.20231129193456-75a402aa583b/src/query/functions/temporal/holt_winters.go (about) 1 // Copyright (c) 2018 Uber Technologies, Inc. 2 // 3 // Permission is hereby granted, free of charge, to any person obtaining a copy 4 // of this software and associated documentation files (the "Software"), to deal 5 // in the Software without restriction, including without limitation the rights 6 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 7 // copies of the Software, and to permit persons to whom the Software is 8 // furnished to do so, subject to the following conditions: 9 // 10 // The above copyright notice and this permission notice shall be included in 11 // all copies or substantial portions of the Software. 12 // 13 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 16 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 17 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 18 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 19 // THE SOFTWARE. 20 21 package temporal 22 23 import ( 24 "fmt" 25 "math" 26 "time" 27 28 "github.com/m3db/m3/src/query/executor/transform" 29 ) 30 31 const ( 32 // HoltWintersType produces a smoothed value for time series based on the specified interval. 33 // The algorithm used comes from https://en.wikipedia.org/wiki/Exponential_smoothing#Double_exponential_smoothing. 34 // Holt-Winters should only be used with gauges. 35 HoltWintersType = "holt_winters" 36 ) 37 38 // NewHoltWintersOp creates a new base Holt-Winters transform with a specified node. 39 func NewHoltWintersOp(args []interface{}) (transform.Params, error) { 40 // todo(braskin): move this logic to the parser. 41 if len(args) != 3 { 42 return emptyOp, fmt.Errorf("invalid number of args for %s: %d", HoltWintersType, len(args)) 43 } 44 45 duration, ok := args[0].(time.Duration) 46 if !ok { 47 return emptyOp, fmt.Errorf("unable to cast to scalar argument: %v for %s", args[0], HoltWintersType) 48 } 49 50 sf, ok := args[1].(float64) 51 if !ok { 52 return emptyOp, fmt.Errorf("unable to cast to scalar argument: %v for %s", args[1], HoltWintersType) 53 } 54 55 tf, ok := args[2].(float64) 56 if !ok { 57 return emptyOp, fmt.Errorf("unable to cast to scalar argument: %v for %s", args[2], HoltWintersType) 58 } 59 60 // Sanity check the input. 61 if sf <= 0 || sf >= 1 { 62 return emptyOp, fmt.Errorf("invalid smoothing factor. Expected: 0 < sf < 1, got: %f", sf) 63 } 64 65 if tf <= 0 || tf >= 1 { 66 return emptyOp, fmt.Errorf("invalid trend factor. Expected: 0 < tf < 1, got: %f", tf) 67 } 68 69 aggregationFunc := makeHoltWintersFn(sf, tf) 70 a := aggProcessor{ 71 aggFunc: aggregationFunc, 72 } 73 74 return newBaseOp(duration, HoltWintersType, a) 75 } 76 77 func makeHoltWintersFn(sf, tf float64) aggFunc { 78 return func(vals []float64) float64 { 79 var ( 80 foundFirst, foundSecond bool 81 secondVal float64 82 trendVal float64 83 scaledSmoothVal, scaledTrendVal float64 84 prev, curr float64 85 idx int 86 ) 87 88 for _, val := range vals { 89 if math.IsNaN(val) { 90 continue 91 } 92 93 if !foundFirst { 94 foundFirst = true 95 curr = val 96 idx++ 97 continue 98 } 99 100 if !foundSecond { 101 foundSecond = true 102 secondVal = val 103 trendVal = secondVal - curr 104 } 105 106 // scale the raw value against the smoothing factor. 107 scaledSmoothVal = sf * val 108 109 // scale the last smoothed value with the trend at this point. 110 trendVal = calcTrendValue(idx-1, sf, tf, prev, curr, trendVal) 111 scaledTrendVal = (1 - sf) * (curr + trendVal) 112 113 prev, curr = curr, scaledSmoothVal+scaledTrendVal 114 idx++ 115 } 116 117 // need at least two values to apply a smoothing operation. 118 if !foundSecond { 119 return math.NaN() 120 } 121 122 return curr 123 } 124 } 125 126 // Calculate the trend value at the given index i in raw data d. 127 // This is somewhat analogous to the slope of the trend at the given index. 128 // The argument "s" is the set of computed smoothed values. 129 // The argument "b" is the set of computed trend factors. 130 // The argument "d" is the set of raw input values. 131 func calcTrendValue(i int, sf, tf, s0, s1, b float64) float64 { 132 if i == 0 { 133 return b 134 } 135 136 x := tf * (s1 - s0) 137 y := (1 - tf) * b 138 139 return x + y 140 }