github.com/matrixorigin/matrixone@v0.7.0/cgo/external/decNumber/decNumberLocal.h (about) 1 /* ------------------------------------------------------------------ */ 2 /* decNumber package local type, tuning, and macro definitions */ 3 /* ------------------------------------------------------------------ */ 4 /* Copyright (c) IBM Corporation, 2000, 2010. All rights reserved. */ 5 /* */ 6 /* This software is made available under the terms of the */ 7 /* ICU License -- ICU 1.8.1 and later. */ 8 /* */ 9 /* The description and User's Guide ("The decNumber C Library") for */ 10 /* this software is called decNumber.pdf. This document is */ 11 /* available, together with arithmetic and format specifications, */ 12 /* testcases, and Web links, on the General Decimal Arithmetic page. */ 13 /* */ 14 /* Please send comments, suggestions, and corrections to the author: */ 15 /* mfc@uk.ibm.com */ 16 /* Mike Cowlishaw, IBM Fellow */ 17 /* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ 18 /* ------------------------------------------------------------------ */ 19 /* This header file is included by all modules in the decNumber */ 20 /* library, and contains local type definitions, tuning parameters, */ 21 /* etc. It should not need to be used by application programs. */ 22 /* decNumber.h or one of decDouble (etc.) must be included first. */ 23 /* ------------------------------------------------------------------ */ 24 25 #if !defined(DECNUMBERLOC) 26 #define DECNUMBERLOC 27 #define DECVERSION "decNumber 3.68" /* Package Version [16 max.] */ 28 #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */ 29 30 #include <stdlib.h> /* for abs */ 31 #include <string.h> /* for memset, strcpy */ 32 33 /* Conditional code flag -- set this to match hardware platform */ 34 #if !defined(DECLITEND) 35 #define DECLITEND 1 /* 1=little-endian, 0=big-endian */ 36 #endif 37 38 /* Conditional code flag -- set this to 1 for best performance */ 39 #if !defined(DECUSE64) 40 #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */ 41 #endif 42 43 /* Conditional code flag -- set this to 0 to exclude printf calls */ 44 #if !defined(DECPRINT) 45 #define DECPRINT 1 /* 1=allow printf calls; 0=no printf */ 46 #endif 47 48 /* Conditional check flags -- set these to 0 for best performance */ 49 #if !defined(DECCHECK) 50 #define DECCHECK 0 /* 1 to enable robust checking */ 51 #endif 52 #if !defined(DECALLOC) 53 #define DECALLOC 0 /* 1 to enable memory accounting */ 54 #endif 55 #if !defined(DECTRACE) 56 #define DECTRACE 0 /* 1 to trace certain internals, etc. */ 57 #endif 58 59 /* Tuning parameter for decNumber (arbitrary precision) module */ 60 #if !defined(DECBUFFER) 61 #define DECBUFFER 36 /* Size basis for local buffers. This */ 62 /* should be a common maximum precision */ 63 /* rounded up to a multiple of 4; must */ 64 /* be zero or positive. */ 65 #endif 66 67 68 /* ---------------------------------------------------------------- */ 69 /* Check parameter dependencies */ 70 /* ---------------------------------------------------------------- */ 71 #if DECCHECK & !DECPRINT 72 #error DECCHECK needs DECPRINT to be useful 73 #endif 74 #if DECALLOC & !DECPRINT 75 #error DECALLOC needs DECPRINT to be useful 76 #endif 77 #if DECTRACE & !DECPRINT 78 #error DECTRACE needs DECPRINT to be useful 79 #endif 80 81 /* ---------------------------------------------------------------- */ 82 /* Definitions for all modules (general-purpose) */ 83 /* ---------------------------------------------------------------- */ 84 85 /* Local names for common types -- for safety, decNumber modules do */ 86 /* not use int or long directly. */ 87 #define Flag uint8_t 88 #define Byte int8_t 89 #define uByte uint8_t 90 #define Short int16_t 91 #define uShort uint16_t 92 #define Int int32_t 93 #define uInt uint32_t 94 #define Unit decNumberUnit 95 #if DECUSE64 96 #define Long int64_t 97 #define uLong uint64_t 98 #endif 99 100 /* Development-use definitions */ 101 typedef long int LI; /* for printf arguments only */ 102 #define DECNOINT 0 /* 1 to check no internal use of 'int' */ 103 /* or stdint types */ 104 #if DECNOINT 105 /* if these interfere with your C includes, do not set DECNOINT */ 106 #define int ? /* enable to ensure that plain C 'int' */ 107 #define long ?? /* .. or 'long' types are not used */ 108 #endif 109 110 /* Shared lookup tables */ 111 extern const uByte DECSTICKYTAB[10]; /* re-round digits if sticky */ 112 extern const uInt DECPOWERS[10]; /* powers of ten table */ 113 /* The following are included from decDPD.h */ 114 extern const uShort DPD2BIN[1024]; /* DPD -> 0-999 */ 115 extern const uShort BIN2DPD[1000]; /* 0-999 -> DPD */ 116 extern const uInt DPD2BINK[1024]; /* DPD -> 0-999000 */ 117 extern const uInt DPD2BINM[1024]; /* DPD -> 0-999000000 */ 118 extern const uByte DPD2BCD8[4096]; /* DPD -> ddd + len */ 119 extern const uByte BIN2BCD8[4000]; /* 0-999 -> ddd + len */ 120 extern const uShort BCD2DPD[2458]; /* 0-0x999 -> DPD (0x999=2457)*/ 121 122 /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */ 123 /* (that is, sets w to be the high-order word of the 64-bit result; */ 124 /* the low-order word is simply u*v.) */ 125 /* This version is derived from Knuth via Hacker's Delight; */ 126 /* it seems to optimize better than some others tried */ 127 #define LONGMUL32HI(w, u, v) { \ 128 uInt u0, u1, v0, v1, w0, w1, w2, t; \ 129 u0=u & 0xffff; u1=u>>16; \ 130 v0=v & 0xffff; v1=v>>16; \ 131 w0=u0*v0; \ 132 t=u1*v0 + (w0>>16); \ 133 w1=t & 0xffff; w2=t>>16; \ 134 w1=u0*v1 + w1; \ 135 (w)=u1*v1 + w2 + (w1>>16);} 136 137 /* ROUNDUP -- round an integer up to a multiple of n */ 138 #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n) 139 #define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */ 140 141 /* ROUNDDOWN -- round an integer down to a multiple of n */ 142 #define ROUNDDOWN(i, n) (((i)/n)*n) 143 #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */ 144 145 /* References to multi-byte sequences under different sizes; these */ 146 /* require locally declared variables, but do not violate strict */ 147 /* aliasing or alignment (as did the UINTAT simple cast to uInt). */ 148 /* Variables needed are uswork, uiwork, etc. [so do not use at same */ 149 /* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */ 150 151 /* Return a uInt, etc., from bytes starting at a char* or uByte* */ 152 #define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork) 153 #define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork) 154 155 /* Store a uInt, etc., into bytes starting at a char* or uByte*. */ 156 /* Returns i, evaluated, for convenience; has to use uiwork because */ 157 /* i may be an expression. */ 158 #define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2), uswork) 159 #define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4), uiwork) 160 161 /* X10 and X100 -- multiply integer i by 10 or 100 */ 162 /* [shifts are usually faster than multiply; could be conditional] */ 163 #define X10(i) (((i)<<1)+((i)<<3)) 164 #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6)) 165 166 /* MAXI and MINI -- general max & min (not in ANSI) for integers */ 167 #define MAXI(x,y) ((x)<(y)?(y):(x)) 168 #define MINI(x,y) ((x)>(y)?(y):(x)) 169 170 /* Useful constants */ 171 #define BILLION 1000000000 /* 10**9 */ 172 /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */ 173 #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0') 174 175 176 /* ---------------------------------------------------------------- */ 177 /* Definitions for arbitary-precision modules (only valid after */ 178 /* decNumber.h has been included) */ 179 /* ---------------------------------------------------------------- */ 180 181 /* Limits and constants */ 182 #define DECNUMMAXP 999999999 /* maximum precision code can handle */ 183 #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */ 184 #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */ 185 #if (DECNUMMAXP != DEC_MAX_DIGITS) 186 #error Maximum digits mismatch 187 #endif 188 #if (DECNUMMAXE != DEC_MAX_EMAX) 189 #error Maximum exponent mismatch 190 #endif 191 #if (DECNUMMINE != DEC_MIN_EMIN) 192 #error Minimum exponent mismatch 193 #endif 194 195 /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */ 196 /* digits, and D2UTABLE -- the initializer for the D2U table */ 197 #if DECDPUN==1 198 #define DECDPUNMAX 9 199 #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \ 200 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \ 201 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \ 202 48,49} 203 #elif DECDPUN==2 204 #define DECDPUNMAX 99 205 #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \ 206 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \ 207 18,19,19,20,20,21,21,22,22,23,23,24,24,25} 208 #elif DECDPUN==3 209 #define DECDPUNMAX 999 210 #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \ 211 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \ 212 13,14,14,14,15,15,15,16,16,16,17} 213 #elif DECDPUN==4 214 #define DECDPUNMAX 9999 215 #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \ 216 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \ 217 11,11,11,12,12,12,12,13} 218 #elif DECDPUN==5 219 #define DECDPUNMAX 99999 220 #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \ 221 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \ 222 9,9,10,10,10,10} 223 #elif DECDPUN==6 224 #define DECDPUNMAX 999999 225 #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \ 226 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \ 227 8,8,8,8,8,9} 228 #elif DECDPUN==7 229 #define DECDPUNMAX 9999999 230 #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \ 231 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \ 232 7,7,7,7,7,7} 233 #elif DECDPUN==8 234 #define DECDPUNMAX 99999999 235 #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \ 236 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \ 237 6,6,6,6,6,7} 238 #elif DECDPUN==9 239 #define DECDPUNMAX 999999999 240 #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \ 241 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \ 242 5,5,6,6,6,6} 243 #elif defined(DECDPUN) 244 #error DECDPUN must be in the range 1-9 245 #endif 246 247 /* ----- Shared data (in decNumber.c) ----- */ 248 /* Public lookup table used by the D2U macro (see below) */ 249 #define DECMAXD2U 49 250 extern const uByte d2utable[DECMAXD2U+1]; 251 252 /* ----- Macros ----- */ 253 /* ISZERO -- return true if decNumber dn is a zero */ 254 /* [performance-critical in some situations] */ 255 #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */ 256 257 /* D2U -- return the number of Units needed to hold d digits */ 258 /* (runtime version, with table lookaside for small d) */ 259 #if DECDPUN==8 260 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3)) 261 #elif DECDPUN==4 262 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2)) 263 #else 264 #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN) 265 #endif 266 /* SD2U -- static D2U macro (for compile-time calculation) */ 267 #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN) 268 269 /* MSUDIGITS -- returns digits in msu, from digits, calculated */ 270 /* using D2U */ 271 #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN) 272 273 /* D2N -- return the number of decNumber structs that would be */ 274 /* needed to contain that number of digits (and the initial */ 275 /* decNumber struct) safely. Note that one Unit is included in the */ 276 /* initial structure. Used for allocating space that is aligned on */ 277 /* a decNumber struct boundary. */ 278 #define D2N(d) \ 279 ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber)) 280 281 /* TODIGIT -- macro to remove the leading digit from the unsigned */ 282 /* integer u at column cut (counting from the right, LSD=0) and */ 283 /* place it as an ASCII character into the character pointed to by */ 284 /* c. Note that cut must be <= 9, and the maximum value for u is */ 285 /* 2,000,000,000 (as is needed for negative exponents of */ 286 /* subnormals). The unsigned integer pow is used as a temporary */ 287 /* variable. */ 288 #define TODIGIT(u, cut, c, pow) { \ 289 *(c)='0'; \ 290 pow=DECPOWERS[cut]*2; \ 291 if ((u)>pow) { \ 292 pow*=4; \ 293 if ((u)>=pow) {(u)-=pow; *(c)+=8;} \ 294 pow/=2; \ 295 if ((u)>=pow) {(u)-=pow; *(c)+=4;} \ 296 pow/=2; \ 297 } \ 298 if ((u)>=pow) {(u)-=pow; *(c)+=2;} \ 299 pow/=2; \ 300 if ((u)>=pow) {(u)-=pow; *(c)+=1;} \ 301 } 302 303 /* ---------------------------------------------------------------- */ 304 /* Definitions for fixed-precision modules (only valid after */ 305 /* decSingle.h, decDouble.h, or decQuad.h has been included) */ 306 /* ---------------------------------------------------------------- */ 307 308 /* bcdnum -- a structure describing a format-independent finite */ 309 /* number, whose coefficient is a string of bcd8 uBytes */ 310 typedef struct { 311 uByte *msd; /* -> most significant digit */ 312 uByte *lsd; /* -> least ditto */ 313 uInt sign; /* 0=positive, DECFLOAT_Sign=negative */ 314 Int exponent; /* Unadjusted signed exponent (q), or */ 315 /* DECFLOAT_NaN etc. for a special */ 316 } bcdnum; 317 318 /* Test if exponent or bcdnum exponent must be a special, etc. */ 319 #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp) 320 #define EXPISINF(exp) (exp==DECFLOAT_Inf) 321 #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN) 322 #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent)) 323 324 /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */ 325 /* (array) notation (the 0 word or byte contains the sign bit), */ 326 /* automatically adjusting for endianness; similarly address a word */ 327 /* in the next-wider format (decFloatWider, or dfw) */ 328 #define DECWORDS (DECBYTES/4) 329 #define DECWWORDS (DECWBYTES/4) 330 #if DECLITEND 331 #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)]) 332 #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)]) 333 #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)]) 334 #else 335 #define DFBYTE(df, off) ((df)->bytes[off]) 336 #define DFWORD(df, off) ((df)->words[off]) 337 #define DFWWORD(dfw, off) ((dfw)->words[off]) 338 #endif 339 340 /* Tests for sign or specials, directly on DECFLOATs */ 341 #define DFISSIGNED(df) ((DFWORD(df, 0)&0x80000000)!=0) 342 #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000) 343 #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000) 344 #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000) 345 #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000) 346 #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000) 347 348 /* Shared lookup tables */ 349 extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */ 350 extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */ 351 352 /* Private generic (utility) routine */ 353 #if DECCHECK || DECTRACE 354 extern void decShowNum(const bcdnum *, const char *); 355 #endif 356 357 /* Format-dependent macros and constants */ 358 #if defined(DECPMAX) 359 360 /* Useful constants */ 361 #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */ 362 /* Top words for a zero */ 363 #define SINGLEZERO 0x22500000 364 #define DOUBLEZERO 0x22380000 365 #define QUADZERO 0x22080000 366 /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */ 367 368 /* Format-dependent common tests: */ 369 /* DFISZERO -- test for (any) zero */ 370 /* DFISCCZERO -- test for coefficient continuation being zero */ 371 /* DFISCC01 -- test for coefficient contains only 0s and 1s */ 372 /* DFISINT -- test for finite and exponent q=0 */ 373 /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */ 374 /* MSD=0 or 1 */ 375 /* ZEROWORD is also defined here. */ 376 /* */ 377 /* In DFISZERO the first test checks the least-significant word */ 378 /* (most likely to be non-zero); the penultimate tests MSD and */ 379 /* DPDs in the signword, and the final test excludes specials and */ 380 /* MSD>7. DFISINT similarly has to allow for the two forms of */ 381 /* MSD codes. DFISUINT01 only has to allow for one form of MSD */ 382 /* code. */ 383 #if DECPMAX==7 384 #define ZEROWORD SINGLEZERO 385 /* [test macros not needed except for Zero] */ 386 #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \ 387 && (DFWORD(df, 0)&0x60000000)!=0x60000000) 388 #elif DECPMAX==16 389 #define ZEROWORD DOUBLEZERO 390 #define DFISZERO(df) ((DFWORD(df, 1)==0 \ 391 && (DFWORD(df, 0)&0x1c03ffff)==0 \ 392 && (DFWORD(df, 0)&0x60000000)!=0x60000000)) 393 #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \ 394 ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000) 395 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000) 396 #define DFISCCZERO(df) (DFWORD(df, 1)==0 \ 397 && (DFWORD(df, 0)&0x0003ffff)==0) 398 #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \ 399 && (DFWORD(df, 1)&~0x49124491)==0) 400 #elif DECPMAX==34 401 #define ZEROWORD QUADZERO 402 #define DFISZERO(df) ((DFWORD(df, 3)==0 \ 403 && DFWORD(df, 2)==0 \ 404 && DFWORD(df, 1)==0 \ 405 && (DFWORD(df, 0)&0x1c003fff)==0 \ 406 && (DFWORD(df, 0)&0x60000000)!=0x60000000)) 407 #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \ 408 ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000) 409 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000) 410 #define DFISCCZERO(df) (DFWORD(df, 3)==0 \ 411 && DFWORD(df, 2)==0 \ 412 && DFWORD(df, 1)==0 \ 413 && (DFWORD(df, 0)&0x00003fff)==0) 414 415 #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \ 416 && (DFWORD(df, 1)&~0x44912449)==0 \ 417 && (DFWORD(df, 2)&~0x12449124)==0 \ 418 && (DFWORD(df, 3)&~0x49124491)==0) 419 #endif 420 421 /* Macros to test if a certain 10 bits of a uInt or pair of uInts */ 422 /* are a canonical declet [higher or lower bits are ignored]. */ 423 /* declet is at offset 0 (from the right) in a uInt: */ 424 #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e) 425 /* declet is at offset k (a multiple of 2) in a uInt: */ 426 #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \ 427 || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) 428 /* declet is at offset k (a multiple of 2) in a pair of uInts: */ 429 /* [the top 2 bits will always be in the more-significant uInt] */ 430 #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \ 431 || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \ 432 || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) 433 434 /* Macro to test whether a full-length (length DECPMAX) BCD8 */ 435 /* coefficient, starting at uByte u, is all zeros */ 436 /* Test just the LSWord first, then the remainder as a sequence */ 437 /* of tests in order to avoid same-level use of UBTOUI */ 438 #if DECPMAX==7 439 #define ISCOEFFZERO(u) ( \ 440 UBTOUI((u)+DECPMAX-4)==0 \ 441 && UBTOUS((u)+DECPMAX-6)==0 \ 442 && *(u)==0) 443 #elif DECPMAX==16 444 #define ISCOEFFZERO(u) ( \ 445 UBTOUI((u)+DECPMAX-4)==0 \ 446 && UBTOUI((u)+DECPMAX-8)==0 \ 447 && UBTOUI((u)+DECPMAX-12)==0 \ 448 && UBTOUI(u)==0) 449 #elif DECPMAX==34 450 #define ISCOEFFZERO(u) ( \ 451 UBTOUI((u)+DECPMAX-4)==0 \ 452 && UBTOUI((u)+DECPMAX-8)==0 \ 453 && UBTOUI((u)+DECPMAX-12)==0 \ 454 && UBTOUI((u)+DECPMAX-16)==0 \ 455 && UBTOUI((u)+DECPMAX-20)==0 \ 456 && UBTOUI((u)+DECPMAX-24)==0 \ 457 && UBTOUI((u)+DECPMAX-28)==0 \ 458 && UBTOUI((u)+DECPMAX-32)==0 \ 459 && UBTOUS(u)==0) 460 #endif 461 462 /* Macros and masks for the sign, exponent continuation, and MSD */ 463 /* Get the sign as DECFLOAT_Sign or 0 */ 464 #define GETSIGN(df) (DFWORD(df, 0)&0x80000000) 465 /* Get the exponent continuation from a decFloat *df as an Int */ 466 #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL))) 467 /* Ditto, from the next-wider format */ 468 #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL))) 469 /* Get the biased exponent similarly */ 470 #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df))) 471 /* Get the unbiased exponent similarly */ 472 #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS) 473 /* Get the MSD similarly (as uInt) */ 474 #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26]) 475 476 /* Compile-time computes of the exponent continuation field masks */ 477 /* full exponent continuation field: */ 478 #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) 479 /* same, not including its first digit (the qNaN/sNaN selector): */ 480 #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) 481 482 /* Macros to decode the coefficient in a finite decFloat *df into */ 483 /* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */ 484 485 /* In-line sequence to convert least significant 10 bits of uInt */ 486 /* dpd to three BCD8 digits starting at uByte u. Note that an */ 487 /* extra byte is written to the right of the three digits because */ 488 /* four bytes are moved at a time for speed; the alternative */ 489 /* macro moves exactly three bytes (usually slower). */ 490 #define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4) 491 #define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3) 492 493 /* Decode the declets. After extracting each one, it is decoded */ 494 /* to BCD8 using a table lookup (also used for variable-length */ 495 /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */ 496 /* length which is not used, here). Fixed-length 4-byte moves */ 497 /* are fast, however, almost everywhere, and so are used except */ 498 /* for the final three bytes (to avoid overrun). The code below */ 499 /* is 36 instructions for Doubles and about 70 for Quads, even */ 500 /* on IA32. */ 501 502 /* Two macros are defined for each format: */ 503 /* GETCOEFF extracts the coefficient of the current format */ 504 /* GETWCOEFF extracts the coefficient of the next-wider format. */ 505 /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */ 506 507 #if DECPMAX==7 508 #define GETCOEFF(df, bcd) { \ 509 uInt sourhi=DFWORD(df, 0); \ 510 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 511 dpd2bcd8(bcd+1, sourhi>>10); \ 512 dpd2bcd83(bcd+4, sourhi);} 513 #define GETWCOEFF(df, bcd) { \ 514 uInt sourhi=DFWWORD(df, 0); \ 515 uInt sourlo=DFWWORD(df, 1); \ 516 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 517 dpd2bcd8(bcd+1, sourhi>>8); \ 518 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ 519 dpd2bcd8(bcd+7, sourlo>>20); \ 520 dpd2bcd8(bcd+10, sourlo>>10); \ 521 dpd2bcd83(bcd+13, sourlo);} 522 523 #elif DECPMAX==16 524 #define GETCOEFF(df, bcd) { \ 525 uInt sourhi=DFWORD(df, 0); \ 526 uInt sourlo=DFWORD(df, 1); \ 527 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 528 dpd2bcd8(bcd+1, sourhi>>8); \ 529 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ 530 dpd2bcd8(bcd+7, sourlo>>20); \ 531 dpd2bcd8(bcd+10, sourlo>>10); \ 532 dpd2bcd83(bcd+13, sourlo);} 533 #define GETWCOEFF(df, bcd) { \ 534 uInt sourhi=DFWWORD(df, 0); \ 535 uInt sourmh=DFWWORD(df, 1); \ 536 uInt sourml=DFWWORD(df, 2); \ 537 uInt sourlo=DFWWORD(df, 3); \ 538 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 539 dpd2bcd8(bcd+1, sourhi>>4); \ 540 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ 541 dpd2bcd8(bcd+7, sourmh>>16); \ 542 dpd2bcd8(bcd+10, sourmh>>6); \ 543 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ 544 dpd2bcd8(bcd+16, sourml>>18); \ 545 dpd2bcd8(bcd+19, sourml>>8); \ 546 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ 547 dpd2bcd8(bcd+25, sourlo>>20); \ 548 dpd2bcd8(bcd+28, sourlo>>10); \ 549 dpd2bcd83(bcd+31, sourlo);} 550 551 #elif DECPMAX==34 552 #define GETCOEFF(df, bcd) { \ 553 uInt sourhi=DFWORD(df, 0); \ 554 uInt sourmh=DFWORD(df, 1); \ 555 uInt sourml=DFWORD(df, 2); \ 556 uInt sourlo=DFWORD(df, 3); \ 557 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 558 dpd2bcd8(bcd+1, sourhi>>4); \ 559 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ 560 dpd2bcd8(bcd+7, sourmh>>16); \ 561 dpd2bcd8(bcd+10, sourmh>>6); \ 562 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ 563 dpd2bcd8(bcd+16, sourml>>18); \ 564 dpd2bcd8(bcd+19, sourml>>8); \ 565 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ 566 dpd2bcd8(bcd+25, sourlo>>20); \ 567 dpd2bcd8(bcd+28, sourlo>>10); \ 568 dpd2bcd83(bcd+31, sourlo);} 569 570 #define GETWCOEFF(df, bcd) {??} /* [should never be used] */ 571 #endif 572 573 /* Macros to decode the coefficient in a finite decFloat *df into */ 574 /* a base-billion uInt array, with the least-significant */ 575 /* 0-999999999 'digit' at offset 0. */ 576 577 /* Decode the declets. After extracting each one, it is decoded */ 578 /* to binary using a table lookup. Three tables are used; one */ 579 /* the usual DPD to binary, the other two pre-multiplied by 1000 */ 580 /* and 1000000 to avoid multiplication during decode. These */ 581 /* tables can also be used for multiplying up the MSD as the DPD */ 582 /* code for 0 through 9 is the identity. */ 583 #define DPD2BIN0 DPD2BIN /* for prettier code */ 584 585 #if DECPMAX==7 586 #define GETCOEFFBILL(df, buf) { \ 587 uInt sourhi=DFWORD(df, 0); \ 588 (buf)[0]=DPD2BIN0[sourhi&0x3ff] \ 589 +DPD2BINK[(sourhi>>10)&0x3ff] \ 590 +DPD2BINM[DECCOMBMSD[sourhi>>26]];} 591 592 #elif DECPMAX==16 593 #define GETCOEFFBILL(df, buf) { \ 594 uInt sourhi, sourlo; \ 595 sourlo=DFWORD(df, 1); \ 596 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ 597 +DPD2BINK[(sourlo>>10)&0x3ff] \ 598 +DPD2BINM[(sourlo>>20)&0x3ff]; \ 599 sourhi=DFWORD(df, 0); \ 600 (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \ 601 +DPD2BINK[(sourhi>>8)&0x3ff] \ 602 +DPD2BINM[DECCOMBMSD[sourhi>>26]];} 603 604 #elif DECPMAX==34 605 #define GETCOEFFBILL(df, buf) { \ 606 uInt sourhi, sourmh, sourml, sourlo; \ 607 sourlo=DFWORD(df, 3); \ 608 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ 609 +DPD2BINK[(sourlo>>10)&0x3ff] \ 610 +DPD2BINM[(sourlo>>20)&0x3ff]; \ 611 sourml=DFWORD(df, 2); \ 612 (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \ 613 +DPD2BINK[(sourml>>8)&0x3ff] \ 614 +DPD2BINM[(sourml>>18)&0x3ff]; \ 615 sourmh=DFWORD(df, 1); \ 616 (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \ 617 +DPD2BINK[(sourmh>>6)&0x3ff] \ 618 +DPD2BINM[(sourmh>>16)&0x3ff]; \ 619 sourhi=DFWORD(df, 0); \ 620 (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \ 621 +DPD2BINK[(sourhi>>4)&0x3ff] \ 622 +DPD2BINM[DECCOMBMSD[sourhi>>26]];} 623 624 #endif 625 626 /* Macros to decode the coefficient in a finite decFloat *df into */ 627 /* a base-thousand uInt array (of size DECLETS+1, to allow for */ 628 /* the MSD), with the least-significant 0-999 'digit' at offset 0.*/ 629 630 /* Decode the declets. After extracting each one, it is decoded */ 631 /* to binary using a table lookup. */ 632 #if DECPMAX==7 633 #define GETCOEFFTHOU(df, buf) { \ 634 uInt sourhi=DFWORD(df, 0); \ 635 (buf)[0]=DPD2BIN[sourhi&0x3ff]; \ 636 (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \ 637 (buf)[2]=DECCOMBMSD[sourhi>>26];} 638 639 #elif DECPMAX==16 640 #define GETCOEFFTHOU(df, buf) { \ 641 uInt sourhi, sourlo; \ 642 sourlo=DFWORD(df, 1); \ 643 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ 644 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ 645 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ 646 sourhi=DFWORD(df, 0); \ 647 (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ 648 (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \ 649 (buf)[5]=DECCOMBMSD[sourhi>>26];} 650 651 #elif DECPMAX==34 652 #define GETCOEFFTHOU(df, buf) { \ 653 uInt sourhi, sourmh, sourml, sourlo; \ 654 sourlo=DFWORD(df, 3); \ 655 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ 656 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ 657 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ 658 sourml=DFWORD(df, 2); \ 659 (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ 660 (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \ 661 (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \ 662 sourmh=DFWORD(df, 1); \ 663 (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ 664 (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \ 665 (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \ 666 sourhi=DFWORD(df, 0); \ 667 (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ 668 (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \ 669 (buf)[11]=DECCOMBMSD[sourhi>>26];} 670 #endif 671 672 673 /* Macros to decode the coefficient in a finite decFloat *df and */ 674 /* add to a base-thousand uInt array (as for GETCOEFFTHOU). */ 675 /* After the addition then most significant 'digit' in the array */ 676 /* might have a value larger then 10 (with a maximum of 19). */ 677 #if DECPMAX==7 678 #define ADDCOEFFTHOU(df, buf) { \ 679 uInt sourhi=DFWORD(df, 0); \ 680 (buf)[0]+=DPD2BIN[sourhi&0x3ff]; \ 681 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ 682 (buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \ 683 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ 684 (buf)[2]+=DECCOMBMSD[sourhi>>26];} 685 686 #elif DECPMAX==16 687 #define ADDCOEFFTHOU(df, buf) { \ 688 uInt sourhi, sourlo; \ 689 sourlo=DFWORD(df, 1); \ 690 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ 691 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ 692 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ 693 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ 694 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ 695 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ 696 sourhi=DFWORD(df, 0); \ 697 (buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ 698 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ 699 (buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \ 700 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ 701 (buf)[5]+=DECCOMBMSD[sourhi>>26];} 702 703 #elif DECPMAX==34 704 #define ADDCOEFFTHOU(df, buf) { \ 705 uInt sourhi, sourmh, sourml, sourlo; \ 706 sourlo=DFWORD(df, 3); \ 707 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ 708 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ 709 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ 710 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ 711 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ 712 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ 713 sourml=DFWORD(df, 2); \ 714 (buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ 715 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ 716 (buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \ 717 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ 718 (buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \ 719 if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \ 720 sourmh=DFWORD(df, 1); \ 721 (buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ 722 if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \ 723 (buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \ 724 if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \ 725 (buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \ 726 if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \ 727 sourhi=DFWORD(df, 0); \ 728 (buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ 729 if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \ 730 (buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \ 731 if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \ 732 (buf)[11]+=DECCOMBMSD[sourhi>>26];} 733 #endif 734 735 736 /* Set a decFloat to the maximum positive finite number (Nmax) */ 737 #if DECPMAX==7 738 #define DFSETNMAX(df) \ 739 {DFWORD(df, 0)=0x77f3fcff;} 740 #elif DECPMAX==16 741 #define DFSETNMAX(df) \ 742 {DFWORD(df, 0)=0x77fcff3f; \ 743 DFWORD(df, 1)=0xcff3fcff;} 744 #elif DECPMAX==34 745 #define DFSETNMAX(df) \ 746 {DFWORD(df, 0)=0x77ffcff3; \ 747 DFWORD(df, 1)=0xfcff3fcf; \ 748 DFWORD(df, 2)=0xf3fcff3f; \ 749 DFWORD(df, 3)=0xcff3fcff;} 750 #endif 751 752 /* [end of format-dependent macros and constants] */ 753 #endif 754 755 #else 756 #error decNumberLocal included more than once 757 #endif