github.com/matrixorigin/matrixone@v1.2.0/pkg/txn/clock/hlc.go (about)

     1  // Copyright 2022 Matrix Origin
     2  //
     3  // Licensed under the Apache License, Version 2.0 (the "License");
     4  // you may not use this file except in compliance with the License.
     5  // You may obtain a copy of the License at
     6  //
     7  // http://www.apache.org/licenses/LICENSE-2.0
     8  //
     9  // Unless required by applicable law or agreed to in writing, software
    10  // distributed under the License is distributed on an "AS IS" BASIS,
    11  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    12  // See the License for the specific language governing permissions and
    13  // limitations under the License.
    14  
    15  package clock
    16  
    17  import (
    18  	"context"
    19  	"sync"
    20  	"time"
    21  
    22  	"github.com/matrixorigin/matrixone/pkg/common/stopper"
    23  	"github.com/matrixorigin/matrixone/pkg/logutil"
    24  	"github.com/matrixorigin/matrixone/pkg/pb/timestamp"
    25  )
    26  
    27  func toMicrosecond(nanoseconds int64) int64 {
    28  	return nanoseconds / 1000
    29  }
    30  
    31  func physicalClock() int64 {
    32  	return time.Now().UTC().UnixNano()
    33  }
    34  
    35  // SkipClockUncertainityPeriodOnRestart will cause the current goroutine to
    36  // sleep to skip clock uncertainty period. This function must be called during
    37  // the restart of the node.
    38  //
    39  // The system assumes that each node keeps synchronizing with accurate NTP
    40  // servers to have the clock offset limited under HLCClock.maxOffset.
    41  func SkipClockUncertainityPeriodOnRestart(ctx context.Context, clock Clock) {
    42  	now, sleepUntil := clock.Now()
    43  	for now.Less(sleepUntil) {
    44  		time.Sleep(time.Millisecond)
    45  		select {
    46  		case <-ctx.Done():
    47  			return
    48  		default:
    49  		}
    50  
    51  		now, _ = clock.Now()
    52  	}
    53  }
    54  
    55  // HLCClock is an implementation of the Hybrid Logical Clock as described in
    56  // the paper titled -
    57  //
    58  // Logical Physical Clocks and Consistent Snapshots in Globally Distributed
    59  // Databases
    60  type HLCClock struct {
    61  	nodeID        uint16
    62  	maxOffset     time.Duration
    63  	physicalClock func() int64
    64  
    65  	mu struct {
    66  		sync.Mutex
    67  		// maxLearnedPhysicalTime is the max learned physical time as defined in
    68  		// section 3.3 of the HLC paper.
    69  		maxLearnedPhysicalTime int64
    70  		// ts records the last HLC timestamp returned by the Now() method.
    71  		ts timestamp.Timestamp
    72  	}
    73  }
    74  
    75  var _ Clock = (*HLCClock)(nil)
    76  
    77  // NewHLCClock returns a new HLCClock instance. The maxOffset parameter specifies
    78  // the max allowed clock offset. The clock readings returned by clock must be
    79  // within the maxOffset bound across the entire cluster.
    80  func NewHLCClock(clock func() int64, maxOffset time.Duration) *HLCClock {
    81  	if clock == nil {
    82  		panic("physical clock source not specified")
    83  	}
    84  
    85  	return &HLCClock{
    86  		physicalClock: clock,
    87  		maxOffset:     maxOffset,
    88  	}
    89  }
    90  
    91  // NewUnixNanoHLCClock returns a new HLCClock instance backed by the local wall
    92  // clock in Unix epoch nanoseconds. Nodes' clock must be periodically
    93  // synchronized, e.g. via NTP, to ensure that wall time readings are within the
    94  // maxOffset offset between any two nodes.
    95  func NewUnixNanoHLCClock(ctx context.Context, maxOffset time.Duration) *HLCClock {
    96  	clock := &HLCClock{
    97  		physicalClock: physicalClock,
    98  		maxOffset:     maxOffset,
    99  	}
   100  
   101  	go func() {
   102  		clock.offsetMonitor(ctx)
   103  	}()
   104  
   105  	return clock
   106  }
   107  
   108  // NewUnixNanoHLCClockWithStopper is similar to NewUnixNanoHLCClock, but perform
   109  // clock check use stopper
   110  func NewUnixNanoHLCClockWithStopper(stopper *stopper.Stopper, maxOffset time.Duration) *HLCClock {
   111  	clock := &HLCClock{
   112  		physicalClock: physicalClock,
   113  		maxOffset:     maxOffset,
   114  	}
   115  	if maxOffset > 0 {
   116  		if err := stopper.RunTask(clock.offsetMonitor); err != nil {
   117  			panic(err)
   118  		}
   119  	}
   120  	return clock
   121  }
   122  
   123  // HasNetworkLatency returns a boolean value indicating whether there is network
   124  // latency involved when retrieving timestamps. There is no such network latency
   125  // in HLCClock.
   126  func (c *HLCClock) HasNetworkLatency() bool {
   127  	return false
   128  }
   129  
   130  // MaxOffset returns the max offset of the physical clocks in the cluster.
   131  func (c *HLCClock) MaxOffset() time.Duration {
   132  	return c.maxOffset
   133  }
   134  
   135  // Now returns the current HLC timestamp and the upper bound timestamp of the
   136  // current time in hlc.
   137  func (c *HLCClock) Now() (timestamp.Timestamp, timestamp.Timestamp) {
   138  	now := c.now()
   139  	return now, timestamp.Timestamp{PhysicalTime: now.PhysicalTime + int64(c.maxOffset), NodeID: now.NodeID}
   140  }
   141  
   142  // Update is called whenever messages are received from other nodes. HLC
   143  // timestamp carried by those messages are used to update the local HLC
   144  // clock to capture casual relationships.
   145  func (c *HLCClock) Update(m timestamp.Timestamp) {
   146  	c.update(m)
   147  }
   148  
   149  func (c *HLCClock) maxClockForwardOffset() time.Duration {
   150  	return c.maxOffset / 2
   151  }
   152  
   153  func (c *HLCClock) clockOffsetMonitoringInterval() time.Duration {
   154  	return c.maxClockForwardOffset() / 3
   155  }
   156  
   157  func (c *HLCClock) offsetMonitor(ctx context.Context) {
   158  	c.getPhysicalClock()
   159  	ticker := time.NewTicker(c.clockOffsetMonitoringInterval())
   160  	defer ticker.Stop()
   161  	for {
   162  		select {
   163  		case <-ticker.C:
   164  			c.getPhysicalClock()
   165  		case <-ctx.Done():
   166  			return
   167  		}
   168  	}
   169  }
   170  
   171  func (c *HLCClock) getPhysicalClock() int64 {
   172  	newPts := c.physicalClock()
   173  	oldPts := c.keepPhysicalClock(newPts)
   174  	if c.maxOffset > 0 {
   175  		c.handleClockJump(oldPts, newPts)
   176  	}
   177  
   178  	return newPts
   179  }
   180  
   181  // keepPhysicalClock updates the c.mu.maxLearnedPhysicalTime field when
   182  // necessary and returns the previous maxLearnedPhysicalTime value.
   183  func (c *HLCClock) keepPhysicalClock(pts int64) int64 {
   184  	c.mu.Lock()
   185  	defer c.mu.Unlock()
   186  
   187  	old := c.mu.maxLearnedPhysicalTime
   188  	if pts > c.mu.maxLearnedPhysicalTime {
   189  		c.mu.maxLearnedPhysicalTime = pts
   190  	}
   191  
   192  	return old
   193  }
   194  
   195  // handleClockJump is called everytime when a physical time is read from the
   196  // local wall clock. it logs backward jump whenever it happens, jumps are
   197  // compared with maxClockForwardOffset() and cause fatal fail when the
   198  // maxClockForwardOffset constrain is violated.
   199  //
   200  // handleClockJump assumes that there are periodic background probes to the
   201  // physical wall clock to monitor and learn its values. the probe interval
   202  // is required to be smaller than the maxClockForwardOffset().
   203  func (c *HLCClock) handleClockJump(oldPts int64, newPts int64) {
   204  	if oldPts == 0 {
   205  		return
   206  	}
   207  
   208  	jump := int64(0)
   209  	if oldPts > newPts {
   210  		jump = oldPts - newPts
   211  		logutil.Infof("clock backward jump observed, %d microseconds", toMicrosecond(jump))
   212  	} else {
   213  		jump = newPts - oldPts
   214  	}
   215  
   216  	if jump > int64(c.maxClockForwardOffset()+c.clockOffsetMonitoringInterval()) {
   217  		logutil.Fatalf("big clock jump observed, %d microseconds", toMicrosecond(jump))
   218  	}
   219  }
   220  
   221  // now returns the current HLC timestamp. it implements the Send or Local event
   222  // part of Figure 5 of the HLC paper.
   223  func (c *HLCClock) now() timestamp.Timestamp {
   224  	newPts := c.getPhysicalClock()
   225  	c.mu.Lock()
   226  	defer c.mu.Unlock()
   227  	if c.mu.ts.PhysicalTime >= newPts {
   228  		c.mu.ts.LogicalTime++
   229  	} else {
   230  		c.mu.ts = timestamp.Timestamp{PhysicalTime: newPts}
   231  	}
   232  	c.mu.ts.NodeID = uint32(c.nodeID)
   233  	return c.mu.ts
   234  }
   235  
   236  // update updates the HLCClock based on the received Timestamp, it implements
   237  // the Receive Event of message m part of Figure 5 of the HLC paper.
   238  func (c *HLCClock) update(m timestamp.Timestamp) {
   239  	newPts := c.getPhysicalClock()
   240  
   241  	c.mu.Lock()
   242  	defer c.mu.Unlock()
   243  	if newPts > c.mu.ts.PhysicalTime && newPts > m.PhysicalTime {
   244  		// local wall time is the max
   245  		// keep the physical time, reset the logical time
   246  		c.mu.ts = timestamp.Timestamp{PhysicalTime: newPts}
   247  	} else if m.PhysicalTime == c.mu.ts.PhysicalTime {
   248  		if m.LogicalTime > c.mu.ts.LogicalTime {
   249  			// received physical time is equal to the local physical time, and it
   250  			// also has a larger logical time keep m's logical time.
   251  			c.mu.ts.LogicalTime = m.LogicalTime
   252  		}
   253  	} else if m.PhysicalTime > c.mu.ts.PhysicalTime {
   254  		c.mu.ts.PhysicalTime = m.PhysicalTime
   255  		c.mu.ts.LogicalTime = m.LogicalTime
   256  	}
   257  }
   258  
   259  func (c *HLCClock) SetNodeID(id uint16) {
   260  	c.nodeID = id
   261  }