github.com/mangodowner/go-gm@v0.0.0-20180818020936-8baa2bd4408c/src/crypto/elliptic/elliptic.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package elliptic implements several standard elliptic curves over prime 6 // fields. 7 package elliptic 8 9 // This package operates, internally, on Jacobian coordinates. For a given 10 // (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1) 11 // where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole 12 // calculation can be performed within the transform (as in ScalarMult and 13 // ScalarBaseMult). But even for Add and Double, it's faster to apply and 14 // reverse the transform than to operate in affine coordinates. 15 16 import ( 17 "io" 18 "math/big" 19 "sync" 20 ) 21 22 // A Curve represents a short-form Weierstrass curve with a=-3. 23 // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html 24 type Curve interface { 25 // Params returns the parameters for the curve. 26 Params() *CurveParams 27 // IsOnCurve reports whether the given (x,y) lies on the curve. 28 IsOnCurve(x, y *big.Int) bool 29 // Add returns the sum of (x1,y1) and (x2,y2) 30 Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int) 31 // Double returns 2*(x,y) 32 Double(x1, y1 *big.Int) (x, y *big.Int) 33 // ScalarMult returns k*(Bx,By) where k is a number in big-endian form. 34 ScalarMult(x1, y1 *big.Int, k []byte) (x, y *big.Int) 35 // ScalarBaseMult returns k*G, where G is the base point of the group 36 // and k is an integer in big-endian form. 37 ScalarBaseMult(k []byte) (x, y *big.Int) 38 } 39 40 // CurveParams contains the parameters of an elliptic curve and also provides 41 // a generic, non-constant time implementation of Curve. 42 type CurveParams struct { 43 P *big.Int // the order of the underlying field 44 N *big.Int // the order of the base point 45 B *big.Int // the constant of the curve equation 46 Gx, Gy *big.Int // (x,y) of the base point 47 BitSize int // the size of the underlying field 48 Name string // the canonical name of the curve 49 } 50 51 func (curve *CurveParams) Params() *CurveParams { 52 return curve 53 } 54 55 func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool { 56 // y² = x³ - 3x + b 57 y2 := new(big.Int).Mul(y, y) 58 y2.Mod(y2, curve.P) 59 60 x3 := new(big.Int).Mul(x, x) 61 x3.Mul(x3, x) 62 63 threeX := new(big.Int).Lsh(x, 1) 64 threeX.Add(threeX, x) 65 66 x3.Sub(x3, threeX) 67 x3.Add(x3, curve.B) 68 x3.Mod(x3, curve.P) 69 70 return x3.Cmp(y2) == 0 71 } 72 73 // zForAffine returns a Jacobian Z value for the affine point (x, y). If x and 74 // y are zero, it assumes that they represent the point at infinity because (0, 75 // 0) is not on the any of the curves handled here. 76 func zForAffine(x, y *big.Int) *big.Int { 77 z := new(big.Int) 78 if x.Sign() != 0 || y.Sign() != 0 { 79 z.SetInt64(1) 80 } 81 return z 82 } 83 84 // affineFromJacobian reverses the Jacobian transform. See the comment at the 85 // top of the file. If the point is ∞ it returns 0, 0. 86 func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { 87 if z.Sign() == 0 { 88 return new(big.Int), new(big.Int) 89 } 90 91 zinv := new(big.Int).ModInverse(z, curve.P) 92 zinvsq := new(big.Int).Mul(zinv, zinv) 93 94 xOut = new(big.Int).Mul(x, zinvsq) 95 xOut.Mod(xOut, curve.P) 96 zinvsq.Mul(zinvsq, zinv) 97 yOut = new(big.Int).Mul(y, zinvsq) 98 yOut.Mod(yOut, curve.P) 99 return 100 } 101 102 func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { 103 z1 := zForAffine(x1, y1) 104 z2 := zForAffine(x2, y2) 105 return curve.affineFromJacobian(curve.addJacobian(x1, y1, z1, x2, y2, z2)) 106 } 107 108 // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and 109 // (x2, y2, z2) and returns their sum, also in Jacobian form. 110 func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { 111 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl 112 x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int) 113 if z1.Sign() == 0 { 114 x3.Set(x2) 115 y3.Set(y2) 116 z3.Set(z2) 117 return x3, y3, z3 118 } 119 if z2.Sign() == 0 { 120 x3.Set(x1) 121 y3.Set(y1) 122 z3.Set(z1) 123 return x3, y3, z3 124 } 125 126 z1z1 := new(big.Int).Mul(z1, z1) 127 z1z1.Mod(z1z1, curve.P) 128 z2z2 := new(big.Int).Mul(z2, z2) 129 z2z2.Mod(z2z2, curve.P) 130 131 u1 := new(big.Int).Mul(x1, z2z2) 132 u1.Mod(u1, curve.P) 133 u2 := new(big.Int).Mul(x2, z1z1) 134 u2.Mod(u2, curve.P) 135 h := new(big.Int).Sub(u2, u1) 136 xEqual := h.Sign() == 0 137 if h.Sign() == -1 { 138 h.Add(h, curve.P) 139 } 140 i := new(big.Int).Lsh(h, 1) 141 i.Mul(i, i) 142 j := new(big.Int).Mul(h, i) 143 144 s1 := new(big.Int).Mul(y1, z2) 145 s1.Mul(s1, z2z2) 146 s1.Mod(s1, curve.P) 147 s2 := new(big.Int).Mul(y2, z1) 148 s2.Mul(s2, z1z1) 149 s2.Mod(s2, curve.P) 150 r := new(big.Int).Sub(s2, s1) 151 if r.Sign() == -1 { 152 r.Add(r, curve.P) 153 } 154 yEqual := r.Sign() == 0 155 if xEqual && yEqual { 156 return curve.doubleJacobian(x1, y1, z1) 157 } 158 r.Lsh(r, 1) 159 v := new(big.Int).Mul(u1, i) 160 161 x3.Set(r) 162 x3.Mul(x3, x3) 163 x3.Sub(x3, j) 164 x3.Sub(x3, v) 165 x3.Sub(x3, v) 166 x3.Mod(x3, curve.P) 167 168 y3.Set(r) 169 v.Sub(v, x3) 170 y3.Mul(y3, v) 171 s1.Mul(s1, j) 172 s1.Lsh(s1, 1) 173 y3.Sub(y3, s1) 174 y3.Mod(y3, curve.P) 175 176 z3.Add(z1, z2) 177 z3.Mul(z3, z3) 178 z3.Sub(z3, z1z1) 179 z3.Sub(z3, z2z2) 180 z3.Mul(z3, h) 181 z3.Mod(z3, curve.P) 182 183 return x3, y3, z3 184 } 185 186 func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { 187 z1 := zForAffine(x1, y1) 188 return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1)) 189 } 190 191 // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and 192 // returns its double, also in Jacobian form. 193 func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { 194 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b 195 delta := new(big.Int).Mul(z, z) 196 delta.Mod(delta, curve.P) 197 gamma := new(big.Int).Mul(y, y) 198 gamma.Mod(gamma, curve.P) 199 alpha := new(big.Int).Sub(x, delta) 200 if alpha.Sign() == -1 { 201 alpha.Add(alpha, curve.P) 202 } 203 alpha2 := new(big.Int).Add(x, delta) 204 alpha.Mul(alpha, alpha2) 205 alpha2.Set(alpha) 206 alpha.Lsh(alpha, 1) 207 alpha.Add(alpha, alpha2) 208 209 beta := alpha2.Mul(x, gamma) 210 211 x3 := new(big.Int).Mul(alpha, alpha) 212 beta8 := new(big.Int).Lsh(beta, 3) 213 x3.Sub(x3, beta8) 214 for x3.Sign() == -1 { 215 x3.Add(x3, curve.P) 216 } 217 x3.Mod(x3, curve.P) 218 219 z3 := new(big.Int).Add(y, z) 220 z3.Mul(z3, z3) 221 z3.Sub(z3, gamma) 222 if z3.Sign() == -1 { 223 z3.Add(z3, curve.P) 224 } 225 z3.Sub(z3, delta) 226 if z3.Sign() == -1 { 227 z3.Add(z3, curve.P) 228 } 229 z3.Mod(z3, curve.P) 230 231 beta.Lsh(beta, 2) 232 beta.Sub(beta, x3) 233 if beta.Sign() == -1 { 234 beta.Add(beta, curve.P) 235 } 236 y3 := alpha.Mul(alpha, beta) 237 238 gamma.Mul(gamma, gamma) 239 gamma.Lsh(gamma, 3) 240 gamma.Mod(gamma, curve.P) 241 242 y3.Sub(y3, gamma) 243 if y3.Sign() == -1 { 244 y3.Add(y3, curve.P) 245 } 246 y3.Mod(y3, curve.P) 247 248 return x3, y3, z3 249 } 250 251 func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { 252 Bz := new(big.Int).SetInt64(1) 253 x, y, z := new(big.Int), new(big.Int), new(big.Int) 254 255 for _, byte := range k { 256 for bitNum := 0; bitNum < 8; bitNum++ { 257 x, y, z = curve.doubleJacobian(x, y, z) 258 if byte&0x80 == 0x80 { 259 x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z) 260 } 261 byte <<= 1 262 } 263 } 264 265 return curve.affineFromJacobian(x, y, z) 266 } 267 268 func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { 269 return curve.ScalarMult(curve.Gx, curve.Gy, k) 270 } 271 272 var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f} 273 274 // GenerateKey returns a public/private key pair. The private key is 275 // generated using the given reader, which must return random data. 276 func GenerateKey(curve Curve, rand io.Reader) (priv []byte, x, y *big.Int, err error) { 277 N := curve.Params().N 278 bitSize := N.BitLen() 279 byteLen := (bitSize + 7) >> 3 280 priv = make([]byte, byteLen) 281 282 for x == nil { 283 _, err = io.ReadFull(rand, priv) 284 if err != nil { 285 return 286 } 287 // We have to mask off any excess bits in the case that the size of the 288 // underlying field is not a whole number of bytes. 289 priv[0] &= mask[bitSize%8] 290 // This is because, in tests, rand will return all zeros and we don't 291 // want to get the point at infinity and loop forever. 292 priv[1] ^= 0x42 293 294 // If the scalar is out of range, sample another random number. 295 if new(big.Int).SetBytes(priv).Cmp(N) >= 0 { 296 continue 297 } 298 299 x, y = curve.ScalarBaseMult(priv) 300 } 301 return 302 } 303 304 // Marshal converts a point into the form specified in section 4.3.6 of ANSI X9.62. 305 func Marshal(curve Curve, x, y *big.Int) []byte { 306 byteLen := (curve.Params().BitSize + 7) >> 3 307 308 ret := make([]byte, 1+2*byteLen) 309 ret[0] = 4 // uncompressed point 310 311 xBytes := x.Bytes() 312 copy(ret[1+byteLen-len(xBytes):], xBytes) 313 yBytes := y.Bytes() 314 copy(ret[1+2*byteLen-len(yBytes):], yBytes) 315 return ret 316 } 317 318 // Unmarshal converts a point, serialized by Marshal, into an x, y pair. 319 // It is an error if the point is not on the curve. On error, x = nil. 320 func Unmarshal(curve Curve, data []byte) (x, y *big.Int) { 321 byteLen := (curve.Params().BitSize + 7) >> 3 322 if len(data) != 1+2*byteLen { 323 return 324 } 325 if data[0] != 4 { // uncompressed form 326 return 327 } 328 x = new(big.Int).SetBytes(data[1 : 1+byteLen]) 329 y = new(big.Int).SetBytes(data[1+byteLen:]) 330 if !curve.IsOnCurve(x, y) { 331 x, y = nil, nil 332 } 333 return 334 } 335 336 var initonce sync.Once 337 var p384 *CurveParams 338 var p521 *CurveParams 339 340 func initAll() { 341 initP224() 342 initP256() 343 initP384() 344 initP521() 345 } 346 347 func initP384() { 348 // See FIPS 186-3, section D.2.4 349 p384 = &CurveParams{Name: "P-384"} 350 p384.P, _ = new(big.Int).SetString("39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319", 10) 351 p384.N, _ = new(big.Int).SetString("39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643", 10) 352 p384.B, _ = new(big.Int).SetString("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef", 16) 353 p384.Gx, _ = new(big.Int).SetString("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7", 16) 354 p384.Gy, _ = new(big.Int).SetString("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f", 16) 355 p384.BitSize = 384 356 } 357 358 func initP521() { 359 // See FIPS 186-3, section D.2.5 360 p521 = &CurveParams{Name: "P-521"} 361 p521.P, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", 10) 362 p521.N, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449", 10) 363 p521.B, _ = new(big.Int).SetString("051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00", 16) 364 p521.Gx, _ = new(big.Int).SetString("c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66", 16) 365 p521.Gy, _ = new(big.Int).SetString("11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650", 16) 366 p521.BitSize = 521 367 } 368 369 // P256 returns a Curve which implements P-256 (see FIPS 186-3, section D.2.3) 370 // 371 // The cryptographic operations are implemented using constant-time algorithms. 372 func P256() Curve { 373 initonce.Do(initAll) 374 return p256 375 } 376 377 // P384 returns a Curve which implements P-384 (see FIPS 186-3, section D.2.4) 378 // 379 // The cryptographic operations do not use constant-time algorithms. 380 func P384() Curve { 381 initonce.Do(initAll) 382 return p384 383 } 384 385 // P521 returns a Curve which implements P-521 (see FIPS 186-3, section D.2.5) 386 // 387 // The cryptographic operations do not use constant-time algorithms. 388 func P521() Curve { 389 initonce.Do(initAll) 390 return p521 391 }