github.com/mangodowner/go-gm@v0.0.0-20180818020936-8baa2bd4408c/src/crypto/elliptic/p224.go (about) 1 // Copyright 2012 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package elliptic 6 7 // This is a constant-time, 32-bit implementation of P224. See FIPS 186-3, 8 // section D.2.2. 9 // 10 // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. 11 12 import ( 13 "math/big" 14 ) 15 16 var p224 p224Curve 17 18 type p224Curve struct { 19 *CurveParams 20 gx, gy, b p224FieldElement 21 } 22 23 func initP224() { 24 // See FIPS 186-3, section D.2.2 25 p224.CurveParams = &CurveParams{Name: "P-224"} 26 p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10) 27 p224.N, _ = new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061", 10) 28 p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16) 29 p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16) 30 p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16) 31 p224.BitSize = 224 32 33 p224FromBig(&p224.gx, p224.Gx) 34 p224FromBig(&p224.gy, p224.Gy) 35 p224FromBig(&p224.b, p224.B) 36 } 37 38 // P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2). 39 // 40 // The cryptographic operations are implemented using constant-time algorithms. 41 func P224() Curve { 42 initonce.Do(initAll) 43 return p224 44 } 45 46 func (curve p224Curve) Params() *CurveParams { 47 return curve.CurveParams 48 } 49 50 func (curve p224Curve) IsOnCurve(bigX, bigY *big.Int) bool { 51 var x, y p224FieldElement 52 p224FromBig(&x, bigX) 53 p224FromBig(&y, bigY) 54 55 // y² = x³ - 3x + b 56 var tmp p224LargeFieldElement 57 var x3 p224FieldElement 58 p224Square(&x3, &x, &tmp) 59 p224Mul(&x3, &x3, &x, &tmp) 60 61 for i := 0; i < 8; i++ { 62 x[i] *= 3 63 } 64 p224Sub(&x3, &x3, &x) 65 p224Reduce(&x3) 66 p224Add(&x3, &x3, &curve.b) 67 p224Contract(&x3, &x3) 68 69 p224Square(&y, &y, &tmp) 70 p224Contract(&y, &y) 71 72 for i := 0; i < 8; i++ { 73 if y[i] != x3[i] { 74 return false 75 } 76 } 77 return true 78 } 79 80 func (p224Curve) Add(bigX1, bigY1, bigX2, bigY2 *big.Int) (x, y *big.Int) { 81 var x1, y1, z1, x2, y2, z2, x3, y3, z3 p224FieldElement 82 83 p224FromBig(&x1, bigX1) 84 p224FromBig(&y1, bigY1) 85 if bigX1.Sign() != 0 || bigY1.Sign() != 0 { 86 z1[0] = 1 87 } 88 p224FromBig(&x2, bigX2) 89 p224FromBig(&y2, bigY2) 90 if bigX2.Sign() != 0 || bigY2.Sign() != 0 { 91 z2[0] = 1 92 } 93 94 p224AddJacobian(&x3, &y3, &z3, &x1, &y1, &z1, &x2, &y2, &z2) 95 return p224ToAffine(&x3, &y3, &z3) 96 } 97 98 func (p224Curve) Double(bigX1, bigY1 *big.Int) (x, y *big.Int) { 99 var x1, y1, z1, x2, y2, z2 p224FieldElement 100 101 p224FromBig(&x1, bigX1) 102 p224FromBig(&y1, bigY1) 103 z1[0] = 1 104 105 p224DoubleJacobian(&x2, &y2, &z2, &x1, &y1, &z1) 106 return p224ToAffine(&x2, &y2, &z2) 107 } 108 109 func (p224Curve) ScalarMult(bigX1, bigY1 *big.Int, scalar []byte) (x, y *big.Int) { 110 var x1, y1, z1, x2, y2, z2 p224FieldElement 111 112 p224FromBig(&x1, bigX1) 113 p224FromBig(&y1, bigY1) 114 z1[0] = 1 115 116 p224ScalarMult(&x2, &y2, &z2, &x1, &y1, &z1, scalar) 117 return p224ToAffine(&x2, &y2, &z2) 118 } 119 120 func (curve p224Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) { 121 var z1, x2, y2, z2 p224FieldElement 122 123 z1[0] = 1 124 p224ScalarMult(&x2, &y2, &z2, &curve.gx, &curve.gy, &z1, scalar) 125 return p224ToAffine(&x2, &y2, &z2) 126 } 127 128 // Field element functions. 129 // 130 // The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1. 131 // 132 // Field elements are represented by a FieldElement, which is a typedef to an 133 // array of 8 uint32's. The value of a FieldElement, a, is: 134 // a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7] 135 // 136 // Using 28-bit limbs means that there's only 4 bits of headroom, which is less 137 // than we would really like. But it has the useful feature that we hit 2**224 138 // exactly, making the reflections during a reduce much nicer. 139 type p224FieldElement [8]uint32 140 141 // p224P is the order of the field, represented as a p224FieldElement. 142 var p224P = [8]uint32{1, 0, 0, 0xffff000, 0xfffffff, 0xfffffff, 0xfffffff, 0xfffffff} 143 144 // p224IsZero returns 1 if a == 0 mod p and 0 otherwise. 145 // 146 // a[i] < 2**29 147 func p224IsZero(a *p224FieldElement) uint32 { 148 // Since a p224FieldElement contains 224 bits there are two possible 149 // representations of 0: 0 and p. 150 var minimal p224FieldElement 151 p224Contract(&minimal, a) 152 153 var isZero, isP uint32 154 for i, v := range minimal { 155 isZero |= v 156 isP |= v - p224P[i] 157 } 158 159 // If either isZero or isP is 0, then we should return 1. 160 isZero |= isZero >> 16 161 isZero |= isZero >> 8 162 isZero |= isZero >> 4 163 isZero |= isZero >> 2 164 isZero |= isZero >> 1 165 166 isP |= isP >> 16 167 isP |= isP >> 8 168 isP |= isP >> 4 169 isP |= isP >> 2 170 isP |= isP >> 1 171 172 // For isZero and isP, the LSB is 0 iff all the bits are zero. 173 result := isZero & isP 174 result = (^result) & 1 175 176 return result 177 } 178 179 // p224Add computes *out = a+b 180 // 181 // a[i] + b[i] < 2**32 182 func p224Add(out, a, b *p224FieldElement) { 183 for i := 0; i < 8; i++ { 184 out[i] = a[i] + b[i] 185 } 186 } 187 188 const two31p3 = 1<<31 + 1<<3 189 const two31m3 = 1<<31 - 1<<3 190 const two31m15m3 = 1<<31 - 1<<15 - 1<<3 191 192 // p224ZeroModP31 is 0 mod p where bit 31 is set in all limbs so that we can 193 // subtract smaller amounts without underflow. See the section "Subtraction" in 194 // [1] for reasoning. 195 var p224ZeroModP31 = []uint32{two31p3, two31m3, two31m3, two31m15m3, two31m3, two31m3, two31m3, two31m3} 196 197 // p224Sub computes *out = a-b 198 // 199 // a[i], b[i] < 2**30 200 // out[i] < 2**32 201 func p224Sub(out, a, b *p224FieldElement) { 202 for i := 0; i < 8; i++ { 203 out[i] = a[i] + p224ZeroModP31[i] - b[i] 204 } 205 } 206 207 // LargeFieldElement also represents an element of the field. The limbs are 208 // still spaced 28-bits apart and in little-endian order. So the limbs are at 209 // 0, 28, 56, ..., 392 bits, each 64-bits wide. 210 type p224LargeFieldElement [15]uint64 211 212 const two63p35 = 1<<63 + 1<<35 213 const two63m35 = 1<<63 - 1<<35 214 const two63m35m19 = 1<<63 - 1<<35 - 1<<19 215 216 // p224ZeroModP63 is 0 mod p where bit 63 is set in all limbs. See the section 217 // "Subtraction" in [1] for why. 218 var p224ZeroModP63 = [8]uint64{two63p35, two63m35, two63m35, two63m35, two63m35m19, two63m35, two63m35, two63m35} 219 220 const bottom12Bits = 0xfff 221 const bottom28Bits = 0xfffffff 222 223 // p224Mul computes *out = a*b 224 // 225 // a[i] < 2**29, b[i] < 2**30 (or vice versa) 226 // out[i] < 2**29 227 func p224Mul(out, a, b *p224FieldElement, tmp *p224LargeFieldElement) { 228 for i := 0; i < 15; i++ { 229 tmp[i] = 0 230 } 231 232 for i := 0; i < 8; i++ { 233 for j := 0; j < 8; j++ { 234 tmp[i+j] += uint64(a[i]) * uint64(b[j]) 235 } 236 } 237 238 p224ReduceLarge(out, tmp) 239 } 240 241 // Square computes *out = a*a 242 // 243 // a[i] < 2**29 244 // out[i] < 2**29 245 func p224Square(out, a *p224FieldElement, tmp *p224LargeFieldElement) { 246 for i := 0; i < 15; i++ { 247 tmp[i] = 0 248 } 249 250 for i := 0; i < 8; i++ { 251 for j := 0; j <= i; j++ { 252 r := uint64(a[i]) * uint64(a[j]) 253 if i == j { 254 tmp[i+j] += r 255 } else { 256 tmp[i+j] += r << 1 257 } 258 } 259 } 260 261 p224ReduceLarge(out, tmp) 262 } 263 264 // ReduceLarge converts a p224LargeFieldElement to a p224FieldElement. 265 // 266 // in[i] < 2**62 267 func p224ReduceLarge(out *p224FieldElement, in *p224LargeFieldElement) { 268 for i := 0; i < 8; i++ { 269 in[i] += p224ZeroModP63[i] 270 } 271 272 // Eliminate the coefficients at 2**224 and greater. 273 for i := 14; i >= 8; i-- { 274 in[i-8] -= in[i] 275 in[i-5] += (in[i] & 0xffff) << 12 276 in[i-4] += in[i] >> 16 277 } 278 in[8] = 0 279 // in[0..8] < 2**64 280 281 // As the values become small enough, we start to store them in |out| 282 // and use 32-bit operations. 283 for i := 1; i < 8; i++ { 284 in[i+1] += in[i] >> 28 285 out[i] = uint32(in[i] & bottom28Bits) 286 } 287 in[0] -= in[8] 288 out[3] += uint32(in[8]&0xffff) << 12 289 out[4] += uint32(in[8] >> 16) 290 // in[0] < 2**64 291 // out[3] < 2**29 292 // out[4] < 2**29 293 // out[1,2,5..7] < 2**28 294 295 out[0] = uint32(in[0] & bottom28Bits) 296 out[1] += uint32((in[0] >> 28) & bottom28Bits) 297 out[2] += uint32(in[0] >> 56) 298 // out[0] < 2**28 299 // out[1..4] < 2**29 300 // out[5..7] < 2**28 301 } 302 303 // Reduce reduces the coefficients of a to smaller bounds. 304 // 305 // On entry: a[i] < 2**31 + 2**30 306 // On exit: a[i] < 2**29 307 func p224Reduce(a *p224FieldElement) { 308 for i := 0; i < 7; i++ { 309 a[i+1] += a[i] >> 28 310 a[i] &= bottom28Bits 311 } 312 top := a[7] >> 28 313 a[7] &= bottom28Bits 314 315 // top < 2**4 316 mask := top 317 mask |= mask >> 2 318 mask |= mask >> 1 319 mask <<= 31 320 mask = uint32(int32(mask) >> 31) 321 // Mask is all ones if top != 0, all zero otherwise 322 323 a[0] -= top 324 a[3] += top << 12 325 326 // We may have just made a[0] negative but, if we did, then we must 327 // have added something to a[3], this it's > 2**12. Therefore we can 328 // carry down to a[0]. 329 a[3] -= 1 & mask 330 a[2] += mask & (1<<28 - 1) 331 a[1] += mask & (1<<28 - 1) 332 a[0] += mask & (1 << 28) 333 } 334 335 // p224Invert calculates *out = in**-1 by computing in**(2**224 - 2**96 - 1), 336 // i.e. Fermat's little theorem. 337 func p224Invert(out, in *p224FieldElement) { 338 var f1, f2, f3, f4 p224FieldElement 339 var c p224LargeFieldElement 340 341 p224Square(&f1, in, &c) // 2 342 p224Mul(&f1, &f1, in, &c) // 2**2 - 1 343 p224Square(&f1, &f1, &c) // 2**3 - 2 344 p224Mul(&f1, &f1, in, &c) // 2**3 - 1 345 p224Square(&f2, &f1, &c) // 2**4 - 2 346 p224Square(&f2, &f2, &c) // 2**5 - 4 347 p224Square(&f2, &f2, &c) // 2**6 - 8 348 p224Mul(&f1, &f1, &f2, &c) // 2**6 - 1 349 p224Square(&f2, &f1, &c) // 2**7 - 2 350 for i := 0; i < 5; i++ { // 2**12 - 2**6 351 p224Square(&f2, &f2, &c) 352 } 353 p224Mul(&f2, &f2, &f1, &c) // 2**12 - 1 354 p224Square(&f3, &f2, &c) // 2**13 - 2 355 for i := 0; i < 11; i++ { // 2**24 - 2**12 356 p224Square(&f3, &f3, &c) 357 } 358 p224Mul(&f2, &f3, &f2, &c) // 2**24 - 1 359 p224Square(&f3, &f2, &c) // 2**25 - 2 360 for i := 0; i < 23; i++ { // 2**48 - 2**24 361 p224Square(&f3, &f3, &c) 362 } 363 p224Mul(&f3, &f3, &f2, &c) // 2**48 - 1 364 p224Square(&f4, &f3, &c) // 2**49 - 2 365 for i := 0; i < 47; i++ { // 2**96 - 2**48 366 p224Square(&f4, &f4, &c) 367 } 368 p224Mul(&f3, &f3, &f4, &c) // 2**96 - 1 369 p224Square(&f4, &f3, &c) // 2**97 - 2 370 for i := 0; i < 23; i++ { // 2**120 - 2**24 371 p224Square(&f4, &f4, &c) 372 } 373 p224Mul(&f2, &f4, &f2, &c) // 2**120 - 1 374 for i := 0; i < 6; i++ { // 2**126 - 2**6 375 p224Square(&f2, &f2, &c) 376 } 377 p224Mul(&f1, &f1, &f2, &c) // 2**126 - 1 378 p224Square(&f1, &f1, &c) // 2**127 - 2 379 p224Mul(&f1, &f1, in, &c) // 2**127 - 1 380 for i := 0; i < 97; i++ { // 2**224 - 2**97 381 p224Square(&f1, &f1, &c) 382 } 383 p224Mul(out, &f1, &f3, &c) // 2**224 - 2**96 - 1 384 } 385 386 // p224Contract converts a FieldElement to its unique, minimal form. 387 // 388 // On entry, in[i] < 2**29 389 // On exit, in[i] < 2**28 390 func p224Contract(out, in *p224FieldElement) { 391 copy(out[:], in[:]) 392 393 for i := 0; i < 7; i++ { 394 out[i+1] += out[i] >> 28 395 out[i] &= bottom28Bits 396 } 397 top := out[7] >> 28 398 out[7] &= bottom28Bits 399 400 out[0] -= top 401 out[3] += top << 12 402 403 // We may just have made out[i] negative. So we carry down. If we made 404 // out[0] negative then we know that out[3] is sufficiently positive 405 // because we just added to it. 406 for i := 0; i < 3; i++ { 407 mask := uint32(int32(out[i]) >> 31) 408 out[i] += (1 << 28) & mask 409 out[i+1] -= 1 & mask 410 } 411 412 // We might have pushed out[3] over 2**28 so we perform another, partial, 413 // carry chain. 414 for i := 3; i < 7; i++ { 415 out[i+1] += out[i] >> 28 416 out[i] &= bottom28Bits 417 } 418 top = out[7] >> 28 419 out[7] &= bottom28Bits 420 421 // Eliminate top while maintaining the same value mod p. 422 out[0] -= top 423 out[3] += top << 12 424 425 // There are two cases to consider for out[3]: 426 // 1) The first time that we eliminated top, we didn't push out[3] over 427 // 2**28. In this case, the partial carry chain didn't change any values 428 // and top is zero. 429 // 2) We did push out[3] over 2**28 the first time that we eliminated top. 430 // The first value of top was in [0..16), therefore, prior to eliminating 431 // the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after 432 // overflowing and being reduced by the second carry chain, out[3] <= 433 // 0xf000. Thus it cannot have overflowed when we eliminated top for the 434 // second time. 435 436 // Again, we may just have made out[0] negative, so do the same carry down. 437 // As before, if we made out[0] negative then we know that out[3] is 438 // sufficiently positive. 439 for i := 0; i < 3; i++ { 440 mask := uint32(int32(out[i]) >> 31) 441 out[i] += (1 << 28) & mask 442 out[i+1] -= 1 & mask 443 } 444 445 // Now we see if the value is >= p and, if so, subtract p. 446 447 // First we build a mask from the top four limbs, which must all be 448 // equal to bottom28Bits if the whole value is >= p. If top4AllOnes 449 // ends up with any zero bits in the bottom 28 bits, then this wasn't 450 // true. 451 top4AllOnes := uint32(0xffffffff) 452 for i := 4; i < 8; i++ { 453 top4AllOnes &= out[i] 454 } 455 top4AllOnes |= 0xf0000000 456 // Now we replicate any zero bits to all the bits in top4AllOnes. 457 top4AllOnes &= top4AllOnes >> 16 458 top4AllOnes &= top4AllOnes >> 8 459 top4AllOnes &= top4AllOnes >> 4 460 top4AllOnes &= top4AllOnes >> 2 461 top4AllOnes &= top4AllOnes >> 1 462 top4AllOnes = uint32(int32(top4AllOnes<<31) >> 31) 463 464 // Now we test whether the bottom three limbs are non-zero. 465 bottom3NonZero := out[0] | out[1] | out[2] 466 bottom3NonZero |= bottom3NonZero >> 16 467 bottom3NonZero |= bottom3NonZero >> 8 468 bottom3NonZero |= bottom3NonZero >> 4 469 bottom3NonZero |= bottom3NonZero >> 2 470 bottom3NonZero |= bottom3NonZero >> 1 471 bottom3NonZero = uint32(int32(bottom3NonZero<<31) >> 31) 472 473 // Everything depends on the value of out[3]. 474 // If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p 475 // If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0, 476 // then the whole value is >= p 477 // If it's < 0xffff000, then the whole value is < p 478 n := out[3] - 0xffff000 479 out3Equal := n 480 out3Equal |= out3Equal >> 16 481 out3Equal |= out3Equal >> 8 482 out3Equal |= out3Equal >> 4 483 out3Equal |= out3Equal >> 2 484 out3Equal |= out3Equal >> 1 485 out3Equal = ^uint32(int32(out3Equal<<31) >> 31) 486 487 // If out[3] > 0xffff000 then n's MSB will be zero. 488 out3GT := ^uint32(int32(n) >> 31) 489 490 mask := top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT) 491 out[0] -= 1 & mask 492 out[3] -= 0xffff000 & mask 493 out[4] -= 0xfffffff & mask 494 out[5] -= 0xfffffff & mask 495 out[6] -= 0xfffffff & mask 496 out[7] -= 0xfffffff & mask 497 } 498 499 // Group element functions. 500 // 501 // These functions deal with group elements. The group is an elliptic curve 502 // group with a = -3 defined in FIPS 186-3, section D.2.2. 503 504 // p224AddJacobian computes *out = a+b where a != b. 505 func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) { 506 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-p224Add-2007-bl 507 var z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v p224FieldElement 508 var c p224LargeFieldElement 509 510 z1IsZero := p224IsZero(z1) 511 z2IsZero := p224IsZero(z2) 512 513 // Z1Z1 = Z1² 514 p224Square(&z1z1, z1, &c) 515 // Z2Z2 = Z2² 516 p224Square(&z2z2, z2, &c) 517 // U1 = X1*Z2Z2 518 p224Mul(&u1, x1, &z2z2, &c) 519 // U2 = X2*Z1Z1 520 p224Mul(&u2, x2, &z1z1, &c) 521 // S1 = Y1*Z2*Z2Z2 522 p224Mul(&s1, z2, &z2z2, &c) 523 p224Mul(&s1, y1, &s1, &c) 524 // S2 = Y2*Z1*Z1Z1 525 p224Mul(&s2, z1, &z1z1, &c) 526 p224Mul(&s2, y2, &s2, &c) 527 // H = U2-U1 528 p224Sub(&h, &u2, &u1) 529 p224Reduce(&h) 530 xEqual := p224IsZero(&h) 531 // I = (2*H)² 532 for j := 0; j < 8; j++ { 533 i[j] = h[j] << 1 534 } 535 p224Reduce(&i) 536 p224Square(&i, &i, &c) 537 // J = H*I 538 p224Mul(&j, &h, &i, &c) 539 // r = 2*(S2-S1) 540 p224Sub(&r, &s2, &s1) 541 p224Reduce(&r) 542 yEqual := p224IsZero(&r) 543 if xEqual == 1 && yEqual == 1 && z1IsZero == 0 && z2IsZero == 0 { 544 p224DoubleJacobian(x3, y3, z3, x1, y1, z1) 545 return 546 } 547 for i := 0; i < 8; i++ { 548 r[i] <<= 1 549 } 550 p224Reduce(&r) 551 // V = U1*I 552 p224Mul(&v, &u1, &i, &c) 553 // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H 554 p224Add(&z1z1, &z1z1, &z2z2) 555 p224Add(&z2z2, z1, z2) 556 p224Reduce(&z2z2) 557 p224Square(&z2z2, &z2z2, &c) 558 p224Sub(z3, &z2z2, &z1z1) 559 p224Reduce(z3) 560 p224Mul(z3, z3, &h, &c) 561 // X3 = r²-J-2*V 562 for i := 0; i < 8; i++ { 563 z1z1[i] = v[i] << 1 564 } 565 p224Add(&z1z1, &j, &z1z1) 566 p224Reduce(&z1z1) 567 p224Square(x3, &r, &c) 568 p224Sub(x3, x3, &z1z1) 569 p224Reduce(x3) 570 // Y3 = r*(V-X3)-2*S1*J 571 for i := 0; i < 8; i++ { 572 s1[i] <<= 1 573 } 574 p224Mul(&s1, &s1, &j, &c) 575 p224Sub(&z1z1, &v, x3) 576 p224Reduce(&z1z1) 577 p224Mul(&z1z1, &z1z1, &r, &c) 578 p224Sub(y3, &z1z1, &s1) 579 p224Reduce(y3) 580 581 p224CopyConditional(x3, x2, z1IsZero) 582 p224CopyConditional(x3, x1, z2IsZero) 583 p224CopyConditional(y3, y2, z1IsZero) 584 p224CopyConditional(y3, y1, z2IsZero) 585 p224CopyConditional(z3, z2, z1IsZero) 586 p224CopyConditional(z3, z1, z2IsZero) 587 } 588 589 // p224DoubleJacobian computes *out = a+a. 590 func p224DoubleJacobian(x3, y3, z3, x1, y1, z1 *p224FieldElement) { 591 var delta, gamma, beta, alpha, t p224FieldElement 592 var c p224LargeFieldElement 593 594 p224Square(&delta, z1, &c) 595 p224Square(&gamma, y1, &c) 596 p224Mul(&beta, x1, &gamma, &c) 597 598 // alpha = 3*(X1-delta)*(X1+delta) 599 p224Add(&t, x1, &delta) 600 for i := 0; i < 8; i++ { 601 t[i] += t[i] << 1 602 } 603 p224Reduce(&t) 604 p224Sub(&alpha, x1, &delta) 605 p224Reduce(&alpha) 606 p224Mul(&alpha, &alpha, &t, &c) 607 608 // Z3 = (Y1+Z1)²-gamma-delta 609 p224Add(z3, y1, z1) 610 p224Reduce(z3) 611 p224Square(z3, z3, &c) 612 p224Sub(z3, z3, &gamma) 613 p224Reduce(z3) 614 p224Sub(z3, z3, &delta) 615 p224Reduce(z3) 616 617 // X3 = alpha²-8*beta 618 for i := 0; i < 8; i++ { 619 delta[i] = beta[i] << 3 620 } 621 p224Reduce(&delta) 622 p224Square(x3, &alpha, &c) 623 p224Sub(x3, x3, &delta) 624 p224Reduce(x3) 625 626 // Y3 = alpha*(4*beta-X3)-8*gamma² 627 for i := 0; i < 8; i++ { 628 beta[i] <<= 2 629 } 630 p224Sub(&beta, &beta, x3) 631 p224Reduce(&beta) 632 p224Square(&gamma, &gamma, &c) 633 for i := 0; i < 8; i++ { 634 gamma[i] <<= 3 635 } 636 p224Reduce(&gamma) 637 p224Mul(y3, &alpha, &beta, &c) 638 p224Sub(y3, y3, &gamma) 639 p224Reduce(y3) 640 } 641 642 // p224CopyConditional sets *out = *in iff the least-significant-bit of control 643 // is true, and it runs in constant time. 644 func p224CopyConditional(out, in *p224FieldElement, control uint32) { 645 control <<= 31 646 control = uint32(int32(control) >> 31) 647 648 for i := 0; i < 8; i++ { 649 out[i] ^= (out[i] ^ in[i]) & control 650 } 651 } 652 653 func p224ScalarMult(outX, outY, outZ, inX, inY, inZ *p224FieldElement, scalar []byte) { 654 var xx, yy, zz p224FieldElement 655 for i := 0; i < 8; i++ { 656 outX[i] = 0 657 outY[i] = 0 658 outZ[i] = 0 659 } 660 661 for _, byte := range scalar { 662 for bitNum := uint(0); bitNum < 8; bitNum++ { 663 p224DoubleJacobian(outX, outY, outZ, outX, outY, outZ) 664 bit := uint32((byte >> (7 - bitNum)) & 1) 665 p224AddJacobian(&xx, &yy, &zz, inX, inY, inZ, outX, outY, outZ) 666 p224CopyConditional(outX, &xx, bit) 667 p224CopyConditional(outY, &yy, bit) 668 p224CopyConditional(outZ, &zz, bit) 669 } 670 } 671 } 672 673 // p224ToAffine converts from Jacobian to affine form. 674 func p224ToAffine(x, y, z *p224FieldElement) (*big.Int, *big.Int) { 675 var zinv, zinvsq, outx, outy p224FieldElement 676 var tmp p224LargeFieldElement 677 678 if isPointAtInfinity := p224IsZero(z); isPointAtInfinity == 1 { 679 return new(big.Int), new(big.Int) 680 } 681 682 p224Invert(&zinv, z) 683 p224Square(&zinvsq, &zinv, &tmp) 684 p224Mul(x, x, &zinvsq, &tmp) 685 p224Mul(&zinvsq, &zinvsq, &zinv, &tmp) 686 p224Mul(y, y, &zinvsq, &tmp) 687 688 p224Contract(&outx, x) 689 p224Contract(&outy, y) 690 return p224ToBig(&outx), p224ToBig(&outy) 691 } 692 693 // get28BitsFromEnd returns the least-significant 28 bits from buf>>shift, 694 // where buf is interpreted as a big-endian number. 695 func get28BitsFromEnd(buf []byte, shift uint) (uint32, []byte) { 696 var ret uint32 697 698 for i := uint(0); i < 4; i++ { 699 var b byte 700 if l := len(buf); l > 0 { 701 b = buf[l-1] 702 // We don't remove the byte if we're about to return and we're not 703 // reading all of it. 704 if i != 3 || shift == 4 { 705 buf = buf[:l-1] 706 } 707 } 708 ret |= uint32(b) << (8 * i) >> shift 709 } 710 ret &= bottom28Bits 711 return ret, buf 712 } 713 714 // p224FromBig sets *out = *in. 715 func p224FromBig(out *p224FieldElement, in *big.Int) { 716 bytes := in.Bytes() 717 out[0], bytes = get28BitsFromEnd(bytes, 0) 718 out[1], bytes = get28BitsFromEnd(bytes, 4) 719 out[2], bytes = get28BitsFromEnd(bytes, 0) 720 out[3], bytes = get28BitsFromEnd(bytes, 4) 721 out[4], bytes = get28BitsFromEnd(bytes, 0) 722 out[5], bytes = get28BitsFromEnd(bytes, 4) 723 out[6], bytes = get28BitsFromEnd(bytes, 0) 724 out[7], bytes = get28BitsFromEnd(bytes, 4) 725 } 726 727 // p224ToBig returns in as a big.Int. 728 func p224ToBig(in *p224FieldElement) *big.Int { 729 var buf [28]byte 730 buf[27] = byte(in[0]) 731 buf[26] = byte(in[0] >> 8) 732 buf[25] = byte(in[0] >> 16) 733 buf[24] = byte(((in[0] >> 24) & 0x0f) | (in[1]<<4)&0xf0) 734 735 buf[23] = byte(in[1] >> 4) 736 buf[22] = byte(in[1] >> 12) 737 buf[21] = byte(in[1] >> 20) 738 739 buf[20] = byte(in[2]) 740 buf[19] = byte(in[2] >> 8) 741 buf[18] = byte(in[2] >> 16) 742 buf[17] = byte(((in[2] >> 24) & 0x0f) | (in[3]<<4)&0xf0) 743 744 buf[16] = byte(in[3] >> 4) 745 buf[15] = byte(in[3] >> 12) 746 buf[14] = byte(in[3] >> 20) 747 748 buf[13] = byte(in[4]) 749 buf[12] = byte(in[4] >> 8) 750 buf[11] = byte(in[4] >> 16) 751 buf[10] = byte(((in[4] >> 24) & 0x0f) | (in[5]<<4)&0xf0) 752 753 buf[9] = byte(in[5] >> 4) 754 buf[8] = byte(in[5] >> 12) 755 buf[7] = byte(in[5] >> 20) 756 757 buf[6] = byte(in[6]) 758 buf[5] = byte(in[6] >> 8) 759 buf[4] = byte(in[6] >> 16) 760 buf[3] = byte(((in[6] >> 24) & 0x0f) | (in[7]<<4)&0xf0) 761 762 buf[2] = byte(in[7] >> 4) 763 buf[1] = byte(in[7] >> 12) 764 buf[0] = byte(in[7] >> 20) 765 766 return new(big.Int).SetBytes(buf[:]) 767 }