github.com/m3db/m3@v1.5.1-0.20231129193456-75a402aa583b/src/query/graphite/ts/series.go (about) 1 // Copyright (c) 2019 Uber Technologies, Inc. 2 // 3 // Permission is hereby granted, free of charge, to any person obtaining a copy 4 // of this software and associated documentation files (the "Software"), to deal 5 // in the Software without restriction, including without limitation the rights 6 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 7 // copies of the Software, and to permit persons to whom the Software is 8 // furnished to do so, subject to the following conditions: 9 // 10 // The above copyright notice and this permission notice shall be included in 11 // all copies or substantial portions of the Software. 12 // 13 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 16 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 17 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 18 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 19 // THE SOFTWARE. 20 21 package ts 22 23 import ( 24 "errors" 25 "fmt" 26 "math" 27 "regexp" 28 "sort" 29 "strconv" 30 "strings" 31 "time" 32 33 "github.com/m3db/m3/src/query/block" 34 "github.com/m3db/m3/src/query/graphite/context" 35 "github.com/m3db/m3/src/query/graphite/stats" 36 ) 37 38 var ( 39 // ErrRangeIsInvalid is returned when attempting to slice Series with invalid range 40 // endpoints (begin is beyond end). 41 ErrRangeIsInvalid = errors.New("requested range is invalid") 42 43 digitsRegex = regexp.MustCompile(`\d+`) 44 ) 45 46 const ( 47 digits = "0123456789" 48 ) 49 50 // An AggregationFunc combines two data values at a given point. 51 type AggregationFunc func(a, b float64) float64 52 53 // A Series is the public interface to a block of timeseries values. Each block has a start time, 54 // a logical number of steps, and a step size indicating the number of milliseconds represented by each point. 55 type Series struct { 56 name string 57 startTime time.Time 58 vals Values 59 ctx context.Context 60 61 // The Specification is the path that was used to generate this timeseries, 62 // typically either the query, or the function stack used to transform 63 // specific results. 64 Specification string 65 66 // consolidationFunc specifies how the series will be consolidated when the 67 // number of data points in the series is more than the maximum number allowed. 68 consolidationFunc ConsolidationFunc 69 } 70 71 // SeriesByName implements sort.Interface for sorting collections 72 // of series by name. 73 type SeriesByName []*Series 74 75 // Len returns the length of the series collection 76 func (a SeriesByName) Len() int { 77 return len(a) 78 } 79 80 // Swap swaps two series in the collection 81 func (a SeriesByName) Swap(i, j int) { 82 a[i], a[j] = a[j], a[i] 83 } 84 85 // Less determines if a series is ordered before another series by name 86 func (a SeriesByName) Less(i, j int) bool { 87 return a[i].name < a[j].name 88 } 89 90 // SeriesByNameAndNaturalNumbers implements sort.Interface for sorting 91 // collections of series by name respecting natural sort order for numbers. 92 type SeriesByNameAndNaturalNumbers []*Series 93 94 // Len returns the length of the series collection 95 func (a SeriesByNameAndNaturalNumbers) Len() int { 96 return len(a) 97 } 98 99 // Swap swaps two series in the collection 100 func (a SeriesByNameAndNaturalNumbers) Swap(i, j int) { 101 a[i], a[j] = a[j], a[i] 102 } 103 104 // Less determines if a series is ordered before another series by name 105 // nolint: ifshort 106 func (a SeriesByNameAndNaturalNumbers) Less(i, j int) bool { 107 left := a[i].name 108 if strings.ContainsAny(left, digits) { 109 left = digitsRegex.ReplaceAllStringFunc(left, digitsPrefixed) 110 } 111 112 right := a[j].name 113 if strings.ContainsAny(right, digits) { 114 right = digitsRegex.ReplaceAllStringFunc(right, digitsPrefixed) 115 } 116 117 return left < right 118 } 119 120 func digitsPrefixed(digits string) string { 121 n, err := strconv.Atoi(digits) 122 if err != nil { 123 return digits 124 } 125 return fmt.Sprintf("%010d", n) 126 } 127 128 // NewSeries creates a new Series at a given start time, backed by the provided values 129 func NewSeries(ctx context.Context, name string, startTime time.Time, vals Values) *Series { 130 return &Series{ 131 name: name, 132 startTime: startTime, 133 vals: vals, 134 ctx: ctx, 135 Specification: name, 136 } 137 } 138 139 // DerivedSeries returns a series derived from the current series with different datapoints 140 func (b *Series) DerivedSeries(startTime time.Time, vals Values) *Series { 141 series := NewSeries(b.ctx, b.name, startTime, vals) 142 series.Specification = b.Specification 143 series.consolidationFunc = b.consolidationFunc 144 return series 145 } 146 147 // Name returns the name of the timeseries block 148 func (b *Series) Name() string { return b.name } 149 150 // RenamedTo returns a new timeseries with the same values but a different name 151 func (b *Series) RenamedTo(name string) *Series { 152 return &Series{ 153 name: name, 154 startTime: b.startTime, 155 vals: b.vals, 156 ctx: b.ctx, 157 Specification: b.Specification, 158 consolidationFunc: b.consolidationFunc, 159 } 160 } 161 162 // Shift returns a new timeseries with the same values but a different startTime 163 func (b *Series) Shift(shift time.Duration) *Series { 164 return &Series{ 165 name: b.name, 166 startTime: b.startTime.Add(shift), 167 vals: b.vals, 168 ctx: b.ctx, 169 Specification: b.Specification, 170 consolidationFunc: b.consolidationFunc, 171 } 172 } 173 174 // StartTime returns the time the block starts 175 func (b *Series) StartTime() time.Time { return b.startTime } 176 177 // EndTime returns the time the block ends 178 func (b *Series) EndTime() time.Time { return b.startTime.Add(b.Duration()) } 179 180 // Duration returns the Duration covered by the block 181 func (b *Series) Duration() time.Duration { 182 return time.Millisecond * time.Duration(b.vals.Len()*b.vals.MillisPerStep()) 183 } 184 185 // MillisPerStep returns the number of milliseconds per step 186 func (b *Series) MillisPerStep() int { return b.vals.MillisPerStep() } 187 188 // Resolution returns resolution per step 189 func (b *Series) Resolution() time.Duration { 190 return time.Duration(b.MillisPerStep()) * time.Millisecond 191 } 192 193 // StepAtTime returns the step within the block containing the given time 194 func (b *Series) StepAtTime(t time.Time) int { 195 step := int(t.UnixNano()/1000000-b.startTime.UnixNano()/1000000) / b.vals.MillisPerStep() 196 if step < 0 { 197 return 0 198 } 199 200 return step 201 } 202 203 // StartTimeForStep returns the time at which the given step starts 204 func (b *Series) StartTimeForStep(n int) time.Time { 205 return b.StartTime().Add(time.Millisecond * time.Duration(n*b.vals.MillisPerStep())) 206 } 207 208 // EndTimeForStep returns the time at which the given step end 209 func (b *Series) EndTimeForStep(n int) time.Time { 210 return b.StartTimeForStep(n).Add(time.Millisecond * time.Duration(b.vals.MillisPerStep())) 211 } 212 213 // Slice returns a new Series composed from a subset of values in the original Series 214 func (b *Series) Slice(begin, end int) (*Series, error) { 215 if begin >= end { 216 return nil, ErrRangeIsInvalid 217 } 218 219 result := NewSeries(b.ctx, b.name, b.StartTimeForStep(begin), b.vals.Slice(begin, end)) 220 result.consolidationFunc = b.consolidationFunc 221 222 return result, nil 223 } 224 225 // ValueAtTime returns the value stored at the step representing the given time 226 func (b *Series) ValueAtTime(t time.Time) float64 { 227 return b.ValueAt(b.StepAtTime(t)) 228 } 229 230 // AllNaN returns true if the timeseries is all NaNs 231 func (b *Series) AllNaN() bool { return b.vals.AllNaN() } 232 233 // CalcStatistics calculates a standard aggregation across the block values 234 func (b *Series) CalcStatistics() stats.Statistics { 235 if agg, ok := b.vals.(CustomStatistics); ok { 236 return agg.CalcStatistics() 237 } 238 239 return stats.Calc(b) 240 } 241 242 // Contains checks whether the given series contains the provided time 243 func (b *Series) Contains(t time.Time) bool { 244 step := b.StepAtTime(t) 245 return step >= 0 && step < b.Len() 246 } 247 248 // Len returns the number of values in the time series. Used for aggregation 249 func (b *Series) Len() int { return b.vals.Len() } 250 251 // ValueAt returns the value at a given step. Used for aggregation 252 func (b *Series) ValueAt(i int) float64 { return b.vals.ValueAt(i) } 253 254 // SafeMax returns the maximum value of a series that's not an NaN. 255 func (b *Series) SafeMax() float64 { return b.CalcStatistics().Max } 256 257 // SafeMin returns the minimum value of a series that's not an NaN. 258 func (b *Series) SafeMin() float64 { return b.CalcStatistics().Min } 259 260 // SafeSum returns the sum of the values of a series, excluding NaNs. 261 func (b *Series) SafeSum() float64 { return b.CalcStatistics().Sum } 262 263 // SafeAvg returns the average of the values of a series, excluding NaNs. 264 func (b *Series) SafeAvg() float64 { return b.CalcStatistics().Mean } 265 266 // SafeStdDev returns the standard deviation of the values of a series, excluding NaNs. 267 func (b *Series) SafeStdDev() float64 { return b.CalcStatistics().StdDev } 268 269 // SafeLastValue returns the last datapoint of a series that's not an NaN. 270 func (b *Series) SafeLastValue() float64 { 271 numPoints := b.Len() 272 for i := numPoints - 1; i >= 0; i-- { 273 v := b.ValueAt(i) 274 if !math.IsNaN(v) { 275 return v 276 } 277 } 278 return math.NaN() 279 } 280 281 // SafeValues returns all non-NaN values in the series. 282 func (b *Series) SafeValues() []float64 { 283 numPoints := b.Len() 284 vals := make([]float64, 0, numPoints) 285 for i := 0; i < numPoints; i++ { 286 v := b.ValueAt(i) 287 if !math.IsNaN(v) { 288 vals = append(vals, v) 289 } 290 } 291 return vals 292 } 293 294 // ConsolidationFunc returns the consolidation function for the series, 295 // or the averaging function is none specified. 296 func (b *Series) ConsolidationFunc() ConsolidationFunc { 297 if b.consolidationFunc != nil { 298 return b.consolidationFunc 299 } 300 return Avg 301 } 302 303 // IsConsolidationFuncSet if the consolidationFunc is set 304 func (b *Series) IsConsolidationFuncSet() bool { 305 return b.consolidationFunc != nil 306 } 307 308 // SetConsolidationFunc sets the consolidation function for the series 309 func (b *Series) SetConsolidationFunc(cf ConsolidationFunc) { 310 b.consolidationFunc = cf 311 } 312 313 // PostConsolidationFunc is a function that takes a tuple of time and value after consolidation. 314 type PostConsolidationFunc func(timestamp time.Time, value float64) 315 316 // intersection returns a 3-tuple; First return parameter indicates if the intersection spans at 317 // least one nanosecond; the next two return parameters are the start and end boundary timestamps 318 // of the resulting overlap. 319 func (b *Series) intersection(start, end time.Time) (bool, time.Time, time.Time) { 320 if b.EndTime().Before(start) || b.StartTime().After(end) { 321 return false, start, end 322 } 323 if start.Before(b.StartTime()) { 324 start = b.StartTime() 325 } 326 if end.After(b.EndTime()) { 327 end = b.EndTime() 328 } 329 if start.Equal(end) { 330 return false, start, end 331 } 332 return true, start, end 333 } 334 335 // resize takes a time series and returns a new time series of a different step size with aggregated 336 // values; callers must provide callback method that collects the aggregated result 337 func (b *Series) resizeStep(start, end time.Time, millisPerStep int, 338 stepAggregator ConsolidationFunc, callback PostConsolidationFunc) { 339 // panic, panic, panic for all malformed callers 340 if end.Before(start) || start.Before(b.StartTime()) || end.After(b.EndTime()) { 341 panic("invalid boundary params") 342 } 343 if b.MillisPerStep() == millisPerStep { 344 panic("requires different step size") 345 } 346 if b.MillisPerStep() < millisPerStep { 347 // Series step size is smaller than consolidation - aggregate each series step then apply 348 // the agggregated value to the consolidate. 349 seriesValuesPerStep := millisPerStep / b.MillisPerStep() 350 seriesStart, seriesEnd := b.StepAtTime(start), b.StepAtTime(end) 351 for n := seriesStart; n < seriesEnd; n += seriesValuesPerStep { 352 timestamp := b.StartTimeForStep(n) 353 aggregatedValue := math.NaN() 354 count := 0 355 356 for i := 0; i < seriesValuesPerStep && n+i < seriesEnd; i++ { 357 value := b.ValueAt(n + i) 358 aggregatedValue, count = consolidateValues(aggregatedValue, value, count, 359 stepAggregator) 360 } 361 callback(timestamp, aggregatedValue) 362 } 363 return 364 } 365 } 366 367 // resized implements PostConsolidationFunc. 368 type resized struct { 369 values []float64 370 } 371 372 // appender adds new values to resized.values. 373 func (v *resized) appender(timestamp time.Time, value float64) { 374 v.values = append(v.values, value) 375 } 376 377 // IntersectAndResize returns a new time series with a different millisPerStep that spans the 378 // intersection of the underlying timeseries and the provided start and end time parameters 379 func (b *Series) IntersectAndResize( 380 start, end time.Time, 381 millisPerStep int, 382 stepAggregator ConsolidationFunc, 383 ) (*Series, error) { 384 intersects, start, end := b.intersection(start, end) 385 if !intersects { 386 ts := NewSeries(b.ctx, b.name, start, &float64Values{ 387 millisPerStep: millisPerStep, 388 values: []float64{}, 389 numSteps: 0, 390 }) 391 ts.Specification = b.Specification 392 return ts, nil 393 } 394 if b.MillisPerStep() == millisPerStep { 395 return b.Slice(b.StepAtTime(start), b.StepAtTime(end)) 396 } 397 return b.resized(start, end, millisPerStep, stepAggregator), nil 398 } 399 400 func (b *Series) resized( 401 start, end time.Time, 402 millisPerStep int, 403 stepAggregator ConsolidationFunc, 404 ) *Series { 405 // TODO: This append based model completely screws pooling; need to rewrite to allow for pooling. 406 v := &resized{} 407 b.resizeStep(start, end, millisPerStep, stepAggregator, v.appender) 408 ts := NewSeries(b.ctx, b.name, start, &float64Values{ 409 millisPerStep: millisPerStep, 410 values: v.values, 411 numSteps: len(v.values), 412 }) 413 ts.Specification = b.Specification 414 return ts 415 } 416 417 // NeedsResizeToMaxDataPoints returns whether the series needs resizing to max datapoints. 418 func (b *Series) NeedsResizeToMaxDataPoints(maxDataPoints int64) bool { 419 if maxDataPoints <= 0 { 420 // No max datapoints specified. 421 return false 422 } 423 return int64(b.Len()) > maxDataPoints 424 } 425 426 // ResizeToMaxDataPointsMillisPerStep returns the new milliseconds per second 427 // required if a series needs resizing and true, or if does not need resize 428 // for max datapoints then it returns 0 and false. 429 func (b *Series) ResizeToMaxDataPointsMillisPerStep( 430 maxDataPoints int64, 431 ) (int, bool) { 432 if !b.NeedsResizeToMaxDataPoints(maxDataPoints) { 433 return 0, false 434 } 435 samplingMultiplier := math.Ceil(float64(b.Len()) / float64(maxDataPoints)) 436 return int(samplingMultiplier * float64(b.MillisPerStep())), true 437 } 438 439 // ResizeToMaxDataPoints resizes the series to fit max datapoints and returns 440 // true if a series was resized or false if it did not need to be resized. 441 func (b *Series) ResizeToMaxDataPoints( 442 maxDataPoints int64, 443 stepAggregator ConsolidationFunc, 444 ) (*Series, bool) { 445 resizeMillisPerStep, needsResize := b.ResizeToMaxDataPointsMillisPerStep(maxDataPoints) 446 if !needsResize { 447 return nil, false 448 } 449 return b.resized(b.StartTime(), b.EndTime(), resizeMillisPerStep, stepAggregator), true 450 } 451 452 // A MutableSeries is a Series that allows updates 453 type MutableSeries struct { 454 Series 455 } 456 457 // NewMutableSeries returns a new mutable Series at the 458 // given start time and backed by the provided storage 459 func NewMutableSeries( 460 ctx context.Context, 461 name string, 462 startTime time.Time, 463 vals MutableValues) *MutableSeries { 464 return &MutableSeries{ 465 Series{ 466 name: name, 467 startTime: startTime, 468 vals: vals, 469 ctx: ctx, 470 Specification: name, 471 }, 472 } 473 } 474 475 // SetValueAt sets the value at the given step 476 func (b *MutableSeries) SetValueAt(i int, v float64) { 477 b.vals.(MutableValues).SetValueAt(i, v) 478 } 479 480 // SetValueAtTime sets the value at the step containing the given time 481 func (b *MutableSeries) SetValueAtTime(t time.Time, v float64) { 482 b.SetValueAt(b.StepAtTime(t), v) 483 } 484 485 // A Consolidation produces a Series whose values are the result of applying a consolidation 486 // function to all of the datapoints that fall within each step. It can used to quantize raw 487 // datapoints into a given resolution, for example, or to aggregate multiple timeseries at the 488 // same or smaller resolutions. 489 type Consolidation interface { 490 // AddDatapoint adds an individual datapoint to the consolidation. 491 AddDatapoint(timestamp time.Time, value float64) 492 493 // AddDatapoints adds a set of datapoints to the consolidation. 494 AddDatapoints(datapoints []Datapoint) 495 496 // AddSeries adds the datapoints for each series to the consolidation. The 497 // stepAggregationFunc is used to combine values from the series if the series 498 // has a smaller step size than the consolidation. For example, an application 499 // might want to produce a consolidation which is a minimum of the input timeseries, 500 // but where the values in smaller timeseries units are summed together to 501 // produce the value to which the consolidation applies. 502 // To put it in another way, stepAggregationFunc is used for the series to resize itself 503 // rather than for the consolidation 504 AddSeries(series *Series, stepAggregationFunc ConsolidationFunc) 505 506 // BuildSeries returns the consolidated Series and optionally finalizes 507 // the consolidation returning it to the pool 508 BuildSeries(id string, finalize FinalizeOption) *Series 509 510 // Finalize returns the consolidation to the pool 511 Finalize() 512 } 513 514 // FinalizeOption specifies the option to finalize or avoid finalizing 515 type FinalizeOption int 516 517 const ( 518 // NoFinalize will avoid finalizing the subject 519 NoFinalize FinalizeOption = iota 520 // Finalize will finalize the subject 521 Finalize 522 ) 523 524 // A ConsolidationFunc consolidates values at a given point in time. It takes the current consolidated 525 // value, the new value to add to the consolidation, and a count of the number of values that have 526 // already been consolidated. 527 type ConsolidationFunc func(existing, toAdd float64, count int) float64 528 529 // NewConsolidation creates a new consolidation window. 530 func NewConsolidation( 531 ctx context.Context, 532 start, end time.Time, 533 millisPerStep int, 534 cf ConsolidationFunc, 535 ) Consolidation { 536 var ( 537 numSteps = NumSteps(start, end, millisPerStep) 538 values = NewValues(ctx, millisPerStep, numSteps) 539 c *consolidation 540 pooled = false 541 ) 542 543 if consolidationPools != nil { 544 temp := consolidationPools.Get(numSteps) 545 c = temp.(*consolidation) 546 if cap(c.counts) >= numSteps { 547 c.counts = c.counts[:numSteps] 548 for i := range c.counts { 549 c.counts[i] = 0 550 } 551 pooled = true 552 } 553 } 554 555 if !pooled { 556 c = newConsolidation(numSteps) 557 } 558 559 c.ctx = ctx 560 c.start = start 561 c.end = end 562 c.millisPerStep = millisPerStep 563 c.values = values 564 c.f = cf 565 566 return c 567 } 568 569 func newConsolidation(numSteps int) *consolidation { 570 counts := make([]int, numSteps) 571 return &consolidation{ 572 counts: counts, 573 } 574 } 575 576 type consolidation struct { 577 ctx context.Context 578 start time.Time 579 end time.Time 580 millisPerStep int 581 values MutableValues 582 counts []int 583 f ConsolidationFunc 584 } 585 586 func (c *consolidation) AddDatapoints(datapoints []Datapoint) { 587 for _, datapoint := range datapoints { 588 c.AddDatapoint(datapoint.Timestamp, datapoint.Value) 589 } 590 } 591 592 func (c *consolidation) AddDatapoint(timestamp time.Time, value float64) { 593 if timestamp.Before(c.start) || timestamp.After(c.end) { 594 return 595 } 596 597 if math.IsNaN(value) { 598 return 599 } 600 601 step := int(timestamp.UnixNano()/1000000-c.start.UnixNano()/1000000) / c.millisPerStep 602 if step >= c.values.Len() { 603 return 604 } 605 606 n, count := consolidateValues(c.values.ValueAt(step), value, c.counts[step], c.f) 607 c.counts[step] = count 608 c.values.SetValueAt(step, n) 609 } 610 611 func consolidateValues(current, value float64, count int, f ConsolidationFunc) (float64, int) { 612 if math.IsNaN(value) { 613 return current, count 614 } 615 616 if count == 0 { 617 return value, 1 618 } 619 620 return f(current, value, count), count + 1 621 } 622 623 // AddSeries adds a time series to the consolidation; stepAggregator is used to resize the 624 // provided timeseries if it's step size is different from the consolidator's step size. 625 func (c *consolidation) AddSeries(series *Series, stepAggregator ConsolidationFunc) { 626 if series.AllNaN() { 627 return 628 } 629 630 intersects, start, end := series.intersection(c.start, c.end) 631 if !intersects { 632 // Nothing to do. 633 return 634 } 635 636 if series.MillisPerStep() == c.millisPerStep { 637 // Series step size is identical to the consolidation: simply apply each series value to 638 // the consolidation. 639 startIndex := series.StepAtTime(start) 640 endIndex := int(math.Min(float64(series.StepAtTime(end)), float64(series.Len()-1))) 641 for n := startIndex; n <= endIndex; n++ { 642 c.AddDatapoint(series.StartTimeForStep(n), series.ValueAt(n)) 643 } 644 return 645 } 646 series.resizeStep(start, end, c.millisPerStep, stepAggregator, c.AddDatapoint) 647 } 648 649 func (c *consolidation) BuildSeries(id string, f FinalizeOption) *Series { 650 series := NewSeries(c.ctx, id, c.start, c.values) 651 if f == Finalize { 652 c.Finalize() 653 } 654 return series 655 } 656 657 func (c *consolidation) Finalize() { 658 c.ctx = nil 659 c.start = time.Time{} 660 c.end = time.Time{} 661 c.millisPerStep = 0 662 c.values = nil 663 c.f = nil 664 if consolidationPools == nil { 665 return 666 } 667 consolidationPools.Put(c, cap(c.counts)) 668 } 669 670 // NumSteps calculates the number of steps of a given size between two times. 671 func NumSteps(start, end time.Time, millisPerStep int) int { 672 // We should round up. 673 numSteps := int(math.Ceil(float64( 674 end.Sub(start)/time.Millisecond) / float64(millisPerStep))) 675 676 if numSteps > 0 { 677 return numSteps 678 } 679 680 // Even for intervals less than millisPerStep, there should be at least one step. 681 return 1 682 } 683 684 // Sum sums two values. 685 func Sum(a, b float64, count int) float64 { return a + b } 686 687 // Mul multiplies two values. 688 func Mul(a, b float64, count int) float64 { return a * b } 689 690 // Avg produces a running average. 691 func Avg(a, b float64, count int) float64 { return (a*float64(count) + b) / float64(count+1) } 692 693 // Min finds the min of two values. 694 func Min(a, b float64, count int) float64 { return math.Min(a, b) } 695 696 // Max finds the max of two values. 697 func Max(a, b float64, count int) float64 { return math.Max(a, b) } 698 699 // Last finds the latter of two values. 700 func Last(a, b float64, count int) float64 { return b } 701 702 // Pow returns the first value to the power of the second value 703 func Pow(a, b float64, count int) float64 { return math.Pow(a, b) } 704 705 // Median finds the median of a slice of values. 706 func Median(vals []float64, count int) float64 { 707 if count < 1 { 708 return math.NaN() 709 } 710 if count == 1 { 711 return vals[0] 712 } 713 sort.Float64s(vals) 714 if count%2 != 0 { 715 // if count is odd 716 return vals[(count-1)/2] 717 } 718 // if count is even 719 return (vals[count/2] + vals[(count/2)-1]) / 2.0 720 } 721 722 // Gcd finds the gcd of two values. 723 func Gcd(a, b int64) int64 { 724 if a < 0 { 725 a = -a 726 } 727 728 if b < 0 { 729 b = -b 730 } 731 732 if b == 0 { 733 return a 734 } 735 736 return Gcd(b, a%b) 737 } 738 739 // Lcm finds the lcm of two values. 740 func Lcm(a, b int64) int64 { 741 if a < 0 { 742 a = -a 743 } 744 745 if b < 0 { 746 b = -b 747 } 748 749 if a == b { 750 return a 751 } 752 753 if a < b { 754 a, b = b, a 755 } 756 757 return a / Gcd(a, b) * b 758 } 759 760 // A SeriesList is a list of series. 761 type SeriesList struct { 762 // Values is the list of series. 763 Values []*Series 764 // SortApplied specifies whether a specific sort order has been applied. 765 SortApplied bool 766 // Metadata contains any additional metadata indicating information about 767 // series execution. 768 Metadata block.ResultMetadata 769 } 770 771 // NewSeriesList creates a blank series list. 772 func NewSeriesList() SeriesList { 773 return SeriesList{Metadata: block.NewResultMetadata()} 774 } 775 776 // NewSeriesListWithSeries creates a series list with the given series and 777 // default metadata. 778 func NewSeriesListWithSeries(values ...*Series) SeriesList { 779 return SeriesList{ 780 Values: values, 781 Metadata: block.NewResultMetadata(), 782 } 783 } 784 785 // Len returns the length of the list. 786 func (l SeriesList) Len() int { 787 return len(l.Values) 788 }