github.com/mattn/go@v0.0.0-20171011075504-07f7db3ea99f/src/cmd/compile/internal/gc/ssa.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"bytes"
     9  	"encoding/binary"
    10  	"fmt"
    11  	"html"
    12  	"os"
    13  	"sort"
    14  
    15  	"cmd/compile/internal/ssa"
    16  	"cmd/compile/internal/types"
    17  	"cmd/internal/obj"
    18  	"cmd/internal/objabi"
    19  	"cmd/internal/src"
    20  	"cmd/internal/sys"
    21  )
    22  
    23  var ssaConfig *ssa.Config
    24  var ssaCaches []ssa.Cache
    25  
    26  func initssaconfig() {
    27  	types_ := ssa.Types{
    28  		Bool:       types.Types[TBOOL],
    29  		Int8:       types.Types[TINT8],
    30  		Int16:      types.Types[TINT16],
    31  		Int32:      types.Types[TINT32],
    32  		Int64:      types.Types[TINT64],
    33  		UInt8:      types.Types[TUINT8],
    34  		UInt16:     types.Types[TUINT16],
    35  		UInt32:     types.Types[TUINT32],
    36  		UInt64:     types.Types[TUINT64],
    37  		Float32:    types.Types[TFLOAT32],
    38  		Float64:    types.Types[TFLOAT64],
    39  		Int:        types.Types[TINT],
    40  		UInt:       types.Types[TUINT],
    41  		Uintptr:    types.Types[TUINTPTR],
    42  		String:     types.Types[TSTRING],
    43  		BytePtr:    types.NewPtr(types.Types[TUINT8]),
    44  		Int32Ptr:   types.NewPtr(types.Types[TINT32]),
    45  		UInt32Ptr:  types.NewPtr(types.Types[TUINT32]),
    46  		IntPtr:     types.NewPtr(types.Types[TINT]),
    47  		UintptrPtr: types.NewPtr(types.Types[TUINTPTR]),
    48  		Float32Ptr: types.NewPtr(types.Types[TFLOAT32]),
    49  		Float64Ptr: types.NewPtr(types.Types[TFLOAT64]),
    50  		BytePtrPtr: types.NewPtr(types.NewPtr(types.Types[TUINT8])),
    51  	}
    52  	// Generate a few pointer types that are uncommon in the frontend but common in the backend.
    53  	// Caching is disabled in the backend, so generating these here avoids allocations.
    54  	_ = types.NewPtr(types.Types[TINTER])                             // *interface{}
    55  	_ = types.NewPtr(types.NewPtr(types.Types[TSTRING]))              // **string
    56  	_ = types.NewPtr(types.NewPtr(types.Idealstring))                 // **string
    57  	_ = types.NewPtr(types.NewSlice(types.Types[TINTER]))             // *[]interface{}
    58  	_ = types.NewPtr(types.NewPtr(types.Bytetype))                    // **byte
    59  	_ = types.NewPtr(types.NewSlice(types.Bytetype))                  // *[]byte
    60  	_ = types.NewPtr(types.NewSlice(types.Types[TSTRING]))            // *[]string
    61  	_ = types.NewPtr(types.NewSlice(types.Idealstring))               // *[]string
    62  	_ = types.NewPtr(types.NewPtr(types.NewPtr(types.Types[TUINT8]))) // ***uint8
    63  	_ = types.NewPtr(types.Types[TINT16])                             // *int16
    64  	_ = types.NewPtr(types.Types[TINT64])                             // *int64
    65  	_ = types.NewPtr(types.Errortype)                                 // *error
    66  	types.NewPtrCacheEnabled = false
    67  	ssaConfig = ssa.NewConfig(thearch.LinkArch.Name, types_, Ctxt, Debug['N'] == 0)
    68  	if thearch.LinkArch.Name == "386" {
    69  		ssaConfig.Set387(thearch.Use387)
    70  	}
    71  	ssaCaches = make([]ssa.Cache, nBackendWorkers)
    72  
    73  	// Set up some runtime functions we'll need to call.
    74  	Newproc = sysfunc("newproc")
    75  	Deferproc = sysfunc("deferproc")
    76  	Deferreturn = sysfunc("deferreturn")
    77  	Duffcopy = sysfunc("duffcopy")
    78  	Duffzero = sysfunc("duffzero")
    79  	panicindex = sysfunc("panicindex")
    80  	panicslice = sysfunc("panicslice")
    81  	panicdivide = sysfunc("panicdivide")
    82  	growslice = sysfunc("growslice")
    83  	panicdottypeE = sysfunc("panicdottypeE")
    84  	panicdottypeI = sysfunc("panicdottypeI")
    85  	panicnildottype = sysfunc("panicnildottype")
    86  	assertE2I = sysfunc("assertE2I")
    87  	assertE2I2 = sysfunc("assertE2I2")
    88  	assertI2I = sysfunc("assertI2I")
    89  	assertI2I2 = sysfunc("assertI2I2")
    90  	goschedguarded = sysfunc("goschedguarded")
    91  	writeBarrier = sysfunc("writeBarrier")
    92  	writebarrierptr = sysfunc("writebarrierptr")
    93  	typedmemmove = sysfunc("typedmemmove")
    94  	typedmemclr = sysfunc("typedmemclr")
    95  	Udiv = sysfunc("udiv")
    96  
    97  	// GO386=387 runtime functions
    98  	ControlWord64trunc = sysfunc("controlWord64trunc")
    99  	ControlWord32 = sysfunc("controlWord32")
   100  }
   101  
   102  // buildssa builds an SSA function for fn.
   103  // worker indicates which of the backend workers is doing the processing.
   104  func buildssa(fn *Node, worker int) *ssa.Func {
   105  	name := fn.funcname()
   106  	printssa := name == os.Getenv("GOSSAFUNC")
   107  	if printssa {
   108  		fmt.Println("generating SSA for", name)
   109  		dumplist("buildssa-enter", fn.Func.Enter)
   110  		dumplist("buildssa-body", fn.Nbody)
   111  		dumplist("buildssa-exit", fn.Func.Exit)
   112  	}
   113  
   114  	var s state
   115  	s.pushLine(fn.Pos)
   116  	defer s.popLine()
   117  
   118  	s.hasdefer = fn.Func.HasDefer()
   119  	if fn.Func.Pragma&CgoUnsafeArgs != 0 {
   120  		s.cgoUnsafeArgs = true
   121  	}
   122  
   123  	fe := ssafn{
   124  		curfn: fn,
   125  		log:   printssa,
   126  	}
   127  	s.curfn = fn
   128  
   129  	s.f = ssa.NewFunc(&fe)
   130  	s.config = ssaConfig
   131  	s.f.Config = ssaConfig
   132  	s.f.Cache = &ssaCaches[worker]
   133  	s.f.Cache.Reset()
   134  	s.f.DebugTest = s.f.DebugHashMatch("GOSSAHASH", name)
   135  	s.f.Name = name
   136  	if fn.Func.Pragma&Nosplit != 0 {
   137  		s.f.NoSplit = true
   138  	}
   139  	defer func() {
   140  		if s.f.WBPos.IsKnown() {
   141  			fn.Func.WBPos = s.f.WBPos
   142  		}
   143  	}()
   144  	s.exitCode = fn.Func.Exit
   145  	s.panics = map[funcLine]*ssa.Block{}
   146  
   147  	if name == os.Getenv("GOSSAFUNC") {
   148  		s.f.HTMLWriter = ssa.NewHTMLWriter("ssa.html", s.f.Frontend(), name)
   149  		// TODO: generate and print a mapping from nodes to values and blocks
   150  	}
   151  
   152  	// Allocate starting block
   153  	s.f.Entry = s.f.NewBlock(ssa.BlockPlain)
   154  
   155  	// Allocate starting values
   156  	s.labels = map[string]*ssaLabel{}
   157  	s.labeledNodes = map[*Node]*ssaLabel{}
   158  	s.fwdVars = map[*Node]*ssa.Value{}
   159  	s.startmem = s.entryNewValue0(ssa.OpInitMem, types.TypeMem)
   160  	s.sp = s.entryNewValue0(ssa.OpSP, types.Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead
   161  	s.sb = s.entryNewValue0(ssa.OpSB, types.Types[TUINTPTR])
   162  
   163  	s.startBlock(s.f.Entry)
   164  	s.vars[&memVar] = s.startmem
   165  
   166  	// Generate addresses of local declarations
   167  	s.decladdrs = map[*Node]*ssa.Value{}
   168  	for _, n := range fn.Func.Dcl {
   169  		switch n.Class() {
   170  		case PPARAM, PPARAMOUT:
   171  			s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type), n, s.sp)
   172  			if n.Class() == PPARAMOUT && s.canSSA(n) {
   173  				// Save ssa-able PPARAMOUT variables so we can
   174  				// store them back to the stack at the end of
   175  				// the function.
   176  				s.returns = append(s.returns, n)
   177  			}
   178  		case PAUTO:
   179  			// processed at each use, to prevent Addr coming
   180  			// before the decl.
   181  		case PAUTOHEAP:
   182  			// moved to heap - already handled by frontend
   183  		case PFUNC:
   184  			// local function - already handled by frontend
   185  		default:
   186  			s.Fatalf("local variable with class %s unimplemented", classnames[n.Class()])
   187  		}
   188  	}
   189  
   190  	// Populate SSAable arguments.
   191  	for _, n := range fn.Func.Dcl {
   192  		if n.Class() == PPARAM && s.canSSA(n) {
   193  			s.vars[n] = s.newValue0A(ssa.OpArg, n.Type, n)
   194  		}
   195  	}
   196  
   197  	// Convert the AST-based IR to the SSA-based IR
   198  	s.stmtList(fn.Func.Enter)
   199  	s.stmtList(fn.Nbody)
   200  
   201  	// fallthrough to exit
   202  	if s.curBlock != nil {
   203  		s.pushLine(fn.Func.Endlineno)
   204  		s.exit()
   205  		s.popLine()
   206  	}
   207  
   208  	for _, b := range s.f.Blocks {
   209  		if b.Pos != src.NoXPos {
   210  			updateUnsetPredPos(b)
   211  		}
   212  	}
   213  
   214  	s.insertPhis()
   215  
   216  	// Don't carry reference this around longer than necessary
   217  	s.exitCode = Nodes{}
   218  
   219  	// Main call to ssa package to compile function
   220  	ssa.Compile(s.f)
   221  	return s.f
   222  }
   223  
   224  func updateUnsetPredPos(b *ssa.Block) {
   225  	for _, e := range b.Preds {
   226  		p := e.Block()
   227  		if p.Pos == src.NoXPos && p.Kind == ssa.BlockPlain {
   228  			pos := b.Pos
   229  			// TODO: This ought to be produce a better result, but it causes
   230  			// line 46 ("scanner := bufio.NewScanner(reader)")
   231  			// to drop out of gdb-dbg and dlv-dbg debug-next traces for hist.go.
   232  			for _, v := range b.Values {
   233  				if v.Op == ssa.OpVarDef || v.Op == ssa.OpVarKill || v.Op == ssa.OpVarLive || v.Op == ssa.OpCopy && v.Type == types.TypeMem {
   234  					continue
   235  				}
   236  				if v.Pos != src.NoXPos {
   237  					pos = v.Pos
   238  					break
   239  				}
   240  			}
   241  			p.Pos = pos
   242  			updateUnsetPredPos(p) // We do not expect long chains of these, thus recursion is okay.
   243  		}
   244  	}
   245  	return
   246  }
   247  
   248  type state struct {
   249  	// configuration (arch) information
   250  	config *ssa.Config
   251  
   252  	// function we're building
   253  	f *ssa.Func
   254  
   255  	// Node for function
   256  	curfn *Node
   257  
   258  	// labels and labeled control flow nodes (OFOR, OFORUNTIL, OSWITCH, OSELECT) in f
   259  	labels       map[string]*ssaLabel
   260  	labeledNodes map[*Node]*ssaLabel
   261  
   262  	// Code that must precede any return
   263  	// (e.g., copying value of heap-escaped paramout back to true paramout)
   264  	exitCode Nodes
   265  
   266  	// unlabeled break and continue statement tracking
   267  	breakTo    *ssa.Block // current target for plain break statement
   268  	continueTo *ssa.Block // current target for plain continue statement
   269  
   270  	// current location where we're interpreting the AST
   271  	curBlock *ssa.Block
   272  
   273  	// variable assignments in the current block (map from variable symbol to ssa value)
   274  	// *Node is the unique identifier (an ONAME Node) for the variable.
   275  	// TODO: keep a single varnum map, then make all of these maps slices instead?
   276  	vars map[*Node]*ssa.Value
   277  
   278  	// fwdVars are variables that are used before they are defined in the current block.
   279  	// This map exists just to coalesce multiple references into a single FwdRef op.
   280  	// *Node is the unique identifier (an ONAME Node) for the variable.
   281  	fwdVars map[*Node]*ssa.Value
   282  
   283  	// all defined variables at the end of each block. Indexed by block ID.
   284  	defvars []map[*Node]*ssa.Value
   285  
   286  	// addresses of PPARAM and PPARAMOUT variables.
   287  	decladdrs map[*Node]*ssa.Value
   288  
   289  	// starting values. Memory, stack pointer, and globals pointer
   290  	startmem *ssa.Value
   291  	sp       *ssa.Value
   292  	sb       *ssa.Value
   293  
   294  	// line number stack. The current line number is top of stack
   295  	line []src.XPos
   296  	// the last line number processed; it may have been popped
   297  	lastPos src.XPos
   298  
   299  	// list of panic calls by function name and line number.
   300  	// Used to deduplicate panic calls.
   301  	panics map[funcLine]*ssa.Block
   302  
   303  	// list of PPARAMOUT (return) variables.
   304  	returns []*Node
   305  
   306  	cgoUnsafeArgs bool
   307  	hasdefer      bool // whether the function contains a defer statement
   308  }
   309  
   310  type funcLine struct {
   311  	f    *obj.LSym
   312  	base *src.PosBase
   313  	line uint
   314  }
   315  
   316  type ssaLabel struct {
   317  	target         *ssa.Block // block identified by this label
   318  	breakTarget    *ssa.Block // block to break to in control flow node identified by this label
   319  	continueTarget *ssa.Block // block to continue to in control flow node identified by this label
   320  }
   321  
   322  // label returns the label associated with sym, creating it if necessary.
   323  func (s *state) label(sym *types.Sym) *ssaLabel {
   324  	lab := s.labels[sym.Name]
   325  	if lab == nil {
   326  		lab = new(ssaLabel)
   327  		s.labels[sym.Name] = lab
   328  	}
   329  	return lab
   330  }
   331  
   332  func (s *state) Logf(msg string, args ...interface{}) { s.f.Logf(msg, args...) }
   333  func (s *state) Log() bool                            { return s.f.Log() }
   334  func (s *state) Fatalf(msg string, args ...interface{}) {
   335  	s.f.Frontend().Fatalf(s.peekPos(), msg, args...)
   336  }
   337  func (s *state) Warnl(pos src.XPos, msg string, args ...interface{}) { s.f.Warnl(pos, msg, args...) }
   338  func (s *state) Debug_checknil() bool                                { return s.f.Frontend().Debug_checknil() }
   339  
   340  var (
   341  	// dummy node for the memory variable
   342  	memVar = Node{Op: ONAME, Sym: &types.Sym{Name: "mem"}}
   343  
   344  	// dummy nodes for temporary variables
   345  	ptrVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "ptr"}}
   346  	lenVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "len"}}
   347  	newlenVar = Node{Op: ONAME, Sym: &types.Sym{Name: "newlen"}}
   348  	capVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "cap"}}
   349  	typVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "typ"}}
   350  	okVar     = Node{Op: ONAME, Sym: &types.Sym{Name: "ok"}}
   351  )
   352  
   353  // startBlock sets the current block we're generating code in to b.
   354  func (s *state) startBlock(b *ssa.Block) {
   355  	if s.curBlock != nil {
   356  		s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
   357  	}
   358  	s.curBlock = b
   359  	s.vars = map[*Node]*ssa.Value{}
   360  	for n := range s.fwdVars {
   361  		delete(s.fwdVars, n)
   362  	}
   363  }
   364  
   365  // endBlock marks the end of generating code for the current block.
   366  // Returns the (former) current block. Returns nil if there is no current
   367  // block, i.e. if no code flows to the current execution point.
   368  func (s *state) endBlock() *ssa.Block {
   369  	b := s.curBlock
   370  	if b == nil {
   371  		return nil
   372  	}
   373  	for len(s.defvars) <= int(b.ID) {
   374  		s.defvars = append(s.defvars, nil)
   375  	}
   376  	s.defvars[b.ID] = s.vars
   377  	s.curBlock = nil
   378  	s.vars = nil
   379  	if len(b.Values) == 0 && b.Kind == ssa.BlockPlain {
   380  		// Empty plain blocks get the line of their successor (handled after all blocks created),
   381  		// except for increment blocks in For statements (handled in ssa conversion of OFOR),
   382  		// and for blocks ending in GOTO/BREAK/CONTINUE.
   383  		b.Pos = src.NoXPos
   384  	} else {
   385  		b.Pos = s.lastPos
   386  	}
   387  	return b
   388  }
   389  
   390  // pushLine pushes a line number on the line number stack.
   391  func (s *state) pushLine(line src.XPos) {
   392  	if !line.IsKnown() {
   393  		// the frontend may emit node with line number missing,
   394  		// use the parent line number in this case.
   395  		line = s.peekPos()
   396  		if Debug['K'] != 0 {
   397  			Warn("buildssa: unknown position (line 0)")
   398  		}
   399  	} else {
   400  		s.lastPos = line
   401  	}
   402  
   403  	s.line = append(s.line, line)
   404  }
   405  
   406  // popLine pops the top of the line number stack.
   407  func (s *state) popLine() {
   408  	s.line = s.line[:len(s.line)-1]
   409  }
   410  
   411  // peekPos peeks the top of the line number stack.
   412  func (s *state) peekPos() src.XPos {
   413  	return s.line[len(s.line)-1]
   414  }
   415  
   416  // newValue0 adds a new value with no arguments to the current block.
   417  func (s *state) newValue0(op ssa.Op, t *types.Type) *ssa.Value {
   418  	return s.curBlock.NewValue0(s.peekPos(), op, t)
   419  }
   420  
   421  // newValue0A adds a new value with no arguments and an aux value to the current block.
   422  func (s *state) newValue0A(op ssa.Op, t *types.Type, aux interface{}) *ssa.Value {
   423  	return s.curBlock.NewValue0A(s.peekPos(), op, t, aux)
   424  }
   425  
   426  // newValue0I adds a new value with no arguments and an auxint value to the current block.
   427  func (s *state) newValue0I(op ssa.Op, t *types.Type, auxint int64) *ssa.Value {
   428  	return s.curBlock.NewValue0I(s.peekPos(), op, t, auxint)
   429  }
   430  
   431  // newValue1 adds a new value with one argument to the current block.
   432  func (s *state) newValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value {
   433  	return s.curBlock.NewValue1(s.peekPos(), op, t, arg)
   434  }
   435  
   436  // newValue1A adds a new value with one argument and an aux value to the current block.
   437  func (s *state) newValue1A(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   438  	return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg)
   439  }
   440  
   441  // newValue1I adds a new value with one argument and an auxint value to the current block.
   442  func (s *state) newValue1I(op ssa.Op, t *types.Type, aux int64, arg *ssa.Value) *ssa.Value {
   443  	return s.curBlock.NewValue1I(s.peekPos(), op, t, aux, arg)
   444  }
   445  
   446  // newValue2 adds a new value with two arguments to the current block.
   447  func (s *state) newValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   448  	return s.curBlock.NewValue2(s.peekPos(), op, t, arg0, arg1)
   449  }
   450  
   451  // newValue2I adds a new value with two arguments and an auxint value to the current block.
   452  func (s *state) newValue2I(op ssa.Op, t *types.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value {
   453  	return s.curBlock.NewValue2I(s.peekPos(), op, t, aux, arg0, arg1)
   454  }
   455  
   456  // newValue3 adds a new value with three arguments to the current block.
   457  func (s *state) newValue3(op ssa.Op, t *types.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   458  	return s.curBlock.NewValue3(s.peekPos(), op, t, arg0, arg1, arg2)
   459  }
   460  
   461  // newValue3I adds a new value with three arguments and an auxint value to the current block.
   462  func (s *state) newValue3I(op ssa.Op, t *types.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   463  	return s.curBlock.NewValue3I(s.peekPos(), op, t, aux, arg0, arg1, arg2)
   464  }
   465  
   466  // newValue3A adds a new value with three arguments and an aux value to the current block.
   467  func (s *state) newValue3A(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   468  	return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2)
   469  }
   470  
   471  // newValue4 adds a new value with four arguments to the current block.
   472  func (s *state) newValue4(op ssa.Op, t *types.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value {
   473  	return s.curBlock.NewValue4(s.peekPos(), op, t, arg0, arg1, arg2, arg3)
   474  }
   475  
   476  // entryNewValue0 adds a new value with no arguments to the entry block.
   477  func (s *state) entryNewValue0(op ssa.Op, t *types.Type) *ssa.Value {
   478  	return s.f.Entry.NewValue0(src.NoXPos, op, t)
   479  }
   480  
   481  // entryNewValue0A adds a new value with no arguments and an aux value to the entry block.
   482  func (s *state) entryNewValue0A(op ssa.Op, t *types.Type, aux interface{}) *ssa.Value {
   483  	return s.f.Entry.NewValue0A(s.peekPos(), op, t, aux)
   484  }
   485  
   486  // entryNewValue1 adds a new value with one argument to the entry block.
   487  func (s *state) entryNewValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value {
   488  	return s.f.Entry.NewValue1(s.peekPos(), op, t, arg)
   489  }
   490  
   491  // entryNewValue1 adds a new value with one argument and an auxint value to the entry block.
   492  func (s *state) entryNewValue1I(op ssa.Op, t *types.Type, auxint int64, arg *ssa.Value) *ssa.Value {
   493  	return s.f.Entry.NewValue1I(s.peekPos(), op, t, auxint, arg)
   494  }
   495  
   496  // entryNewValue1A adds a new value with one argument and an aux value to the entry block.
   497  func (s *state) entryNewValue1A(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   498  	return s.f.Entry.NewValue1A(s.peekPos(), op, t, aux, arg)
   499  }
   500  
   501  // entryNewValue2 adds a new value with two arguments to the entry block.
   502  func (s *state) entryNewValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   503  	return s.f.Entry.NewValue2(s.peekPos(), op, t, arg0, arg1)
   504  }
   505  
   506  // const* routines add a new const value to the entry block.
   507  func (s *state) constSlice(t *types.Type) *ssa.Value {
   508  	return s.f.ConstSlice(s.peekPos(), t)
   509  }
   510  func (s *state) constInterface(t *types.Type) *ssa.Value {
   511  	return s.f.ConstInterface(s.peekPos(), t)
   512  }
   513  func (s *state) constNil(t *types.Type) *ssa.Value { return s.f.ConstNil(s.peekPos(), t) }
   514  func (s *state) constEmptyString(t *types.Type) *ssa.Value {
   515  	return s.f.ConstEmptyString(s.peekPos(), t)
   516  }
   517  func (s *state) constBool(c bool) *ssa.Value {
   518  	return s.f.ConstBool(s.peekPos(), types.Types[TBOOL], c)
   519  }
   520  func (s *state) constInt8(t *types.Type, c int8) *ssa.Value {
   521  	return s.f.ConstInt8(s.peekPos(), t, c)
   522  }
   523  func (s *state) constInt16(t *types.Type, c int16) *ssa.Value {
   524  	return s.f.ConstInt16(s.peekPos(), t, c)
   525  }
   526  func (s *state) constInt32(t *types.Type, c int32) *ssa.Value {
   527  	return s.f.ConstInt32(s.peekPos(), t, c)
   528  }
   529  func (s *state) constInt64(t *types.Type, c int64) *ssa.Value {
   530  	return s.f.ConstInt64(s.peekPos(), t, c)
   531  }
   532  func (s *state) constFloat32(t *types.Type, c float64) *ssa.Value {
   533  	return s.f.ConstFloat32(s.peekPos(), t, c)
   534  }
   535  func (s *state) constFloat64(t *types.Type, c float64) *ssa.Value {
   536  	return s.f.ConstFloat64(s.peekPos(), t, c)
   537  }
   538  func (s *state) constInt(t *types.Type, c int64) *ssa.Value {
   539  	if s.config.PtrSize == 8 {
   540  		return s.constInt64(t, c)
   541  	}
   542  	if int64(int32(c)) != c {
   543  		s.Fatalf("integer constant too big %d", c)
   544  	}
   545  	return s.constInt32(t, int32(c))
   546  }
   547  func (s *state) constOffPtrSP(t *types.Type, c int64) *ssa.Value {
   548  	return s.f.ConstOffPtrSP(s.peekPos(), t, c, s.sp)
   549  }
   550  
   551  // stmtList converts the statement list n to SSA and adds it to s.
   552  func (s *state) stmtList(l Nodes) {
   553  	for _, n := range l.Slice() {
   554  		s.stmt(n)
   555  	}
   556  }
   557  
   558  // stmt converts the statement n to SSA and adds it to s.
   559  func (s *state) stmt(n *Node) {
   560  	if !(n.Op == OVARKILL || n.Op == OVARLIVE) {
   561  		// OVARKILL and OVARLIVE are invisible to the programmer, so we don't use their line numbers to avoid confusion in debugging.
   562  		s.pushLine(n.Pos)
   563  		defer s.popLine()
   564  	}
   565  
   566  	// If s.curBlock is nil, and n isn't a label (which might have an associated goto somewhere),
   567  	// then this code is dead. Stop here.
   568  	if s.curBlock == nil && n.Op != OLABEL {
   569  		return
   570  	}
   571  
   572  	s.stmtList(n.Ninit)
   573  	switch n.Op {
   574  
   575  	case OBLOCK:
   576  		s.stmtList(n.List)
   577  
   578  	// No-ops
   579  	case OEMPTY, ODCLCONST, ODCLTYPE, OFALL:
   580  
   581  	// Expression statements
   582  	case OCALLFUNC:
   583  		if isIntrinsicCall(n) {
   584  			s.intrinsicCall(n)
   585  			return
   586  		}
   587  		fallthrough
   588  
   589  	case OCALLMETH, OCALLINTER:
   590  		s.call(n, callNormal)
   591  		if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class() == PFUNC {
   592  			if fn := n.Left.Sym.Name; compiling_runtime && fn == "throw" ||
   593  				n.Left.Sym.Pkg == Runtimepkg && (fn == "throwinit" || fn == "gopanic" || fn == "panicwrap" || fn == "block") {
   594  				m := s.mem()
   595  				b := s.endBlock()
   596  				b.Kind = ssa.BlockExit
   597  				b.SetControl(m)
   598  				// TODO: never rewrite OPANIC to OCALLFUNC in the
   599  				// first place. Need to wait until all backends
   600  				// go through SSA.
   601  			}
   602  		}
   603  	case ODEFER:
   604  		s.call(n.Left, callDefer)
   605  	case OPROC:
   606  		s.call(n.Left, callGo)
   607  
   608  	case OAS2DOTTYPE:
   609  		res, resok := s.dottype(n.Rlist.First(), true)
   610  		deref := false
   611  		if !canSSAType(n.Rlist.First().Type) {
   612  			if res.Op != ssa.OpLoad {
   613  				s.Fatalf("dottype of non-load")
   614  			}
   615  			mem := s.mem()
   616  			if mem.Op == ssa.OpVarKill {
   617  				mem = mem.Args[0]
   618  			}
   619  			if res.Args[1] != mem {
   620  				s.Fatalf("memory no longer live from 2-result dottype load")
   621  			}
   622  			deref = true
   623  			res = res.Args[0]
   624  		}
   625  		s.assign(n.List.First(), res, deref, 0)
   626  		s.assign(n.List.Second(), resok, false, 0)
   627  		return
   628  
   629  	case OAS2FUNC:
   630  		// We come here only when it is an intrinsic call returning two values.
   631  		if !isIntrinsicCall(n.Rlist.First()) {
   632  			s.Fatalf("non-intrinsic AS2FUNC not expanded %v", n.Rlist.First())
   633  		}
   634  		v := s.intrinsicCall(n.Rlist.First())
   635  		v1 := s.newValue1(ssa.OpSelect0, n.List.First().Type, v)
   636  		v2 := s.newValue1(ssa.OpSelect1, n.List.Second().Type, v)
   637  		s.assign(n.List.First(), v1, false, 0)
   638  		s.assign(n.List.Second(), v2, false, 0)
   639  		return
   640  
   641  	case ODCL:
   642  		if n.Left.Class() == PAUTOHEAP {
   643  			Fatalf("DCL %v", n)
   644  		}
   645  
   646  	case OLABEL:
   647  		sym := n.Left.Sym
   648  		lab := s.label(sym)
   649  
   650  		// Associate label with its control flow node, if any
   651  		if ctl := n.labeledControl(); ctl != nil {
   652  			s.labeledNodes[ctl] = lab
   653  		}
   654  
   655  		// The label might already have a target block via a goto.
   656  		if lab.target == nil {
   657  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   658  		}
   659  
   660  		// Go to that label.
   661  		// (We pretend "label:" is preceded by "goto label", unless the predecessor is unreachable.)
   662  		if s.curBlock != nil {
   663  			b := s.endBlock()
   664  			b.AddEdgeTo(lab.target)
   665  		}
   666  		s.startBlock(lab.target)
   667  
   668  	case OGOTO:
   669  		sym := n.Left.Sym
   670  
   671  		lab := s.label(sym)
   672  		if lab.target == nil {
   673  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   674  		}
   675  
   676  		b := s.endBlock()
   677  		b.Pos = s.lastPos // Do this even if b is an empty block.
   678  		b.AddEdgeTo(lab.target)
   679  
   680  	case OAS:
   681  		if n.Left == n.Right && n.Left.Op == ONAME {
   682  			// An x=x assignment. No point in doing anything
   683  			// here. In addition, skipping this assignment
   684  			// prevents generating:
   685  			//   VARDEF x
   686  			//   COPY x -> x
   687  			// which is bad because x is incorrectly considered
   688  			// dead before the vardef. See issue #14904.
   689  			return
   690  		}
   691  
   692  		// Evaluate RHS.
   693  		rhs := n.Right
   694  		if rhs != nil {
   695  			switch rhs.Op {
   696  			case OSTRUCTLIT, OARRAYLIT, OSLICELIT:
   697  				// All literals with nonzero fields have already been
   698  				// rewritten during walk. Any that remain are just T{}
   699  				// or equivalents. Use the zero value.
   700  				if !iszero(rhs) {
   701  					Fatalf("literal with nonzero value in SSA: %v", rhs)
   702  				}
   703  				rhs = nil
   704  			case OAPPEND:
   705  				// Check whether we're writing the result of an append back to the same slice.
   706  				// If so, we handle it specially to avoid write barriers on the fast
   707  				// (non-growth) path.
   708  				if !samesafeexpr(n.Left, rhs.List.First()) {
   709  					break
   710  				}
   711  				// If the slice can be SSA'd, it'll be on the stack,
   712  				// so there will be no write barriers,
   713  				// so there's no need to attempt to prevent them.
   714  				if s.canSSA(n.Left) {
   715  					if Debug_append > 0 { // replicating old diagnostic message
   716  						Warnl(n.Pos, "append: len-only update (in local slice)")
   717  					}
   718  					break
   719  				}
   720  				if Debug_append > 0 {
   721  					Warnl(n.Pos, "append: len-only update")
   722  				}
   723  				s.append(rhs, true)
   724  				return
   725  			}
   726  		}
   727  
   728  		if isblank(n.Left) {
   729  			// _ = rhs
   730  			// Just evaluate rhs for side-effects.
   731  			if rhs != nil {
   732  				s.expr(rhs)
   733  			}
   734  			return
   735  		}
   736  
   737  		var t *types.Type
   738  		if n.Right != nil {
   739  			t = n.Right.Type
   740  		} else {
   741  			t = n.Left.Type
   742  		}
   743  
   744  		var r *ssa.Value
   745  		deref := !canSSAType(t)
   746  		if deref {
   747  			if rhs == nil {
   748  				r = nil // Signal assign to use OpZero.
   749  			} else {
   750  				r = s.addr(rhs, false)
   751  			}
   752  		} else {
   753  			if rhs == nil {
   754  				r = s.zeroVal(t)
   755  			} else {
   756  				r = s.expr(rhs)
   757  			}
   758  		}
   759  
   760  		var skip skipMask
   761  		if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) {
   762  			// We're assigning a slicing operation back to its source.
   763  			// Don't write back fields we aren't changing. See issue #14855.
   764  			i, j, k := rhs.SliceBounds()
   765  			if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) {
   766  				// [0:...] is the same as [:...]
   767  				i = nil
   768  			}
   769  			// TODO: detect defaults for len/cap also.
   770  			// Currently doesn't really work because (*p)[:len(*p)] appears here as:
   771  			//    tmp = len(*p)
   772  			//    (*p)[:tmp]
   773  			//if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) {
   774  			//      j = nil
   775  			//}
   776  			//if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) {
   777  			//      k = nil
   778  			//}
   779  			if i == nil {
   780  				skip |= skipPtr
   781  				if j == nil {
   782  					skip |= skipLen
   783  				}
   784  				if k == nil {
   785  					skip |= skipCap
   786  				}
   787  			}
   788  		}
   789  
   790  		s.assign(n.Left, r, deref, skip)
   791  
   792  	case OIF:
   793  		bThen := s.f.NewBlock(ssa.BlockPlain)
   794  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   795  		var bElse *ssa.Block
   796  		var likely int8
   797  		if n.Likely() {
   798  			likely = 1
   799  		}
   800  		if n.Rlist.Len() != 0 {
   801  			bElse = s.f.NewBlock(ssa.BlockPlain)
   802  			s.condBranch(n.Left, bThen, bElse, likely)
   803  		} else {
   804  			s.condBranch(n.Left, bThen, bEnd, likely)
   805  		}
   806  
   807  		s.startBlock(bThen)
   808  		s.stmtList(n.Nbody)
   809  		if b := s.endBlock(); b != nil {
   810  			b.AddEdgeTo(bEnd)
   811  		}
   812  
   813  		if n.Rlist.Len() != 0 {
   814  			s.startBlock(bElse)
   815  			s.stmtList(n.Rlist)
   816  			if b := s.endBlock(); b != nil {
   817  				b.AddEdgeTo(bEnd)
   818  			}
   819  		}
   820  		s.startBlock(bEnd)
   821  
   822  	case ORETURN:
   823  		s.stmtList(n.List)
   824  		s.exit()
   825  	case ORETJMP:
   826  		s.stmtList(n.List)
   827  		b := s.exit()
   828  		b.Kind = ssa.BlockRetJmp // override BlockRet
   829  		b.Aux = n.Sym.Linksym()
   830  
   831  	case OCONTINUE, OBREAK:
   832  		var to *ssa.Block
   833  		if n.Left == nil {
   834  			// plain break/continue
   835  			switch n.Op {
   836  			case OCONTINUE:
   837  				to = s.continueTo
   838  			case OBREAK:
   839  				to = s.breakTo
   840  			}
   841  		} else {
   842  			// labeled break/continue; look up the target
   843  			sym := n.Left.Sym
   844  			lab := s.label(sym)
   845  			switch n.Op {
   846  			case OCONTINUE:
   847  				to = lab.continueTarget
   848  			case OBREAK:
   849  				to = lab.breakTarget
   850  			}
   851  		}
   852  
   853  		b := s.endBlock()
   854  		b.Pos = s.lastPos // Do this even if b is an empty block.
   855  		b.AddEdgeTo(to)
   856  
   857  	case OFOR, OFORUNTIL:
   858  		// OFOR: for Ninit; Left; Right { Nbody }
   859  		// For      = cond; body; incr
   860  		// Foruntil = body; incr; cond
   861  		bCond := s.f.NewBlock(ssa.BlockPlain)
   862  		bBody := s.f.NewBlock(ssa.BlockPlain)
   863  		bIncr := s.f.NewBlock(ssa.BlockPlain)
   864  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   865  
   866  		// first, jump to condition test (OFOR) or body (OFORUNTIL)
   867  		b := s.endBlock()
   868  		if n.Op == OFOR {
   869  			b.AddEdgeTo(bCond)
   870  			// generate code to test condition
   871  			s.startBlock(bCond)
   872  			if n.Left != nil {
   873  				s.condBranch(n.Left, bBody, bEnd, 1)
   874  			} else {
   875  				b := s.endBlock()
   876  				b.Kind = ssa.BlockPlain
   877  				b.AddEdgeTo(bBody)
   878  			}
   879  
   880  		} else {
   881  			b.AddEdgeTo(bBody)
   882  		}
   883  
   884  		// set up for continue/break in body
   885  		prevContinue := s.continueTo
   886  		prevBreak := s.breakTo
   887  		s.continueTo = bIncr
   888  		s.breakTo = bEnd
   889  		lab := s.labeledNodes[n]
   890  		if lab != nil {
   891  			// labeled for loop
   892  			lab.continueTarget = bIncr
   893  			lab.breakTarget = bEnd
   894  		}
   895  
   896  		// generate body
   897  		s.startBlock(bBody)
   898  		s.stmtList(n.Nbody)
   899  
   900  		// tear down continue/break
   901  		s.continueTo = prevContinue
   902  		s.breakTo = prevBreak
   903  		if lab != nil {
   904  			lab.continueTarget = nil
   905  			lab.breakTarget = nil
   906  		}
   907  
   908  		// done with body, goto incr
   909  		if b := s.endBlock(); b != nil {
   910  			b.AddEdgeTo(bIncr)
   911  		}
   912  
   913  		// generate incr
   914  		s.startBlock(bIncr)
   915  		if n.Right != nil {
   916  			s.stmt(n.Right)
   917  		}
   918  		if b := s.endBlock(); b != nil {
   919  			b.AddEdgeTo(bCond)
   920  			// It can happen that bIncr ends in a block containing only VARKILL,
   921  			// and that muddles the debugging experience.
   922  			if n.Op != OFORUNTIL && b.Pos == src.NoXPos {
   923  				b.Pos = bCond.Pos
   924  			}
   925  		}
   926  
   927  		if n.Op == OFORUNTIL {
   928  			// generate code to test condition
   929  			s.startBlock(bCond)
   930  			if n.Left != nil {
   931  				s.condBranch(n.Left, bBody, bEnd, 1)
   932  			} else {
   933  				b := s.endBlock()
   934  				b.Kind = ssa.BlockPlain
   935  				b.AddEdgeTo(bBody)
   936  			}
   937  		}
   938  
   939  		s.startBlock(bEnd)
   940  
   941  	case OSWITCH, OSELECT:
   942  		// These have been mostly rewritten by the front end into their Nbody fields.
   943  		// Our main task is to correctly hook up any break statements.
   944  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   945  
   946  		prevBreak := s.breakTo
   947  		s.breakTo = bEnd
   948  		lab := s.labeledNodes[n]
   949  		if lab != nil {
   950  			// labeled
   951  			lab.breakTarget = bEnd
   952  		}
   953  
   954  		// generate body code
   955  		s.stmtList(n.Nbody)
   956  
   957  		s.breakTo = prevBreak
   958  		if lab != nil {
   959  			lab.breakTarget = nil
   960  		}
   961  
   962  		// walk adds explicit OBREAK nodes to the end of all reachable code paths.
   963  		// If we still have a current block here, then mark it unreachable.
   964  		if s.curBlock != nil {
   965  			m := s.mem()
   966  			b := s.endBlock()
   967  			b.Kind = ssa.BlockExit
   968  			b.SetControl(m)
   969  		}
   970  		s.startBlock(bEnd)
   971  
   972  	case OVARKILL:
   973  		// Insert a varkill op to record that a variable is no longer live.
   974  		// We only care about liveness info at call sites, so putting the
   975  		// varkill in the store chain is enough to keep it correctly ordered
   976  		// with respect to call ops.
   977  		if !s.canSSA(n.Left) {
   978  			s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, types.TypeMem, n.Left, s.mem())
   979  		}
   980  
   981  	case OVARLIVE:
   982  		// Insert a varlive op to record that a variable is still live.
   983  		if !n.Left.Addrtaken() {
   984  			s.Fatalf("VARLIVE variable %v must have Addrtaken set", n.Left)
   985  		}
   986  		switch n.Left.Class() {
   987  		case PAUTO, PPARAM, PPARAMOUT:
   988  		default:
   989  			s.Fatalf("VARLIVE variable %v must be Auto or Arg", n.Left)
   990  		}
   991  		s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, types.TypeMem, n.Left, s.mem())
   992  
   993  	case OCHECKNIL:
   994  		p := s.expr(n.Left)
   995  		s.nilCheck(p)
   996  
   997  	default:
   998  		s.Fatalf("unhandled stmt %v", n.Op)
   999  	}
  1000  }
  1001  
  1002  // exit processes any code that needs to be generated just before returning.
  1003  // It returns a BlockRet block that ends the control flow. Its control value
  1004  // will be set to the final memory state.
  1005  func (s *state) exit() *ssa.Block {
  1006  	if s.hasdefer {
  1007  		s.rtcall(Deferreturn, true, nil)
  1008  	}
  1009  
  1010  	// Run exit code. Typically, this code copies heap-allocated PPARAMOUT
  1011  	// variables back to the stack.
  1012  	s.stmtList(s.exitCode)
  1013  
  1014  	// Store SSAable PPARAMOUT variables back to stack locations.
  1015  	for _, n := range s.returns {
  1016  		addr := s.decladdrs[n]
  1017  		val := s.variable(n, n.Type)
  1018  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem())
  1019  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, n.Type, addr, val, s.mem())
  1020  		// TODO: if val is ever spilled, we'd like to use the
  1021  		// PPARAMOUT slot for spilling it. That won't happen
  1022  		// currently.
  1023  	}
  1024  
  1025  	// Do actual return.
  1026  	m := s.mem()
  1027  	b := s.endBlock()
  1028  	b.Kind = ssa.BlockRet
  1029  	b.SetControl(m)
  1030  	return b
  1031  }
  1032  
  1033  type opAndType struct {
  1034  	op    Op
  1035  	etype types.EType
  1036  }
  1037  
  1038  var opToSSA = map[opAndType]ssa.Op{
  1039  	opAndType{OADD, TINT8}:    ssa.OpAdd8,
  1040  	opAndType{OADD, TUINT8}:   ssa.OpAdd8,
  1041  	opAndType{OADD, TINT16}:   ssa.OpAdd16,
  1042  	opAndType{OADD, TUINT16}:  ssa.OpAdd16,
  1043  	opAndType{OADD, TINT32}:   ssa.OpAdd32,
  1044  	opAndType{OADD, TUINT32}:  ssa.OpAdd32,
  1045  	opAndType{OADD, TPTR32}:   ssa.OpAdd32,
  1046  	opAndType{OADD, TINT64}:   ssa.OpAdd64,
  1047  	opAndType{OADD, TUINT64}:  ssa.OpAdd64,
  1048  	opAndType{OADD, TPTR64}:   ssa.OpAdd64,
  1049  	opAndType{OADD, TFLOAT32}: ssa.OpAdd32F,
  1050  	opAndType{OADD, TFLOAT64}: ssa.OpAdd64F,
  1051  
  1052  	opAndType{OSUB, TINT8}:    ssa.OpSub8,
  1053  	opAndType{OSUB, TUINT8}:   ssa.OpSub8,
  1054  	opAndType{OSUB, TINT16}:   ssa.OpSub16,
  1055  	opAndType{OSUB, TUINT16}:  ssa.OpSub16,
  1056  	opAndType{OSUB, TINT32}:   ssa.OpSub32,
  1057  	opAndType{OSUB, TUINT32}:  ssa.OpSub32,
  1058  	opAndType{OSUB, TINT64}:   ssa.OpSub64,
  1059  	opAndType{OSUB, TUINT64}:  ssa.OpSub64,
  1060  	opAndType{OSUB, TFLOAT32}: ssa.OpSub32F,
  1061  	opAndType{OSUB, TFLOAT64}: ssa.OpSub64F,
  1062  
  1063  	opAndType{ONOT, TBOOL}: ssa.OpNot,
  1064  
  1065  	opAndType{OMINUS, TINT8}:    ssa.OpNeg8,
  1066  	opAndType{OMINUS, TUINT8}:   ssa.OpNeg8,
  1067  	opAndType{OMINUS, TINT16}:   ssa.OpNeg16,
  1068  	opAndType{OMINUS, TUINT16}:  ssa.OpNeg16,
  1069  	opAndType{OMINUS, TINT32}:   ssa.OpNeg32,
  1070  	opAndType{OMINUS, TUINT32}:  ssa.OpNeg32,
  1071  	opAndType{OMINUS, TINT64}:   ssa.OpNeg64,
  1072  	opAndType{OMINUS, TUINT64}:  ssa.OpNeg64,
  1073  	opAndType{OMINUS, TFLOAT32}: ssa.OpNeg32F,
  1074  	opAndType{OMINUS, TFLOAT64}: ssa.OpNeg64F,
  1075  
  1076  	opAndType{OCOM, TINT8}:   ssa.OpCom8,
  1077  	opAndType{OCOM, TUINT8}:  ssa.OpCom8,
  1078  	opAndType{OCOM, TINT16}:  ssa.OpCom16,
  1079  	opAndType{OCOM, TUINT16}: ssa.OpCom16,
  1080  	opAndType{OCOM, TINT32}:  ssa.OpCom32,
  1081  	opAndType{OCOM, TUINT32}: ssa.OpCom32,
  1082  	opAndType{OCOM, TINT64}:  ssa.OpCom64,
  1083  	opAndType{OCOM, TUINT64}: ssa.OpCom64,
  1084  
  1085  	opAndType{OIMAG, TCOMPLEX64}:  ssa.OpComplexImag,
  1086  	opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag,
  1087  	opAndType{OREAL, TCOMPLEX64}:  ssa.OpComplexReal,
  1088  	opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal,
  1089  
  1090  	opAndType{OMUL, TINT8}:    ssa.OpMul8,
  1091  	opAndType{OMUL, TUINT8}:   ssa.OpMul8,
  1092  	opAndType{OMUL, TINT16}:   ssa.OpMul16,
  1093  	opAndType{OMUL, TUINT16}:  ssa.OpMul16,
  1094  	opAndType{OMUL, TINT32}:   ssa.OpMul32,
  1095  	opAndType{OMUL, TUINT32}:  ssa.OpMul32,
  1096  	opAndType{OMUL, TINT64}:   ssa.OpMul64,
  1097  	opAndType{OMUL, TUINT64}:  ssa.OpMul64,
  1098  	opAndType{OMUL, TFLOAT32}: ssa.OpMul32F,
  1099  	opAndType{OMUL, TFLOAT64}: ssa.OpMul64F,
  1100  
  1101  	opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F,
  1102  	opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F,
  1103  
  1104  	opAndType{ODIV, TINT8}:   ssa.OpDiv8,
  1105  	opAndType{ODIV, TUINT8}:  ssa.OpDiv8u,
  1106  	opAndType{ODIV, TINT16}:  ssa.OpDiv16,
  1107  	opAndType{ODIV, TUINT16}: ssa.OpDiv16u,
  1108  	opAndType{ODIV, TINT32}:  ssa.OpDiv32,
  1109  	opAndType{ODIV, TUINT32}: ssa.OpDiv32u,
  1110  	opAndType{ODIV, TINT64}:  ssa.OpDiv64,
  1111  	opAndType{ODIV, TUINT64}: ssa.OpDiv64u,
  1112  
  1113  	opAndType{OMOD, TINT8}:   ssa.OpMod8,
  1114  	opAndType{OMOD, TUINT8}:  ssa.OpMod8u,
  1115  	opAndType{OMOD, TINT16}:  ssa.OpMod16,
  1116  	opAndType{OMOD, TUINT16}: ssa.OpMod16u,
  1117  	opAndType{OMOD, TINT32}:  ssa.OpMod32,
  1118  	opAndType{OMOD, TUINT32}: ssa.OpMod32u,
  1119  	opAndType{OMOD, TINT64}:  ssa.OpMod64,
  1120  	opAndType{OMOD, TUINT64}: ssa.OpMod64u,
  1121  
  1122  	opAndType{OAND, TINT8}:   ssa.OpAnd8,
  1123  	opAndType{OAND, TUINT8}:  ssa.OpAnd8,
  1124  	opAndType{OAND, TINT16}:  ssa.OpAnd16,
  1125  	opAndType{OAND, TUINT16}: ssa.OpAnd16,
  1126  	opAndType{OAND, TINT32}:  ssa.OpAnd32,
  1127  	opAndType{OAND, TUINT32}: ssa.OpAnd32,
  1128  	opAndType{OAND, TINT64}:  ssa.OpAnd64,
  1129  	opAndType{OAND, TUINT64}: ssa.OpAnd64,
  1130  
  1131  	opAndType{OOR, TINT8}:   ssa.OpOr8,
  1132  	opAndType{OOR, TUINT8}:  ssa.OpOr8,
  1133  	opAndType{OOR, TINT16}:  ssa.OpOr16,
  1134  	opAndType{OOR, TUINT16}: ssa.OpOr16,
  1135  	opAndType{OOR, TINT32}:  ssa.OpOr32,
  1136  	opAndType{OOR, TUINT32}: ssa.OpOr32,
  1137  	opAndType{OOR, TINT64}:  ssa.OpOr64,
  1138  	opAndType{OOR, TUINT64}: ssa.OpOr64,
  1139  
  1140  	opAndType{OXOR, TINT8}:   ssa.OpXor8,
  1141  	opAndType{OXOR, TUINT8}:  ssa.OpXor8,
  1142  	opAndType{OXOR, TINT16}:  ssa.OpXor16,
  1143  	opAndType{OXOR, TUINT16}: ssa.OpXor16,
  1144  	opAndType{OXOR, TINT32}:  ssa.OpXor32,
  1145  	opAndType{OXOR, TUINT32}: ssa.OpXor32,
  1146  	opAndType{OXOR, TINT64}:  ssa.OpXor64,
  1147  	opAndType{OXOR, TUINT64}: ssa.OpXor64,
  1148  
  1149  	opAndType{OEQ, TBOOL}:      ssa.OpEqB,
  1150  	opAndType{OEQ, TINT8}:      ssa.OpEq8,
  1151  	opAndType{OEQ, TUINT8}:     ssa.OpEq8,
  1152  	opAndType{OEQ, TINT16}:     ssa.OpEq16,
  1153  	opAndType{OEQ, TUINT16}:    ssa.OpEq16,
  1154  	opAndType{OEQ, TINT32}:     ssa.OpEq32,
  1155  	opAndType{OEQ, TUINT32}:    ssa.OpEq32,
  1156  	opAndType{OEQ, TINT64}:     ssa.OpEq64,
  1157  	opAndType{OEQ, TUINT64}:    ssa.OpEq64,
  1158  	opAndType{OEQ, TINTER}:     ssa.OpEqInter,
  1159  	opAndType{OEQ, TSLICE}:     ssa.OpEqSlice,
  1160  	opAndType{OEQ, TFUNC}:      ssa.OpEqPtr,
  1161  	opAndType{OEQ, TMAP}:       ssa.OpEqPtr,
  1162  	opAndType{OEQ, TCHAN}:      ssa.OpEqPtr,
  1163  	opAndType{OEQ, TPTR32}:     ssa.OpEqPtr,
  1164  	opAndType{OEQ, TPTR64}:     ssa.OpEqPtr,
  1165  	opAndType{OEQ, TUINTPTR}:   ssa.OpEqPtr,
  1166  	opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr,
  1167  	opAndType{OEQ, TFLOAT64}:   ssa.OpEq64F,
  1168  	opAndType{OEQ, TFLOAT32}:   ssa.OpEq32F,
  1169  
  1170  	opAndType{ONE, TBOOL}:      ssa.OpNeqB,
  1171  	opAndType{ONE, TINT8}:      ssa.OpNeq8,
  1172  	opAndType{ONE, TUINT8}:     ssa.OpNeq8,
  1173  	opAndType{ONE, TINT16}:     ssa.OpNeq16,
  1174  	opAndType{ONE, TUINT16}:    ssa.OpNeq16,
  1175  	opAndType{ONE, TINT32}:     ssa.OpNeq32,
  1176  	opAndType{ONE, TUINT32}:    ssa.OpNeq32,
  1177  	opAndType{ONE, TINT64}:     ssa.OpNeq64,
  1178  	opAndType{ONE, TUINT64}:    ssa.OpNeq64,
  1179  	opAndType{ONE, TINTER}:     ssa.OpNeqInter,
  1180  	opAndType{ONE, TSLICE}:     ssa.OpNeqSlice,
  1181  	opAndType{ONE, TFUNC}:      ssa.OpNeqPtr,
  1182  	opAndType{ONE, TMAP}:       ssa.OpNeqPtr,
  1183  	opAndType{ONE, TCHAN}:      ssa.OpNeqPtr,
  1184  	opAndType{ONE, TPTR32}:     ssa.OpNeqPtr,
  1185  	opAndType{ONE, TPTR64}:     ssa.OpNeqPtr,
  1186  	opAndType{ONE, TUINTPTR}:   ssa.OpNeqPtr,
  1187  	opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr,
  1188  	opAndType{ONE, TFLOAT64}:   ssa.OpNeq64F,
  1189  	opAndType{ONE, TFLOAT32}:   ssa.OpNeq32F,
  1190  
  1191  	opAndType{OLT, TINT8}:    ssa.OpLess8,
  1192  	opAndType{OLT, TUINT8}:   ssa.OpLess8U,
  1193  	opAndType{OLT, TINT16}:   ssa.OpLess16,
  1194  	opAndType{OLT, TUINT16}:  ssa.OpLess16U,
  1195  	opAndType{OLT, TINT32}:   ssa.OpLess32,
  1196  	opAndType{OLT, TUINT32}:  ssa.OpLess32U,
  1197  	opAndType{OLT, TINT64}:   ssa.OpLess64,
  1198  	opAndType{OLT, TUINT64}:  ssa.OpLess64U,
  1199  	opAndType{OLT, TFLOAT64}: ssa.OpLess64F,
  1200  	opAndType{OLT, TFLOAT32}: ssa.OpLess32F,
  1201  
  1202  	opAndType{OGT, TINT8}:    ssa.OpGreater8,
  1203  	opAndType{OGT, TUINT8}:   ssa.OpGreater8U,
  1204  	opAndType{OGT, TINT16}:   ssa.OpGreater16,
  1205  	opAndType{OGT, TUINT16}:  ssa.OpGreater16U,
  1206  	opAndType{OGT, TINT32}:   ssa.OpGreater32,
  1207  	opAndType{OGT, TUINT32}:  ssa.OpGreater32U,
  1208  	opAndType{OGT, TINT64}:   ssa.OpGreater64,
  1209  	opAndType{OGT, TUINT64}:  ssa.OpGreater64U,
  1210  	opAndType{OGT, TFLOAT64}: ssa.OpGreater64F,
  1211  	opAndType{OGT, TFLOAT32}: ssa.OpGreater32F,
  1212  
  1213  	opAndType{OLE, TINT8}:    ssa.OpLeq8,
  1214  	opAndType{OLE, TUINT8}:   ssa.OpLeq8U,
  1215  	opAndType{OLE, TINT16}:   ssa.OpLeq16,
  1216  	opAndType{OLE, TUINT16}:  ssa.OpLeq16U,
  1217  	opAndType{OLE, TINT32}:   ssa.OpLeq32,
  1218  	opAndType{OLE, TUINT32}:  ssa.OpLeq32U,
  1219  	opAndType{OLE, TINT64}:   ssa.OpLeq64,
  1220  	opAndType{OLE, TUINT64}:  ssa.OpLeq64U,
  1221  	opAndType{OLE, TFLOAT64}: ssa.OpLeq64F,
  1222  	opAndType{OLE, TFLOAT32}: ssa.OpLeq32F,
  1223  
  1224  	opAndType{OGE, TINT8}:    ssa.OpGeq8,
  1225  	opAndType{OGE, TUINT8}:   ssa.OpGeq8U,
  1226  	opAndType{OGE, TINT16}:   ssa.OpGeq16,
  1227  	opAndType{OGE, TUINT16}:  ssa.OpGeq16U,
  1228  	opAndType{OGE, TINT32}:   ssa.OpGeq32,
  1229  	opAndType{OGE, TUINT32}:  ssa.OpGeq32U,
  1230  	opAndType{OGE, TINT64}:   ssa.OpGeq64,
  1231  	opAndType{OGE, TUINT64}:  ssa.OpGeq64U,
  1232  	opAndType{OGE, TFLOAT64}: ssa.OpGeq64F,
  1233  	opAndType{OGE, TFLOAT32}: ssa.OpGeq32F,
  1234  }
  1235  
  1236  func (s *state) concreteEtype(t *types.Type) types.EType {
  1237  	e := t.Etype
  1238  	switch e {
  1239  	default:
  1240  		return e
  1241  	case TINT:
  1242  		if s.config.PtrSize == 8 {
  1243  			return TINT64
  1244  		}
  1245  		return TINT32
  1246  	case TUINT:
  1247  		if s.config.PtrSize == 8 {
  1248  			return TUINT64
  1249  		}
  1250  		return TUINT32
  1251  	case TUINTPTR:
  1252  		if s.config.PtrSize == 8 {
  1253  			return TUINT64
  1254  		}
  1255  		return TUINT32
  1256  	}
  1257  }
  1258  
  1259  func (s *state) ssaOp(op Op, t *types.Type) ssa.Op {
  1260  	etype := s.concreteEtype(t)
  1261  	x, ok := opToSSA[opAndType{op, etype}]
  1262  	if !ok {
  1263  		s.Fatalf("unhandled binary op %v %s", op, etype)
  1264  	}
  1265  	return x
  1266  }
  1267  
  1268  func floatForComplex(t *types.Type) *types.Type {
  1269  	if t.Size() == 8 {
  1270  		return types.Types[TFLOAT32]
  1271  	} else {
  1272  		return types.Types[TFLOAT64]
  1273  	}
  1274  }
  1275  
  1276  type opAndTwoTypes struct {
  1277  	op     Op
  1278  	etype1 types.EType
  1279  	etype2 types.EType
  1280  }
  1281  
  1282  type twoTypes struct {
  1283  	etype1 types.EType
  1284  	etype2 types.EType
  1285  }
  1286  
  1287  type twoOpsAndType struct {
  1288  	op1              ssa.Op
  1289  	op2              ssa.Op
  1290  	intermediateType types.EType
  1291  }
  1292  
  1293  var fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1294  
  1295  	twoTypes{TINT8, TFLOAT32}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32},
  1296  	twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32},
  1297  	twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32},
  1298  	twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64},
  1299  
  1300  	twoTypes{TINT8, TFLOAT64}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32},
  1301  	twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32},
  1302  	twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32},
  1303  	twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64},
  1304  
  1305  	twoTypes{TFLOAT32, TINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1306  	twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1307  	twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32},
  1308  	twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64},
  1309  
  1310  	twoTypes{TFLOAT64, TINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1311  	twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1312  	twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32},
  1313  	twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64},
  1314  	// unsigned
  1315  	twoTypes{TUINT8, TFLOAT32}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32},
  1316  	twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32},
  1317  	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned
  1318  	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto32F, branchy code expansion instead
  1319  
  1320  	twoTypes{TUINT8, TFLOAT64}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32},
  1321  	twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32},
  1322  	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned
  1323  	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto64F, branchy code expansion instead
  1324  
  1325  	twoTypes{TFLOAT32, TUINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1326  	twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1327  	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1328  	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt32Fto64U, branchy code expansion instead
  1329  
  1330  	twoTypes{TFLOAT64, TUINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1331  	twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1332  	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1333  	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt64Fto64U, branchy code expansion instead
  1334  
  1335  	// float
  1336  	twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32},
  1337  	twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpRound64F, ssa.OpCopy, TFLOAT64},
  1338  	twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpRound32F, ssa.OpCopy, TFLOAT32},
  1339  	twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64},
  1340  }
  1341  
  1342  // this map is used only for 32-bit arch, and only includes the difference
  1343  // on 32-bit arch, don't use int64<->float conversion for uint32
  1344  var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{
  1345  	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, TUINT32},
  1346  	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, TUINT32},
  1347  	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, TUINT32},
  1348  	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, TUINT32},
  1349  }
  1350  
  1351  // uint64<->float conversions, only on machines that have intructions for that
  1352  var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1353  	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto32F, TUINT64},
  1354  	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto64F, TUINT64},
  1355  	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpCvt32Fto64U, ssa.OpCopy, TUINT64},
  1356  	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpCvt64Fto64U, ssa.OpCopy, TUINT64},
  1357  }
  1358  
  1359  var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{
  1360  	opAndTwoTypes{OLSH, TINT8, TUINT8}:   ssa.OpLsh8x8,
  1361  	opAndTwoTypes{OLSH, TUINT8, TUINT8}:  ssa.OpLsh8x8,
  1362  	opAndTwoTypes{OLSH, TINT8, TUINT16}:  ssa.OpLsh8x16,
  1363  	opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16,
  1364  	opAndTwoTypes{OLSH, TINT8, TUINT32}:  ssa.OpLsh8x32,
  1365  	opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32,
  1366  	opAndTwoTypes{OLSH, TINT8, TUINT64}:  ssa.OpLsh8x64,
  1367  	opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64,
  1368  
  1369  	opAndTwoTypes{OLSH, TINT16, TUINT8}:   ssa.OpLsh16x8,
  1370  	opAndTwoTypes{OLSH, TUINT16, TUINT8}:  ssa.OpLsh16x8,
  1371  	opAndTwoTypes{OLSH, TINT16, TUINT16}:  ssa.OpLsh16x16,
  1372  	opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16,
  1373  	opAndTwoTypes{OLSH, TINT16, TUINT32}:  ssa.OpLsh16x32,
  1374  	opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32,
  1375  	opAndTwoTypes{OLSH, TINT16, TUINT64}:  ssa.OpLsh16x64,
  1376  	opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64,
  1377  
  1378  	opAndTwoTypes{OLSH, TINT32, TUINT8}:   ssa.OpLsh32x8,
  1379  	opAndTwoTypes{OLSH, TUINT32, TUINT8}:  ssa.OpLsh32x8,
  1380  	opAndTwoTypes{OLSH, TINT32, TUINT16}:  ssa.OpLsh32x16,
  1381  	opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16,
  1382  	opAndTwoTypes{OLSH, TINT32, TUINT32}:  ssa.OpLsh32x32,
  1383  	opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32,
  1384  	opAndTwoTypes{OLSH, TINT32, TUINT64}:  ssa.OpLsh32x64,
  1385  	opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64,
  1386  
  1387  	opAndTwoTypes{OLSH, TINT64, TUINT8}:   ssa.OpLsh64x8,
  1388  	opAndTwoTypes{OLSH, TUINT64, TUINT8}:  ssa.OpLsh64x8,
  1389  	opAndTwoTypes{OLSH, TINT64, TUINT16}:  ssa.OpLsh64x16,
  1390  	opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16,
  1391  	opAndTwoTypes{OLSH, TINT64, TUINT32}:  ssa.OpLsh64x32,
  1392  	opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32,
  1393  	opAndTwoTypes{OLSH, TINT64, TUINT64}:  ssa.OpLsh64x64,
  1394  	opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64,
  1395  
  1396  	opAndTwoTypes{ORSH, TINT8, TUINT8}:   ssa.OpRsh8x8,
  1397  	opAndTwoTypes{ORSH, TUINT8, TUINT8}:  ssa.OpRsh8Ux8,
  1398  	opAndTwoTypes{ORSH, TINT8, TUINT16}:  ssa.OpRsh8x16,
  1399  	opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16,
  1400  	opAndTwoTypes{ORSH, TINT8, TUINT32}:  ssa.OpRsh8x32,
  1401  	opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32,
  1402  	opAndTwoTypes{ORSH, TINT8, TUINT64}:  ssa.OpRsh8x64,
  1403  	opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64,
  1404  
  1405  	opAndTwoTypes{ORSH, TINT16, TUINT8}:   ssa.OpRsh16x8,
  1406  	opAndTwoTypes{ORSH, TUINT16, TUINT8}:  ssa.OpRsh16Ux8,
  1407  	opAndTwoTypes{ORSH, TINT16, TUINT16}:  ssa.OpRsh16x16,
  1408  	opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16,
  1409  	opAndTwoTypes{ORSH, TINT16, TUINT32}:  ssa.OpRsh16x32,
  1410  	opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32,
  1411  	opAndTwoTypes{ORSH, TINT16, TUINT64}:  ssa.OpRsh16x64,
  1412  	opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64,
  1413  
  1414  	opAndTwoTypes{ORSH, TINT32, TUINT8}:   ssa.OpRsh32x8,
  1415  	opAndTwoTypes{ORSH, TUINT32, TUINT8}:  ssa.OpRsh32Ux8,
  1416  	opAndTwoTypes{ORSH, TINT32, TUINT16}:  ssa.OpRsh32x16,
  1417  	opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16,
  1418  	opAndTwoTypes{ORSH, TINT32, TUINT32}:  ssa.OpRsh32x32,
  1419  	opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32,
  1420  	opAndTwoTypes{ORSH, TINT32, TUINT64}:  ssa.OpRsh32x64,
  1421  	opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64,
  1422  
  1423  	opAndTwoTypes{ORSH, TINT64, TUINT8}:   ssa.OpRsh64x8,
  1424  	opAndTwoTypes{ORSH, TUINT64, TUINT8}:  ssa.OpRsh64Ux8,
  1425  	opAndTwoTypes{ORSH, TINT64, TUINT16}:  ssa.OpRsh64x16,
  1426  	opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16,
  1427  	opAndTwoTypes{ORSH, TINT64, TUINT32}:  ssa.OpRsh64x32,
  1428  	opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32,
  1429  	opAndTwoTypes{ORSH, TINT64, TUINT64}:  ssa.OpRsh64x64,
  1430  	opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64,
  1431  }
  1432  
  1433  func (s *state) ssaShiftOp(op Op, t *types.Type, u *types.Type) ssa.Op {
  1434  	etype1 := s.concreteEtype(t)
  1435  	etype2 := s.concreteEtype(u)
  1436  	x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}]
  1437  	if !ok {
  1438  		s.Fatalf("unhandled shift op %v etype=%s/%s", op, etype1, etype2)
  1439  	}
  1440  	return x
  1441  }
  1442  
  1443  // expr converts the expression n to ssa, adds it to s and returns the ssa result.
  1444  func (s *state) expr(n *Node) *ssa.Value {
  1445  	if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) {
  1446  		// ONAMEs and named OLITERALs have the line number
  1447  		// of the decl, not the use. See issue 14742.
  1448  		s.pushLine(n.Pos)
  1449  		defer s.popLine()
  1450  	}
  1451  
  1452  	s.stmtList(n.Ninit)
  1453  	switch n.Op {
  1454  	case OARRAYBYTESTRTMP:
  1455  		slice := s.expr(n.Left)
  1456  		ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice)
  1457  		len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
  1458  		return s.newValue2(ssa.OpStringMake, n.Type, ptr, len)
  1459  	case OSTRARRAYBYTETMP:
  1460  		str := s.expr(n.Left)
  1461  		ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, str)
  1462  		len := s.newValue1(ssa.OpStringLen, types.Types[TINT], str)
  1463  		return s.newValue3(ssa.OpSliceMake, n.Type, ptr, len, len)
  1464  	case OCFUNC:
  1465  		aux := n.Left.Sym.Linksym()
  1466  		return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb)
  1467  	case ONAME:
  1468  		if n.Class() == PFUNC {
  1469  			// "value" of a function is the address of the function's closure
  1470  			sym := funcsym(n.Sym).Linksym()
  1471  			return s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type), sym, s.sb)
  1472  		}
  1473  		if s.canSSA(n) {
  1474  			return s.variable(n, n.Type)
  1475  		}
  1476  		addr := s.addr(n, false)
  1477  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1478  	case OCLOSUREVAR:
  1479  		addr := s.addr(n, false)
  1480  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1481  	case OLITERAL:
  1482  		switch u := n.Val().U.(type) {
  1483  		case *Mpint:
  1484  			i := u.Int64()
  1485  			switch n.Type.Size() {
  1486  			case 1:
  1487  				return s.constInt8(n.Type, int8(i))
  1488  			case 2:
  1489  				return s.constInt16(n.Type, int16(i))
  1490  			case 4:
  1491  				return s.constInt32(n.Type, int32(i))
  1492  			case 8:
  1493  				return s.constInt64(n.Type, i)
  1494  			default:
  1495  				s.Fatalf("bad integer size %d", n.Type.Size())
  1496  				return nil
  1497  			}
  1498  		case string:
  1499  			if u == "" {
  1500  				return s.constEmptyString(n.Type)
  1501  			}
  1502  			return s.entryNewValue0A(ssa.OpConstString, n.Type, u)
  1503  		case bool:
  1504  			return s.constBool(u)
  1505  		case *NilVal:
  1506  			t := n.Type
  1507  			switch {
  1508  			case t.IsSlice():
  1509  				return s.constSlice(t)
  1510  			case t.IsInterface():
  1511  				return s.constInterface(t)
  1512  			default:
  1513  				return s.constNil(t)
  1514  			}
  1515  		case *Mpflt:
  1516  			switch n.Type.Size() {
  1517  			case 4:
  1518  				return s.constFloat32(n.Type, u.Float32())
  1519  			case 8:
  1520  				return s.constFloat64(n.Type, u.Float64())
  1521  			default:
  1522  				s.Fatalf("bad float size %d", n.Type.Size())
  1523  				return nil
  1524  			}
  1525  		case *Mpcplx:
  1526  			r := &u.Real
  1527  			i := &u.Imag
  1528  			switch n.Type.Size() {
  1529  			case 8:
  1530  				pt := types.Types[TFLOAT32]
  1531  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1532  					s.constFloat32(pt, r.Float32()),
  1533  					s.constFloat32(pt, i.Float32()))
  1534  			case 16:
  1535  				pt := types.Types[TFLOAT64]
  1536  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1537  					s.constFloat64(pt, r.Float64()),
  1538  					s.constFloat64(pt, i.Float64()))
  1539  			default:
  1540  				s.Fatalf("bad float size %d", n.Type.Size())
  1541  				return nil
  1542  			}
  1543  
  1544  		default:
  1545  			s.Fatalf("unhandled OLITERAL %v", n.Val().Ctype())
  1546  			return nil
  1547  		}
  1548  	case OCONVNOP:
  1549  		to := n.Type
  1550  		from := n.Left.Type
  1551  
  1552  		// Assume everything will work out, so set up our return value.
  1553  		// Anything interesting that happens from here is a fatal.
  1554  		x := s.expr(n.Left)
  1555  
  1556  		// Special case for not confusing GC and liveness.
  1557  		// We don't want pointers accidentally classified
  1558  		// as not-pointers or vice-versa because of copy
  1559  		// elision.
  1560  		if to.IsPtrShaped() != from.IsPtrShaped() {
  1561  			return s.newValue2(ssa.OpConvert, to, x, s.mem())
  1562  		}
  1563  
  1564  		v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type
  1565  
  1566  		// CONVNOP closure
  1567  		if to.Etype == TFUNC && from.IsPtrShaped() {
  1568  			return v
  1569  		}
  1570  
  1571  		// named <--> unnamed type or typed <--> untyped const
  1572  		if from.Etype == to.Etype {
  1573  			return v
  1574  		}
  1575  
  1576  		// unsafe.Pointer <--> *T
  1577  		if to.Etype == TUNSAFEPTR && from.IsPtr() || from.Etype == TUNSAFEPTR && to.IsPtr() {
  1578  			return v
  1579  		}
  1580  
  1581  		dowidth(from)
  1582  		dowidth(to)
  1583  		if from.Width != to.Width {
  1584  			s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width)
  1585  			return nil
  1586  		}
  1587  		if etypesign(from.Etype) != etypesign(to.Etype) {
  1588  			s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype)
  1589  			return nil
  1590  		}
  1591  
  1592  		if instrumenting {
  1593  			// These appear to be fine, but they fail the
  1594  			// integer constraint below, so okay them here.
  1595  			// Sample non-integer conversion: map[string]string -> *uint8
  1596  			return v
  1597  		}
  1598  
  1599  		if etypesign(from.Etype) == 0 {
  1600  			s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to)
  1601  			return nil
  1602  		}
  1603  
  1604  		// integer, same width, same sign
  1605  		return v
  1606  
  1607  	case OCONV:
  1608  		x := s.expr(n.Left)
  1609  		ft := n.Left.Type // from type
  1610  		tt := n.Type      // to type
  1611  		if ft.IsBoolean() && tt.IsKind(TUINT8) {
  1612  			// Bool -> uint8 is generated internally when indexing into runtime.staticbyte.
  1613  			return s.newValue1(ssa.OpCopy, n.Type, x)
  1614  		}
  1615  		if ft.IsInteger() && tt.IsInteger() {
  1616  			var op ssa.Op
  1617  			if tt.Size() == ft.Size() {
  1618  				op = ssa.OpCopy
  1619  			} else if tt.Size() < ft.Size() {
  1620  				// truncation
  1621  				switch 10*ft.Size() + tt.Size() {
  1622  				case 21:
  1623  					op = ssa.OpTrunc16to8
  1624  				case 41:
  1625  					op = ssa.OpTrunc32to8
  1626  				case 42:
  1627  					op = ssa.OpTrunc32to16
  1628  				case 81:
  1629  					op = ssa.OpTrunc64to8
  1630  				case 82:
  1631  					op = ssa.OpTrunc64to16
  1632  				case 84:
  1633  					op = ssa.OpTrunc64to32
  1634  				default:
  1635  					s.Fatalf("weird integer truncation %v -> %v", ft, tt)
  1636  				}
  1637  			} else if ft.IsSigned() {
  1638  				// sign extension
  1639  				switch 10*ft.Size() + tt.Size() {
  1640  				case 12:
  1641  					op = ssa.OpSignExt8to16
  1642  				case 14:
  1643  					op = ssa.OpSignExt8to32
  1644  				case 18:
  1645  					op = ssa.OpSignExt8to64
  1646  				case 24:
  1647  					op = ssa.OpSignExt16to32
  1648  				case 28:
  1649  					op = ssa.OpSignExt16to64
  1650  				case 48:
  1651  					op = ssa.OpSignExt32to64
  1652  				default:
  1653  					s.Fatalf("bad integer sign extension %v -> %v", ft, tt)
  1654  				}
  1655  			} else {
  1656  				// zero extension
  1657  				switch 10*ft.Size() + tt.Size() {
  1658  				case 12:
  1659  					op = ssa.OpZeroExt8to16
  1660  				case 14:
  1661  					op = ssa.OpZeroExt8to32
  1662  				case 18:
  1663  					op = ssa.OpZeroExt8to64
  1664  				case 24:
  1665  					op = ssa.OpZeroExt16to32
  1666  				case 28:
  1667  					op = ssa.OpZeroExt16to64
  1668  				case 48:
  1669  					op = ssa.OpZeroExt32to64
  1670  				default:
  1671  					s.Fatalf("weird integer sign extension %v -> %v", ft, tt)
  1672  				}
  1673  			}
  1674  			return s.newValue1(op, n.Type, x)
  1675  		}
  1676  
  1677  		if ft.IsFloat() || tt.IsFloat() {
  1678  			conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]
  1679  			if s.config.RegSize == 4 && thearch.LinkArch.Family != sys.MIPS {
  1680  				if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1681  					conv = conv1
  1682  				}
  1683  			}
  1684  			if thearch.LinkArch.Family == sys.ARM64 {
  1685  				if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1686  					conv = conv1
  1687  				}
  1688  			}
  1689  
  1690  			if thearch.LinkArch.Family == sys.MIPS {
  1691  				if ft.Size() == 4 && ft.IsInteger() && !ft.IsSigned() {
  1692  					// tt is float32 or float64, and ft is also unsigned
  1693  					if tt.Size() == 4 {
  1694  						return s.uint32Tofloat32(n, x, ft, tt)
  1695  					}
  1696  					if tt.Size() == 8 {
  1697  						return s.uint32Tofloat64(n, x, ft, tt)
  1698  					}
  1699  				} else if tt.Size() == 4 && tt.IsInteger() && !tt.IsSigned() {
  1700  					// ft is float32 or float64, and tt is unsigned integer
  1701  					if ft.Size() == 4 {
  1702  						return s.float32ToUint32(n, x, ft, tt)
  1703  					}
  1704  					if ft.Size() == 8 {
  1705  						return s.float64ToUint32(n, x, ft, tt)
  1706  					}
  1707  				}
  1708  			}
  1709  
  1710  			if !ok {
  1711  				s.Fatalf("weird float conversion %v -> %v", ft, tt)
  1712  			}
  1713  			op1, op2, it := conv.op1, conv.op2, conv.intermediateType
  1714  
  1715  			if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid {
  1716  				// normal case, not tripping over unsigned 64
  1717  				if op1 == ssa.OpCopy {
  1718  					if op2 == ssa.OpCopy {
  1719  						return x
  1720  					}
  1721  					return s.newValue1(op2, n.Type, x)
  1722  				}
  1723  				if op2 == ssa.OpCopy {
  1724  					return s.newValue1(op1, n.Type, x)
  1725  				}
  1726  				return s.newValue1(op2, n.Type, s.newValue1(op1, types.Types[it], x))
  1727  			}
  1728  			// Tricky 64-bit unsigned cases.
  1729  			if ft.IsInteger() {
  1730  				// tt is float32 or float64, and ft is also unsigned
  1731  				if tt.Size() == 4 {
  1732  					return s.uint64Tofloat32(n, x, ft, tt)
  1733  				}
  1734  				if tt.Size() == 8 {
  1735  					return s.uint64Tofloat64(n, x, ft, tt)
  1736  				}
  1737  				s.Fatalf("weird unsigned integer to float conversion %v -> %v", ft, tt)
  1738  			}
  1739  			// ft is float32 or float64, and tt is unsigned integer
  1740  			if ft.Size() == 4 {
  1741  				return s.float32ToUint64(n, x, ft, tt)
  1742  			}
  1743  			if ft.Size() == 8 {
  1744  				return s.float64ToUint64(n, x, ft, tt)
  1745  			}
  1746  			s.Fatalf("weird float to unsigned integer conversion %v -> %v", ft, tt)
  1747  			return nil
  1748  		}
  1749  
  1750  		if ft.IsComplex() && tt.IsComplex() {
  1751  			var op ssa.Op
  1752  			if ft.Size() == tt.Size() {
  1753  				switch ft.Size() {
  1754  				case 8:
  1755  					op = ssa.OpRound32F
  1756  				case 16:
  1757  					op = ssa.OpRound64F
  1758  				default:
  1759  					s.Fatalf("weird complex conversion %v -> %v", ft, tt)
  1760  				}
  1761  			} else if ft.Size() == 8 && tt.Size() == 16 {
  1762  				op = ssa.OpCvt32Fto64F
  1763  			} else if ft.Size() == 16 && tt.Size() == 8 {
  1764  				op = ssa.OpCvt64Fto32F
  1765  			} else {
  1766  				s.Fatalf("weird complex conversion %v -> %v", ft, tt)
  1767  			}
  1768  			ftp := floatForComplex(ft)
  1769  			ttp := floatForComplex(tt)
  1770  			return s.newValue2(ssa.OpComplexMake, tt,
  1771  				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)),
  1772  				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x)))
  1773  		}
  1774  
  1775  		s.Fatalf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype)
  1776  		return nil
  1777  
  1778  	case ODOTTYPE:
  1779  		res, _ := s.dottype(n, false)
  1780  		return res
  1781  
  1782  	// binary ops
  1783  	case OLT, OEQ, ONE, OLE, OGE, OGT:
  1784  		a := s.expr(n.Left)
  1785  		b := s.expr(n.Right)
  1786  		if n.Left.Type.IsComplex() {
  1787  			pt := floatForComplex(n.Left.Type)
  1788  			op := s.ssaOp(OEQ, pt)
  1789  			r := s.newValue2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b))
  1790  			i := s.newValue2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))
  1791  			c := s.newValue2(ssa.OpAndB, types.Types[TBOOL], r, i)
  1792  			switch n.Op {
  1793  			case OEQ:
  1794  				return c
  1795  			case ONE:
  1796  				return s.newValue1(ssa.OpNot, types.Types[TBOOL], c)
  1797  			default:
  1798  				s.Fatalf("ordered complex compare %v", n.Op)
  1799  			}
  1800  		}
  1801  		return s.newValue2(s.ssaOp(n.Op, n.Left.Type), types.Types[TBOOL], a, b)
  1802  	case OMUL:
  1803  		a := s.expr(n.Left)
  1804  		b := s.expr(n.Right)
  1805  		if n.Type.IsComplex() {
  1806  			mulop := ssa.OpMul64F
  1807  			addop := ssa.OpAdd64F
  1808  			subop := ssa.OpSub64F
  1809  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1810  			wt := types.Types[TFLOAT64]   // Compute in Float64 to minimize cancelation error
  1811  
  1812  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1813  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1814  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1815  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1816  
  1817  			if pt != wt { // Widen for calculation
  1818  				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
  1819  				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
  1820  				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
  1821  				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
  1822  			}
  1823  
  1824  			xreal := s.newValue2(subop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
  1825  			ximag := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, bimag), s.newValue2(mulop, wt, aimag, breal))
  1826  
  1827  			if pt != wt { // Narrow to store back
  1828  				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
  1829  				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
  1830  			}
  1831  
  1832  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1833  		}
  1834  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1835  
  1836  	case ODIV:
  1837  		a := s.expr(n.Left)
  1838  		b := s.expr(n.Right)
  1839  		if n.Type.IsComplex() {
  1840  			// TODO this is not executed because the front-end substitutes a runtime call.
  1841  			// That probably ought to change; with modest optimization the widen/narrow
  1842  			// conversions could all be elided in larger expression trees.
  1843  			mulop := ssa.OpMul64F
  1844  			addop := ssa.OpAdd64F
  1845  			subop := ssa.OpSub64F
  1846  			divop := ssa.OpDiv64F
  1847  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1848  			wt := types.Types[TFLOAT64]   // Compute in Float64 to minimize cancelation error
  1849  
  1850  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1851  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1852  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1853  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1854  
  1855  			if pt != wt { // Widen for calculation
  1856  				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
  1857  				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
  1858  				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
  1859  				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
  1860  			}
  1861  
  1862  			denom := s.newValue2(addop, wt, s.newValue2(mulop, wt, breal, breal), s.newValue2(mulop, wt, bimag, bimag))
  1863  			xreal := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
  1864  			ximag := s.newValue2(subop, wt, s.newValue2(mulop, wt, aimag, breal), s.newValue2(mulop, wt, areal, bimag))
  1865  
  1866  			// TODO not sure if this is best done in wide precision or narrow
  1867  			// Double-rounding might be an issue.
  1868  			// Note that the pre-SSA implementation does the entire calculation
  1869  			// in wide format, so wide is compatible.
  1870  			xreal = s.newValue2(divop, wt, xreal, denom)
  1871  			ximag = s.newValue2(divop, wt, ximag, denom)
  1872  
  1873  			if pt != wt { // Narrow to store back
  1874  				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
  1875  				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
  1876  			}
  1877  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1878  		}
  1879  		if n.Type.IsFloat() {
  1880  			return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1881  		}
  1882  		return s.intDivide(n, a, b)
  1883  	case OMOD:
  1884  		a := s.expr(n.Left)
  1885  		b := s.expr(n.Right)
  1886  		return s.intDivide(n, a, b)
  1887  	case OADD, OSUB:
  1888  		a := s.expr(n.Left)
  1889  		b := s.expr(n.Right)
  1890  		if n.Type.IsComplex() {
  1891  			pt := floatForComplex(n.Type)
  1892  			op := s.ssaOp(n.Op, pt)
  1893  			return s.newValue2(ssa.OpComplexMake, n.Type,
  1894  				s.newValue2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)),
  1895  				s.newValue2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)))
  1896  		}
  1897  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1898  	case OAND, OOR, OXOR:
  1899  		a := s.expr(n.Left)
  1900  		b := s.expr(n.Right)
  1901  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1902  	case OLSH, ORSH:
  1903  		a := s.expr(n.Left)
  1904  		b := s.expr(n.Right)
  1905  		return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b)
  1906  	case OANDAND, OOROR:
  1907  		// To implement OANDAND (and OOROR), we introduce a
  1908  		// new temporary variable to hold the result. The
  1909  		// variable is associated with the OANDAND node in the
  1910  		// s.vars table (normally variables are only
  1911  		// associated with ONAME nodes). We convert
  1912  		//     A && B
  1913  		// to
  1914  		//     var = A
  1915  		//     if var {
  1916  		//         var = B
  1917  		//     }
  1918  		// Using var in the subsequent block introduces the
  1919  		// necessary phi variable.
  1920  		el := s.expr(n.Left)
  1921  		s.vars[n] = el
  1922  
  1923  		b := s.endBlock()
  1924  		b.Kind = ssa.BlockIf
  1925  		b.SetControl(el)
  1926  		// In theory, we should set b.Likely here based on context.
  1927  		// However, gc only gives us likeliness hints
  1928  		// in a single place, for plain OIF statements,
  1929  		// and passing around context is finnicky, so don't bother for now.
  1930  
  1931  		bRight := s.f.NewBlock(ssa.BlockPlain)
  1932  		bResult := s.f.NewBlock(ssa.BlockPlain)
  1933  		if n.Op == OANDAND {
  1934  			b.AddEdgeTo(bRight)
  1935  			b.AddEdgeTo(bResult)
  1936  		} else if n.Op == OOROR {
  1937  			b.AddEdgeTo(bResult)
  1938  			b.AddEdgeTo(bRight)
  1939  		}
  1940  
  1941  		s.startBlock(bRight)
  1942  		er := s.expr(n.Right)
  1943  		s.vars[n] = er
  1944  
  1945  		b = s.endBlock()
  1946  		b.AddEdgeTo(bResult)
  1947  
  1948  		s.startBlock(bResult)
  1949  		return s.variable(n, types.Types[TBOOL])
  1950  	case OCOMPLEX:
  1951  		r := s.expr(n.Left)
  1952  		i := s.expr(n.Right)
  1953  		return s.newValue2(ssa.OpComplexMake, n.Type, r, i)
  1954  
  1955  	// unary ops
  1956  	case OMINUS:
  1957  		a := s.expr(n.Left)
  1958  		if n.Type.IsComplex() {
  1959  			tp := floatForComplex(n.Type)
  1960  			negop := s.ssaOp(n.Op, tp)
  1961  			return s.newValue2(ssa.OpComplexMake, n.Type,
  1962  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)),
  1963  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a)))
  1964  		}
  1965  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  1966  	case ONOT, OCOM:
  1967  		a := s.expr(n.Left)
  1968  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  1969  	case OIMAG, OREAL:
  1970  		a := s.expr(n.Left)
  1971  		return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a)
  1972  	case OPLUS:
  1973  		return s.expr(n.Left)
  1974  
  1975  	case OADDR:
  1976  		return s.addr(n.Left, n.Bounded())
  1977  
  1978  	case OINDREGSP:
  1979  		addr := s.constOffPtrSP(types.NewPtr(n.Type), n.Xoffset)
  1980  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1981  
  1982  	case OIND:
  1983  		p := s.exprPtr(n.Left, false, n.Pos)
  1984  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1985  
  1986  	case ODOT:
  1987  		t := n.Left.Type
  1988  		if canSSAType(t) {
  1989  			v := s.expr(n.Left)
  1990  			return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v)
  1991  		}
  1992  		if n.Left.Op == OSTRUCTLIT {
  1993  			// All literals with nonzero fields have already been
  1994  			// rewritten during walk. Any that remain are just T{}
  1995  			// or equivalents. Use the zero value.
  1996  			if !iszero(n.Left) {
  1997  				Fatalf("literal with nonzero value in SSA: %v", n.Left)
  1998  			}
  1999  			return s.zeroVal(n.Type)
  2000  		}
  2001  		p := s.addr(n, false)
  2002  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  2003  
  2004  	case ODOTPTR:
  2005  		p := s.exprPtr(n.Left, false, n.Pos)
  2006  		p = s.newValue1I(ssa.OpOffPtr, types.NewPtr(n.Type), n.Xoffset, p)
  2007  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  2008  
  2009  	case OINDEX:
  2010  		switch {
  2011  		case n.Left.Type.IsString():
  2012  			if n.Bounded() && Isconst(n.Left, CTSTR) && Isconst(n.Right, CTINT) {
  2013  				// Replace "abc"[1] with 'b'.
  2014  				// Delayed until now because "abc"[1] is not an ideal constant.
  2015  				// See test/fixedbugs/issue11370.go.
  2016  				return s.newValue0I(ssa.OpConst8, types.Types[TUINT8], int64(int8(n.Left.Val().U.(string)[n.Right.Int64()])))
  2017  			}
  2018  			a := s.expr(n.Left)
  2019  			i := s.expr(n.Right)
  2020  			i = s.extendIndex(i, panicindex)
  2021  			if !n.Bounded() {
  2022  				len := s.newValue1(ssa.OpStringLen, types.Types[TINT], a)
  2023  				s.boundsCheck(i, len)
  2024  			}
  2025  			ptrtyp := s.f.Config.Types.BytePtr
  2026  			ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a)
  2027  			if Isconst(n.Right, CTINT) {
  2028  				ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr)
  2029  			} else {
  2030  				ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i)
  2031  			}
  2032  			return s.newValue2(ssa.OpLoad, types.Types[TUINT8], ptr, s.mem())
  2033  		case n.Left.Type.IsSlice():
  2034  			p := s.addr(n, false)
  2035  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  2036  		case n.Left.Type.IsArray():
  2037  			if bound := n.Left.Type.NumElem(); bound <= 1 {
  2038  				// SSA can handle arrays of length at most 1.
  2039  				a := s.expr(n.Left)
  2040  				i := s.expr(n.Right)
  2041  				if bound == 0 {
  2042  					// Bounds check will never succeed.  Might as well
  2043  					// use constants for the bounds check.
  2044  					z := s.constInt(types.Types[TINT], 0)
  2045  					s.boundsCheck(z, z)
  2046  					// The return value won't be live, return junk.
  2047  					return s.newValue0(ssa.OpUnknown, n.Type)
  2048  				}
  2049  				i = s.extendIndex(i, panicindex)
  2050  				if !n.Bounded() {
  2051  					s.boundsCheck(i, s.constInt(types.Types[TINT], bound))
  2052  				}
  2053  				return s.newValue1I(ssa.OpArraySelect, n.Type, 0, a)
  2054  			}
  2055  			p := s.addr(n, false)
  2056  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  2057  		default:
  2058  			s.Fatalf("bad type for index %v", n.Left.Type)
  2059  			return nil
  2060  		}
  2061  
  2062  	case OLEN, OCAP:
  2063  		switch {
  2064  		case n.Left.Type.IsSlice():
  2065  			op := ssa.OpSliceLen
  2066  			if n.Op == OCAP {
  2067  				op = ssa.OpSliceCap
  2068  			}
  2069  			return s.newValue1(op, types.Types[TINT], s.expr(n.Left))
  2070  		case n.Left.Type.IsString(): // string; not reachable for OCAP
  2071  			return s.newValue1(ssa.OpStringLen, types.Types[TINT], s.expr(n.Left))
  2072  		case n.Left.Type.IsMap(), n.Left.Type.IsChan():
  2073  			return s.referenceTypeBuiltin(n, s.expr(n.Left))
  2074  		default: // array
  2075  			return s.constInt(types.Types[TINT], n.Left.Type.NumElem())
  2076  		}
  2077  
  2078  	case OSPTR:
  2079  		a := s.expr(n.Left)
  2080  		if n.Left.Type.IsSlice() {
  2081  			return s.newValue1(ssa.OpSlicePtr, n.Type, a)
  2082  		} else {
  2083  			return s.newValue1(ssa.OpStringPtr, n.Type, a)
  2084  		}
  2085  
  2086  	case OITAB:
  2087  		a := s.expr(n.Left)
  2088  		return s.newValue1(ssa.OpITab, n.Type, a)
  2089  
  2090  	case OIDATA:
  2091  		a := s.expr(n.Left)
  2092  		return s.newValue1(ssa.OpIData, n.Type, a)
  2093  
  2094  	case OEFACE:
  2095  		tab := s.expr(n.Left)
  2096  		data := s.expr(n.Right)
  2097  		return s.newValue2(ssa.OpIMake, n.Type, tab, data)
  2098  
  2099  	case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR:
  2100  		v := s.expr(n.Left)
  2101  		var i, j, k *ssa.Value
  2102  		low, high, max := n.SliceBounds()
  2103  		if low != nil {
  2104  			i = s.extendIndex(s.expr(low), panicslice)
  2105  		}
  2106  		if high != nil {
  2107  			j = s.extendIndex(s.expr(high), panicslice)
  2108  		}
  2109  		if max != nil {
  2110  			k = s.extendIndex(s.expr(max), panicslice)
  2111  		}
  2112  		p, l, c := s.slice(n.Left.Type, v, i, j, k)
  2113  		return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c)
  2114  
  2115  	case OSLICESTR:
  2116  		v := s.expr(n.Left)
  2117  		var i, j *ssa.Value
  2118  		low, high, _ := n.SliceBounds()
  2119  		if low != nil {
  2120  			i = s.extendIndex(s.expr(low), panicslice)
  2121  		}
  2122  		if high != nil {
  2123  			j = s.extendIndex(s.expr(high), panicslice)
  2124  		}
  2125  		p, l, _ := s.slice(n.Left.Type, v, i, j, nil)
  2126  		return s.newValue2(ssa.OpStringMake, n.Type, p, l)
  2127  
  2128  	case OCALLFUNC:
  2129  		if isIntrinsicCall(n) {
  2130  			return s.intrinsicCall(n)
  2131  		}
  2132  		fallthrough
  2133  
  2134  	case OCALLINTER, OCALLMETH:
  2135  		a := s.call(n, callNormal)
  2136  		return s.newValue2(ssa.OpLoad, n.Type, a, s.mem())
  2137  
  2138  	case OGETG:
  2139  		return s.newValue1(ssa.OpGetG, n.Type, s.mem())
  2140  
  2141  	case OAPPEND:
  2142  		return s.append(n, false)
  2143  
  2144  	case OSTRUCTLIT, OARRAYLIT:
  2145  		// All literals with nonzero fields have already been
  2146  		// rewritten during walk. Any that remain are just T{}
  2147  		// or equivalents. Use the zero value.
  2148  		if !iszero(n) {
  2149  			Fatalf("literal with nonzero value in SSA: %v", n)
  2150  		}
  2151  		return s.zeroVal(n.Type)
  2152  
  2153  	default:
  2154  		s.Fatalf("unhandled expr %v", n.Op)
  2155  		return nil
  2156  	}
  2157  }
  2158  
  2159  // append converts an OAPPEND node to SSA.
  2160  // If inplace is false, it converts the OAPPEND expression n to an ssa.Value,
  2161  // adds it to s, and returns the Value.
  2162  // If inplace is true, it writes the result of the OAPPEND expression n
  2163  // back to the slice being appended to, and returns nil.
  2164  // inplace MUST be set to false if the slice can be SSA'd.
  2165  func (s *state) append(n *Node, inplace bool) *ssa.Value {
  2166  	// If inplace is false, process as expression "append(s, e1, e2, e3)":
  2167  	//
  2168  	// ptr, len, cap := s
  2169  	// newlen := len + 3
  2170  	// if newlen > cap {
  2171  	//     ptr, len, cap = growslice(s, newlen)
  2172  	//     newlen = len + 3 // recalculate to avoid a spill
  2173  	// }
  2174  	// // with write barriers, if needed:
  2175  	// *(ptr+len) = e1
  2176  	// *(ptr+len+1) = e2
  2177  	// *(ptr+len+2) = e3
  2178  	// return makeslice(ptr, newlen, cap)
  2179  	//
  2180  	//
  2181  	// If inplace is true, process as statement "s = append(s, e1, e2, e3)":
  2182  	//
  2183  	// a := &s
  2184  	// ptr, len, cap := s
  2185  	// newlen := len + 3
  2186  	// if newlen > cap {
  2187  	//    newptr, len, newcap = growslice(ptr, len, cap, newlen)
  2188  	//    vardef(a)       // if necessary, advise liveness we are writing a new a
  2189  	//    *a.cap = newcap // write before ptr to avoid a spill
  2190  	//    *a.ptr = newptr // with write barrier
  2191  	// }
  2192  	// newlen = len + 3 // recalculate to avoid a spill
  2193  	// *a.len = newlen
  2194  	// // with write barriers, if needed:
  2195  	// *(ptr+len) = e1
  2196  	// *(ptr+len+1) = e2
  2197  	// *(ptr+len+2) = e3
  2198  
  2199  	et := n.Type.Elem()
  2200  	pt := types.NewPtr(et)
  2201  
  2202  	// Evaluate slice
  2203  	sn := n.List.First() // the slice node is the first in the list
  2204  
  2205  	var slice, addr *ssa.Value
  2206  	if inplace {
  2207  		addr = s.addr(sn, false)
  2208  		slice = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  2209  	} else {
  2210  		slice = s.expr(sn)
  2211  	}
  2212  
  2213  	// Allocate new blocks
  2214  	grow := s.f.NewBlock(ssa.BlockPlain)
  2215  	assign := s.f.NewBlock(ssa.BlockPlain)
  2216  
  2217  	// Decide if we need to grow
  2218  	nargs := int64(n.List.Len() - 1)
  2219  	p := s.newValue1(ssa.OpSlicePtr, pt, slice)
  2220  	l := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
  2221  	c := s.newValue1(ssa.OpSliceCap, types.Types[TINT], slice)
  2222  	nl := s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs))
  2223  
  2224  	cmp := s.newValue2(s.ssaOp(OGT, types.Types[TINT]), types.Types[TBOOL], nl, c)
  2225  	s.vars[&ptrVar] = p
  2226  
  2227  	if !inplace {
  2228  		s.vars[&newlenVar] = nl
  2229  		s.vars[&capVar] = c
  2230  	} else {
  2231  		s.vars[&lenVar] = l
  2232  	}
  2233  
  2234  	b := s.endBlock()
  2235  	b.Kind = ssa.BlockIf
  2236  	b.Likely = ssa.BranchUnlikely
  2237  	b.SetControl(cmp)
  2238  	b.AddEdgeTo(grow)
  2239  	b.AddEdgeTo(assign)
  2240  
  2241  	// Call growslice
  2242  	s.startBlock(grow)
  2243  	taddr := s.expr(n.Left)
  2244  	r := s.rtcall(growslice, true, []*types.Type{pt, types.Types[TINT], types.Types[TINT]}, taddr, p, l, c, nl)
  2245  
  2246  	if inplace {
  2247  		if sn.Op == ONAME && sn.Class() != PEXTERN {
  2248  			// Tell liveness we're about to build a new slice
  2249  			s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, sn, s.mem())
  2250  		}
  2251  		capaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(array_cap), addr)
  2252  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], capaddr, r[2], s.mem())
  2253  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, pt, addr, r[0], s.mem())
  2254  		// load the value we just stored to avoid having to spill it
  2255  		s.vars[&ptrVar] = s.newValue2(ssa.OpLoad, pt, addr, s.mem())
  2256  		s.vars[&lenVar] = r[1] // avoid a spill in the fast path
  2257  	} else {
  2258  		s.vars[&ptrVar] = r[0]
  2259  		s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], r[1], s.constInt(types.Types[TINT], nargs))
  2260  		s.vars[&capVar] = r[2]
  2261  	}
  2262  
  2263  	b = s.endBlock()
  2264  	b.AddEdgeTo(assign)
  2265  
  2266  	// assign new elements to slots
  2267  	s.startBlock(assign)
  2268  
  2269  	if inplace {
  2270  		l = s.variable(&lenVar, types.Types[TINT]) // generates phi for len
  2271  		nl = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs))
  2272  		lenaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(array_nel), addr)
  2273  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], lenaddr, nl, s.mem())
  2274  	}
  2275  
  2276  	// Evaluate args
  2277  	type argRec struct {
  2278  		// if store is true, we're appending the value v.  If false, we're appending the
  2279  		// value at *v.
  2280  		v     *ssa.Value
  2281  		store bool
  2282  	}
  2283  	args := make([]argRec, 0, nargs)
  2284  	for _, n := range n.List.Slice()[1:] {
  2285  		if canSSAType(n.Type) {
  2286  			args = append(args, argRec{v: s.expr(n), store: true})
  2287  		} else {
  2288  			v := s.addr(n, false)
  2289  			args = append(args, argRec{v: v})
  2290  		}
  2291  	}
  2292  
  2293  	p = s.variable(&ptrVar, pt) // generates phi for ptr
  2294  	if !inplace {
  2295  		nl = s.variable(&newlenVar, types.Types[TINT]) // generates phi for nl
  2296  		c = s.variable(&capVar, types.Types[TINT])     // generates phi for cap
  2297  	}
  2298  	p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l)
  2299  	for i, arg := range args {
  2300  		addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(types.Types[TINT], int64(i)))
  2301  		if arg.store {
  2302  			s.storeType(et, addr, arg.v, 0)
  2303  		} else {
  2304  			store := s.newValue3I(ssa.OpMove, types.TypeMem, et.Size(), addr, arg.v, s.mem())
  2305  			store.Aux = et
  2306  			s.vars[&memVar] = store
  2307  		}
  2308  	}
  2309  
  2310  	delete(s.vars, &ptrVar)
  2311  	if inplace {
  2312  		delete(s.vars, &lenVar)
  2313  		return nil
  2314  	}
  2315  	delete(s.vars, &newlenVar)
  2316  	delete(s.vars, &capVar)
  2317  	// make result
  2318  	return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c)
  2319  }
  2320  
  2321  // condBranch evaluates the boolean expression cond and branches to yes
  2322  // if cond is true and no if cond is false.
  2323  // This function is intended to handle && and || better than just calling
  2324  // s.expr(cond) and branching on the result.
  2325  func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) {
  2326  	if cond.Op == OANDAND {
  2327  		mid := s.f.NewBlock(ssa.BlockPlain)
  2328  		s.stmtList(cond.Ninit)
  2329  		s.condBranch(cond.Left, mid, no, max8(likely, 0))
  2330  		s.startBlock(mid)
  2331  		s.condBranch(cond.Right, yes, no, likely)
  2332  		return
  2333  		// Note: if likely==1, then both recursive calls pass 1.
  2334  		// If likely==-1, then we don't have enough information to decide
  2335  		// whether the first branch is likely or not. So we pass 0 for
  2336  		// the likeliness of the first branch.
  2337  		// TODO: have the frontend give us branch prediction hints for
  2338  		// OANDAND and OOROR nodes (if it ever has such info).
  2339  	}
  2340  	if cond.Op == OOROR {
  2341  		mid := s.f.NewBlock(ssa.BlockPlain)
  2342  		s.stmtList(cond.Ninit)
  2343  		s.condBranch(cond.Left, yes, mid, min8(likely, 0))
  2344  		s.startBlock(mid)
  2345  		s.condBranch(cond.Right, yes, no, likely)
  2346  		return
  2347  		// Note: if likely==-1, then both recursive calls pass -1.
  2348  		// If likely==1, then we don't have enough info to decide
  2349  		// the likelihood of the first branch.
  2350  	}
  2351  	if cond.Op == ONOT {
  2352  		s.stmtList(cond.Ninit)
  2353  		s.condBranch(cond.Left, no, yes, -likely)
  2354  		return
  2355  	}
  2356  	c := s.expr(cond)
  2357  	b := s.endBlock()
  2358  	b.Kind = ssa.BlockIf
  2359  	b.SetControl(c)
  2360  	b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness
  2361  	b.AddEdgeTo(yes)
  2362  	b.AddEdgeTo(no)
  2363  }
  2364  
  2365  type skipMask uint8
  2366  
  2367  const (
  2368  	skipPtr skipMask = 1 << iota
  2369  	skipLen
  2370  	skipCap
  2371  )
  2372  
  2373  // assign does left = right.
  2374  // Right has already been evaluated to ssa, left has not.
  2375  // If deref is true, then we do left = *right instead (and right has already been nil-checked).
  2376  // If deref is true and right == nil, just do left = 0.
  2377  // skip indicates assignments (at the top level) that can be avoided.
  2378  func (s *state) assign(left *Node, right *ssa.Value, deref bool, skip skipMask) {
  2379  	if left.Op == ONAME && isblank(left) {
  2380  		return
  2381  	}
  2382  	t := left.Type
  2383  	dowidth(t)
  2384  	if s.canSSA(left) {
  2385  		if deref {
  2386  			s.Fatalf("can SSA LHS %v but not RHS %s", left, right)
  2387  		}
  2388  		if left.Op == ODOT {
  2389  			// We're assigning to a field of an ssa-able value.
  2390  			// We need to build a new structure with the new value for the
  2391  			// field we're assigning and the old values for the other fields.
  2392  			// For instance:
  2393  			//   type T struct {a, b, c int}
  2394  			//   var T x
  2395  			//   x.b = 5
  2396  			// For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c}
  2397  
  2398  			// Grab information about the structure type.
  2399  			t := left.Left.Type
  2400  			nf := t.NumFields()
  2401  			idx := fieldIdx(left)
  2402  
  2403  			// Grab old value of structure.
  2404  			old := s.expr(left.Left)
  2405  
  2406  			// Make new structure.
  2407  			new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t)
  2408  
  2409  			// Add fields as args.
  2410  			for i := 0; i < nf; i++ {
  2411  				if i == idx {
  2412  					new.AddArg(right)
  2413  				} else {
  2414  					new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old))
  2415  				}
  2416  			}
  2417  
  2418  			// Recursively assign the new value we've made to the base of the dot op.
  2419  			s.assign(left.Left, new, false, 0)
  2420  			// TODO: do we need to update named values here?
  2421  			return
  2422  		}
  2423  		if left.Op == OINDEX && left.Left.Type.IsArray() {
  2424  			// We're assigning to an element of an ssa-able array.
  2425  			// a[i] = v
  2426  			t := left.Left.Type
  2427  			n := t.NumElem()
  2428  
  2429  			i := s.expr(left.Right) // index
  2430  			if n == 0 {
  2431  				// The bounds check must fail.  Might as well
  2432  				// ignore the actual index and just use zeros.
  2433  				z := s.constInt(types.Types[TINT], 0)
  2434  				s.boundsCheck(z, z)
  2435  				return
  2436  			}
  2437  			if n != 1 {
  2438  				s.Fatalf("assigning to non-1-length array")
  2439  			}
  2440  			// Rewrite to a = [1]{v}
  2441  			i = s.extendIndex(i, panicindex)
  2442  			s.boundsCheck(i, s.constInt(types.Types[TINT], 1))
  2443  			v := s.newValue1(ssa.OpArrayMake1, t, right)
  2444  			s.assign(left.Left, v, false, 0)
  2445  			return
  2446  		}
  2447  		// Update variable assignment.
  2448  		s.vars[left] = right
  2449  		s.addNamedValue(left, right)
  2450  		return
  2451  	}
  2452  	// Left is not ssa-able. Compute its address.
  2453  	addr := s.addr(left, false)
  2454  	if left.Op == ONAME && left.Class() != PEXTERN && skip == 0 {
  2455  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, left, s.mem())
  2456  	}
  2457  	if isReflectHeaderDataField(left) {
  2458  		// Package unsafe's documentation says storing pointers into
  2459  		// reflect.SliceHeader and reflect.StringHeader's Data fields
  2460  		// is valid, even though they have type uintptr (#19168).
  2461  		// Mark it pointer type to signal the writebarrier pass to
  2462  		// insert a write barrier.
  2463  		t = types.Types[TUNSAFEPTR]
  2464  	}
  2465  	if deref {
  2466  		// Treat as a mem->mem move.
  2467  		var store *ssa.Value
  2468  		if right == nil {
  2469  			store = s.newValue2I(ssa.OpZero, types.TypeMem, t.Size(), addr, s.mem())
  2470  		} else {
  2471  			store = s.newValue3I(ssa.OpMove, types.TypeMem, t.Size(), addr, right, s.mem())
  2472  		}
  2473  		store.Aux = t
  2474  		s.vars[&memVar] = store
  2475  		return
  2476  	}
  2477  	// Treat as a store.
  2478  	s.storeType(t, addr, right, skip)
  2479  }
  2480  
  2481  // zeroVal returns the zero value for type t.
  2482  func (s *state) zeroVal(t *types.Type) *ssa.Value {
  2483  	switch {
  2484  	case t.IsInteger():
  2485  		switch t.Size() {
  2486  		case 1:
  2487  			return s.constInt8(t, 0)
  2488  		case 2:
  2489  			return s.constInt16(t, 0)
  2490  		case 4:
  2491  			return s.constInt32(t, 0)
  2492  		case 8:
  2493  			return s.constInt64(t, 0)
  2494  		default:
  2495  			s.Fatalf("bad sized integer type %v", t)
  2496  		}
  2497  	case t.IsFloat():
  2498  		switch t.Size() {
  2499  		case 4:
  2500  			return s.constFloat32(t, 0)
  2501  		case 8:
  2502  			return s.constFloat64(t, 0)
  2503  		default:
  2504  			s.Fatalf("bad sized float type %v", t)
  2505  		}
  2506  	case t.IsComplex():
  2507  		switch t.Size() {
  2508  		case 8:
  2509  			z := s.constFloat32(types.Types[TFLOAT32], 0)
  2510  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2511  		case 16:
  2512  			z := s.constFloat64(types.Types[TFLOAT64], 0)
  2513  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2514  		default:
  2515  			s.Fatalf("bad sized complex type %v", t)
  2516  		}
  2517  
  2518  	case t.IsString():
  2519  		return s.constEmptyString(t)
  2520  	case t.IsPtrShaped():
  2521  		return s.constNil(t)
  2522  	case t.IsBoolean():
  2523  		return s.constBool(false)
  2524  	case t.IsInterface():
  2525  		return s.constInterface(t)
  2526  	case t.IsSlice():
  2527  		return s.constSlice(t)
  2528  	case t.IsStruct():
  2529  		n := t.NumFields()
  2530  		v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t)
  2531  		for i := 0; i < n; i++ {
  2532  			v.AddArg(s.zeroVal(t.FieldType(i)))
  2533  		}
  2534  		return v
  2535  	case t.IsArray():
  2536  		switch t.NumElem() {
  2537  		case 0:
  2538  			return s.entryNewValue0(ssa.OpArrayMake0, t)
  2539  		case 1:
  2540  			return s.entryNewValue1(ssa.OpArrayMake1, t, s.zeroVal(t.Elem()))
  2541  		}
  2542  	}
  2543  	s.Fatalf("zero for type %v not implemented", t)
  2544  	return nil
  2545  }
  2546  
  2547  type callKind int8
  2548  
  2549  const (
  2550  	callNormal callKind = iota
  2551  	callDefer
  2552  	callGo
  2553  )
  2554  
  2555  var intrinsics map[intrinsicKey]intrinsicBuilder
  2556  
  2557  // An intrinsicBuilder converts a call node n into an ssa value that
  2558  // implements that call as an intrinsic. args is a list of arguments to the func.
  2559  type intrinsicBuilder func(s *state, n *Node, args []*ssa.Value) *ssa.Value
  2560  
  2561  type intrinsicKey struct {
  2562  	arch *sys.Arch
  2563  	pkg  string
  2564  	fn   string
  2565  }
  2566  
  2567  func init() {
  2568  	intrinsics = map[intrinsicKey]intrinsicBuilder{}
  2569  
  2570  	var all []*sys.Arch
  2571  	var p4 []*sys.Arch
  2572  	var p8 []*sys.Arch
  2573  	for _, a := range sys.Archs {
  2574  		all = append(all, a)
  2575  		if a.PtrSize == 4 {
  2576  			p4 = append(p4, a)
  2577  		} else {
  2578  			p8 = append(p8, a)
  2579  		}
  2580  	}
  2581  
  2582  	// add adds the intrinsic b for pkg.fn for the given list of architectures.
  2583  	add := func(pkg, fn string, b intrinsicBuilder, archs ...*sys.Arch) {
  2584  		for _, a := range archs {
  2585  			intrinsics[intrinsicKey{a, pkg, fn}] = b
  2586  		}
  2587  	}
  2588  	// addF does the same as add but operates on architecture families.
  2589  	addF := func(pkg, fn string, b intrinsicBuilder, archFamilies ...sys.ArchFamily) {
  2590  		m := 0
  2591  		for _, f := range archFamilies {
  2592  			if f >= 32 {
  2593  				panic("too many architecture families")
  2594  			}
  2595  			m |= 1 << uint(f)
  2596  		}
  2597  		for _, a := range all {
  2598  			if m>>uint(a.Family)&1 != 0 {
  2599  				intrinsics[intrinsicKey{a, pkg, fn}] = b
  2600  			}
  2601  		}
  2602  	}
  2603  	// alias defines pkg.fn = pkg2.fn2 for all architectures in archs for which pkg2.fn2 exists.
  2604  	alias := func(pkg, fn, pkg2, fn2 string, archs ...*sys.Arch) {
  2605  		for _, a := range archs {
  2606  			if b, ok := intrinsics[intrinsicKey{a, pkg2, fn2}]; ok {
  2607  				intrinsics[intrinsicKey{a, pkg, fn}] = b
  2608  			}
  2609  		}
  2610  	}
  2611  
  2612  	/******** runtime ********/
  2613  	if !instrumenting {
  2614  		add("runtime", "slicebytetostringtmp",
  2615  			func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2616  				// Compiler frontend optimizations emit OARRAYBYTESTRTMP nodes
  2617  				// for the backend instead of slicebytetostringtmp calls
  2618  				// when not instrumenting.
  2619  				slice := args[0]
  2620  				ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice)
  2621  				len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
  2622  				return s.newValue2(ssa.OpStringMake, n.Type, ptr, len)
  2623  			},
  2624  			all...)
  2625  	}
  2626  	add("runtime", "KeepAlive",
  2627  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2628  			data := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, args[0])
  2629  			s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, types.TypeMem, data, s.mem())
  2630  			return nil
  2631  		},
  2632  		all...)
  2633  	add("runtime", "getclosureptr",
  2634  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2635  			return s.newValue0(ssa.OpGetClosurePtr, s.f.Config.Types.Uintptr)
  2636  		},
  2637  		all...)
  2638  
  2639  	addF("runtime", "getcallerpc",
  2640  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2641  			return s.newValue0(ssa.OpGetCallerPC, s.f.Config.Types.Uintptr)
  2642  		}, sys.AMD64, sys.I386)
  2643  
  2644  	add("runtime", "getcallersp",
  2645  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2646  			return s.newValue0(ssa.OpGetCallerSP, s.f.Config.Types.Uintptr)
  2647  		},
  2648  		all...)
  2649  
  2650  	/******** runtime/internal/sys ********/
  2651  	addF("runtime/internal/sys", "Ctz32",
  2652  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2653  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0])
  2654  		},
  2655  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2656  	addF("runtime/internal/sys", "Ctz64",
  2657  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2658  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0])
  2659  		},
  2660  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2661  	addF("runtime/internal/sys", "Bswap32",
  2662  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2663  			return s.newValue1(ssa.OpBswap32, types.Types[TUINT32], args[0])
  2664  		},
  2665  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X)
  2666  	addF("runtime/internal/sys", "Bswap64",
  2667  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2668  			return s.newValue1(ssa.OpBswap64, types.Types[TUINT64], args[0])
  2669  		},
  2670  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X)
  2671  
  2672  	/******** runtime/internal/atomic ********/
  2673  	addF("runtime/internal/atomic", "Load",
  2674  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2675  			v := s.newValue2(ssa.OpAtomicLoad32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], s.mem())
  2676  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2677  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
  2678  		},
  2679  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  2680  	addF("runtime/internal/atomic", "Load64",
  2681  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2682  			v := s.newValue2(ssa.OpAtomicLoad64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], s.mem())
  2683  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2684  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
  2685  		},
  2686  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64)
  2687  	addF("runtime/internal/atomic", "Loadp",
  2688  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2689  			v := s.newValue2(ssa.OpAtomicLoadPtr, types.NewTuple(s.f.Config.Types.BytePtr, types.TypeMem), args[0], s.mem())
  2690  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2691  			return s.newValue1(ssa.OpSelect0, s.f.Config.Types.BytePtr, v)
  2692  		},
  2693  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  2694  
  2695  	addF("runtime/internal/atomic", "Store",
  2696  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2697  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore32, types.TypeMem, args[0], args[1], s.mem())
  2698  			return nil
  2699  		},
  2700  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  2701  	addF("runtime/internal/atomic", "Store64",
  2702  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2703  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore64, types.TypeMem, args[0], args[1], s.mem())
  2704  			return nil
  2705  		},
  2706  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64)
  2707  	addF("runtime/internal/atomic", "StorepNoWB",
  2708  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2709  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, types.TypeMem, args[0], args[1], s.mem())
  2710  			return nil
  2711  		},
  2712  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64)
  2713  
  2714  	addF("runtime/internal/atomic", "Xchg",
  2715  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2716  			v := s.newValue3(ssa.OpAtomicExchange32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], args[1], s.mem())
  2717  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2718  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
  2719  		},
  2720  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  2721  	addF("runtime/internal/atomic", "Xchg64",
  2722  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2723  			v := s.newValue3(ssa.OpAtomicExchange64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], args[1], s.mem())
  2724  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2725  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
  2726  		},
  2727  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64)
  2728  
  2729  	addF("runtime/internal/atomic", "Xadd",
  2730  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2731  			v := s.newValue3(ssa.OpAtomicAdd32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], args[1], s.mem())
  2732  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2733  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
  2734  		},
  2735  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  2736  	addF("runtime/internal/atomic", "Xadd64",
  2737  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2738  			v := s.newValue3(ssa.OpAtomicAdd64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], args[1], s.mem())
  2739  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2740  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
  2741  		},
  2742  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64)
  2743  
  2744  	addF("runtime/internal/atomic", "Cas",
  2745  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2746  			v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
  2747  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2748  			return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v)
  2749  		},
  2750  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  2751  	addF("runtime/internal/atomic", "Cas64",
  2752  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2753  			v := s.newValue4(ssa.OpAtomicCompareAndSwap64, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
  2754  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2755  			return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v)
  2756  		},
  2757  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64)
  2758  
  2759  	addF("runtime/internal/atomic", "And8",
  2760  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2761  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicAnd8, types.TypeMem, args[0], args[1], s.mem())
  2762  			return nil
  2763  		},
  2764  		sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64)
  2765  	addF("runtime/internal/atomic", "Or8",
  2766  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2767  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicOr8, types.TypeMem, args[0], args[1], s.mem())
  2768  			return nil
  2769  		},
  2770  		sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64)
  2771  
  2772  	alias("runtime/internal/atomic", "Loadint64", "runtime/internal/atomic", "Load64", all...)
  2773  	alias("runtime/internal/atomic", "Xaddint64", "runtime/internal/atomic", "Xadd64", all...)
  2774  	alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load", p4...)
  2775  	alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load64", p8...)
  2776  	alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load", p4...)
  2777  	alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load64", p8...)
  2778  	alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store", p4...)
  2779  	alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store64", p8...)
  2780  	alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg", p4...)
  2781  	alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg64", p8...)
  2782  	alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd", p4...)
  2783  	alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd64", p8...)
  2784  	alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas", p4...)
  2785  	alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas64", p8...)
  2786  	alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas", p4...)
  2787  	alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas64", p8...)
  2788  
  2789  	/******** math ********/
  2790  	addF("math", "Sqrt",
  2791  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2792  			return s.newValue1(ssa.OpSqrt, types.Types[TFLOAT64], args[0])
  2793  		},
  2794  		sys.AMD64, sys.ARM, sys.ARM64, sys.MIPS, sys.PPC64, sys.S390X)
  2795  	addF("math", "Trunc",
  2796  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2797  			return s.newValue1(ssa.OpTrunc, types.Types[TFLOAT64], args[0])
  2798  		},
  2799  		sys.PPC64, sys.S390X)
  2800  	addF("math", "Ceil",
  2801  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2802  			return s.newValue1(ssa.OpCeil, types.Types[TFLOAT64], args[0])
  2803  		},
  2804  		sys.PPC64, sys.S390X)
  2805  	addF("math", "Floor",
  2806  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2807  			return s.newValue1(ssa.OpFloor, types.Types[TFLOAT64], args[0])
  2808  		},
  2809  		sys.PPC64, sys.S390X)
  2810  	addF("math", "Round",
  2811  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2812  			return s.newValue1(ssa.OpRound, types.Types[TFLOAT64], args[0])
  2813  		},
  2814  		sys.S390X)
  2815  
  2816  	/******** math/bits ********/
  2817  	addF("math/bits", "TrailingZeros64",
  2818  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2819  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0])
  2820  		},
  2821  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2822  	addF("math/bits", "TrailingZeros32",
  2823  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2824  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0])
  2825  		},
  2826  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2827  	addF("math/bits", "TrailingZeros16",
  2828  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2829  			x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0])
  2830  			c := s.constInt32(types.Types[TUINT32], 1<<16)
  2831  			y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c)
  2832  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], y)
  2833  		},
  2834  		sys.ARM, sys.MIPS)
  2835  	addF("math/bits", "TrailingZeros16",
  2836  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2837  			x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0])
  2838  			c := s.constInt64(types.Types[TUINT64], 1<<16)
  2839  			y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c)
  2840  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], y)
  2841  		},
  2842  		sys.AMD64, sys.ARM64, sys.S390X)
  2843  	addF("math/bits", "TrailingZeros8",
  2844  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2845  			x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0])
  2846  			c := s.constInt32(types.Types[TUINT32], 1<<8)
  2847  			y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c)
  2848  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], y)
  2849  		},
  2850  		sys.ARM, sys.MIPS)
  2851  	addF("math/bits", "TrailingZeros8",
  2852  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2853  			x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0])
  2854  			c := s.constInt64(types.Types[TUINT64], 1<<8)
  2855  			y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c)
  2856  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], y)
  2857  		},
  2858  		sys.AMD64, sys.ARM64, sys.S390X)
  2859  	alias("math/bits", "ReverseBytes64", "runtime/internal/sys", "Bswap64", all...)
  2860  	alias("math/bits", "ReverseBytes32", "runtime/internal/sys", "Bswap32", all...)
  2861  	// ReverseBytes inlines correctly, no need to intrinsify it.
  2862  	// ReverseBytes16 lowers to a rotate, no need for anything special here.
  2863  	addF("math/bits", "Len64",
  2864  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2865  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0])
  2866  		},
  2867  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2868  	addF("math/bits", "Len32",
  2869  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2870  			if s.config.PtrSize == 4 {
  2871  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0])
  2872  			}
  2873  			x := s.newValue1(ssa.OpZeroExt32to64, types.Types[TUINT64], args[0])
  2874  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
  2875  		},
  2876  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2877  	addF("math/bits", "Len16",
  2878  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2879  			if s.config.PtrSize == 4 {
  2880  				x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0])
  2881  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x)
  2882  			}
  2883  			x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0])
  2884  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
  2885  		},
  2886  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2887  	// Note: disabled on AMD64 because the Go code is faster!
  2888  	addF("math/bits", "Len8",
  2889  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2890  			if s.config.PtrSize == 4 {
  2891  				x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0])
  2892  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x)
  2893  			}
  2894  			x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0])
  2895  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
  2896  		},
  2897  		sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2898  
  2899  	addF("math/bits", "Len",
  2900  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2901  			if s.config.PtrSize == 4 {
  2902  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0])
  2903  			}
  2904  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0])
  2905  		},
  2906  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2907  	// LeadingZeros is handled because it trivially calls Len.
  2908  	addF("math/bits", "Reverse64",
  2909  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2910  			return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0])
  2911  		},
  2912  		sys.ARM64)
  2913  	addF("math/bits", "Reverse32",
  2914  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2915  			return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0])
  2916  		},
  2917  		sys.ARM64)
  2918  	addF("math/bits", "Reverse16",
  2919  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2920  			return s.newValue1(ssa.OpBitRev16, types.Types[TINT], args[0])
  2921  		},
  2922  		sys.ARM64)
  2923  	addF("math/bits", "Reverse8",
  2924  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2925  			return s.newValue1(ssa.OpBitRev8, types.Types[TINT], args[0])
  2926  		},
  2927  		sys.ARM64)
  2928  	addF("math/bits", "Reverse",
  2929  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2930  			if s.config.PtrSize == 4 {
  2931  				return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0])
  2932  			}
  2933  			return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0])
  2934  		},
  2935  		sys.ARM64)
  2936  	makeOnesCountAMD64 := func(op64 ssa.Op, op32 ssa.Op) func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2937  		return func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2938  			aux := syslook("support_popcnt").Sym.Linksym()
  2939  			addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), aux, s.sb)
  2940  			v := s.newValue2(ssa.OpLoad, types.Types[TBOOL], addr, s.mem())
  2941  			b := s.endBlock()
  2942  			b.Kind = ssa.BlockIf
  2943  			b.SetControl(v)
  2944  			bTrue := s.f.NewBlock(ssa.BlockPlain)
  2945  			bFalse := s.f.NewBlock(ssa.BlockPlain)
  2946  			bEnd := s.f.NewBlock(ssa.BlockPlain)
  2947  			b.AddEdgeTo(bTrue)
  2948  			b.AddEdgeTo(bFalse)
  2949  			b.Likely = ssa.BranchLikely // most machines have popcnt nowadays
  2950  
  2951  			// We have the intrinsic - use it directly.
  2952  			s.startBlock(bTrue)
  2953  			op := op64
  2954  			if s.config.PtrSize == 4 {
  2955  				op = op32
  2956  			}
  2957  			s.vars[n] = s.newValue1(op, types.Types[TINT], args[0])
  2958  			s.endBlock().AddEdgeTo(bEnd)
  2959  
  2960  			// Call the pure Go version.
  2961  			s.startBlock(bFalse)
  2962  			a := s.call(n, callNormal)
  2963  			s.vars[n] = s.newValue2(ssa.OpLoad, types.Types[TINT], a, s.mem())
  2964  			s.endBlock().AddEdgeTo(bEnd)
  2965  
  2966  			// Merge results.
  2967  			s.startBlock(bEnd)
  2968  			return s.variable(n, types.Types[TINT])
  2969  		}
  2970  	}
  2971  	addF("math/bits", "OnesCount64",
  2972  		makeOnesCountAMD64(ssa.OpPopCount64, ssa.OpPopCount64),
  2973  		sys.AMD64)
  2974  	addF("math/bits", "OnesCount64",
  2975  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2976  			return s.newValue1(ssa.OpPopCount64, types.Types[TINT], args[0])
  2977  		},
  2978  		sys.PPC64)
  2979  	addF("math/bits", "OnesCount32",
  2980  		makeOnesCountAMD64(ssa.OpPopCount32, ssa.OpPopCount32),
  2981  		sys.AMD64)
  2982  	addF("math/bits", "OnesCount32",
  2983  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2984  			return s.newValue1(ssa.OpPopCount32, types.Types[TINT], args[0])
  2985  		},
  2986  		sys.PPC64)
  2987  	addF("math/bits", "OnesCount16",
  2988  		makeOnesCountAMD64(ssa.OpPopCount16, ssa.OpPopCount16),
  2989  		sys.AMD64)
  2990  	// Note: no OnesCount8, the Go implementation is faster - just a table load.
  2991  	addF("math/bits", "OnesCount",
  2992  		makeOnesCountAMD64(ssa.OpPopCount64, ssa.OpPopCount32),
  2993  		sys.AMD64)
  2994  
  2995  	/******** sync/atomic ********/
  2996  
  2997  	// Note: these are disabled by flag_race in findIntrinsic below.
  2998  	alias("sync/atomic", "LoadInt32", "runtime/internal/atomic", "Load", all...)
  2999  	alias("sync/atomic", "LoadInt64", "runtime/internal/atomic", "Load64", all...)
  3000  	alias("sync/atomic", "LoadPointer", "runtime/internal/atomic", "Loadp", all...)
  3001  	alias("sync/atomic", "LoadUint32", "runtime/internal/atomic", "Load", all...)
  3002  	alias("sync/atomic", "LoadUint64", "runtime/internal/atomic", "Load64", all...)
  3003  	alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load", p4...)
  3004  	alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load64", p8...)
  3005  
  3006  	alias("sync/atomic", "StoreInt32", "runtime/internal/atomic", "Store", all...)
  3007  	alias("sync/atomic", "StoreInt64", "runtime/internal/atomic", "Store64", all...)
  3008  	// Note: not StorePointer, that needs a write barrier.  Same below for {CompareAnd}Swap.
  3009  	alias("sync/atomic", "StoreUint32", "runtime/internal/atomic", "Store", all...)
  3010  	alias("sync/atomic", "StoreUint64", "runtime/internal/atomic", "Store64", all...)
  3011  	alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store", p4...)
  3012  	alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store64", p8...)
  3013  
  3014  	alias("sync/atomic", "SwapInt32", "runtime/internal/atomic", "Xchg", all...)
  3015  	alias("sync/atomic", "SwapInt64", "runtime/internal/atomic", "Xchg64", all...)
  3016  	alias("sync/atomic", "SwapUint32", "runtime/internal/atomic", "Xchg", all...)
  3017  	alias("sync/atomic", "SwapUint64", "runtime/internal/atomic", "Xchg64", all...)
  3018  	alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg", p4...)
  3019  	alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg64", p8...)
  3020  
  3021  	alias("sync/atomic", "CompareAndSwapInt32", "runtime/internal/atomic", "Cas", all...)
  3022  	alias("sync/atomic", "CompareAndSwapInt64", "runtime/internal/atomic", "Cas64", all...)
  3023  	alias("sync/atomic", "CompareAndSwapUint32", "runtime/internal/atomic", "Cas", all...)
  3024  	alias("sync/atomic", "CompareAndSwapUint64", "runtime/internal/atomic", "Cas64", all...)
  3025  	alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas", p4...)
  3026  	alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas64", p8...)
  3027  
  3028  	alias("sync/atomic", "AddInt32", "runtime/internal/atomic", "Xadd", all...)
  3029  	alias("sync/atomic", "AddInt64", "runtime/internal/atomic", "Xadd64", all...)
  3030  	alias("sync/atomic", "AddUint32", "runtime/internal/atomic", "Xadd", all...)
  3031  	alias("sync/atomic", "AddUint64", "runtime/internal/atomic", "Xadd64", all...)
  3032  	alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd", p4...)
  3033  	alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd64", p8...)
  3034  
  3035  	/******** math/big ********/
  3036  	add("math/big", "mulWW",
  3037  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3038  			return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1])
  3039  		},
  3040  		sys.ArchAMD64)
  3041  	add("math/big", "divWW",
  3042  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3043  			return s.newValue3(ssa.OpDiv128u, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2])
  3044  		},
  3045  		sys.ArchAMD64)
  3046  }
  3047  
  3048  // findIntrinsic returns a function which builds the SSA equivalent of the
  3049  // function identified by the symbol sym.  If sym is not an intrinsic call, returns nil.
  3050  func findIntrinsic(sym *types.Sym) intrinsicBuilder {
  3051  	if ssa.IntrinsicsDisable {
  3052  		return nil
  3053  	}
  3054  	if sym == nil || sym.Pkg == nil {
  3055  		return nil
  3056  	}
  3057  	pkg := sym.Pkg.Path
  3058  	if sym.Pkg == localpkg {
  3059  		pkg = myimportpath
  3060  	}
  3061  	if flag_race && pkg == "sync/atomic" {
  3062  		// The race detector needs to be able to intercept these calls.
  3063  		// We can't intrinsify them.
  3064  		return nil
  3065  	}
  3066  	fn := sym.Name
  3067  	return intrinsics[intrinsicKey{thearch.LinkArch.Arch, pkg, fn}]
  3068  }
  3069  
  3070  func isIntrinsicCall(n *Node) bool {
  3071  	if n == nil || n.Left == nil {
  3072  		return false
  3073  	}
  3074  	return findIntrinsic(n.Left.Sym) != nil
  3075  }
  3076  
  3077  // intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation.
  3078  func (s *state) intrinsicCall(n *Node) *ssa.Value {
  3079  	v := findIntrinsic(n.Left.Sym)(s, n, s.intrinsicArgs(n))
  3080  	if ssa.IntrinsicsDebug > 0 {
  3081  		x := v
  3082  		if x == nil {
  3083  			x = s.mem()
  3084  		}
  3085  		if x.Op == ssa.OpSelect0 || x.Op == ssa.OpSelect1 {
  3086  			x = x.Args[0]
  3087  		}
  3088  		Warnl(n.Pos, "intrinsic substitution for %v with %s", n.Left.Sym.Name, x.LongString())
  3089  	}
  3090  	return v
  3091  }
  3092  
  3093  type callArg struct {
  3094  	offset int64
  3095  	v      *ssa.Value
  3096  }
  3097  type byOffset []callArg
  3098  
  3099  func (x byOffset) Len() int      { return len(x) }
  3100  func (x byOffset) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
  3101  func (x byOffset) Less(i, j int) bool {
  3102  	return x[i].offset < x[j].offset
  3103  }
  3104  
  3105  // intrinsicArgs extracts args from n, evaluates them to SSA values, and returns them.
  3106  func (s *state) intrinsicArgs(n *Node) []*ssa.Value {
  3107  	// This code is complicated because of how walk transforms calls. For a call node,
  3108  	// each entry in n.List is either an assignment to OINDREGSP which actually
  3109  	// stores an arg, or an assignment to a temporary which computes an arg
  3110  	// which is later assigned.
  3111  	// The args can also be out of order.
  3112  	// TODO: when walk goes away someday, this code can go away also.
  3113  	var args []callArg
  3114  	temps := map[*Node]*ssa.Value{}
  3115  	for _, a := range n.List.Slice() {
  3116  		if a.Op != OAS {
  3117  			s.Fatalf("non-assignment as a function argument %s", opnames[a.Op])
  3118  		}
  3119  		l, r := a.Left, a.Right
  3120  		switch l.Op {
  3121  		case ONAME:
  3122  			// Evaluate and store to "temporary".
  3123  			// Walk ensures these temporaries are dead outside of n.
  3124  			temps[l] = s.expr(r)
  3125  		case OINDREGSP:
  3126  			// Store a value to an argument slot.
  3127  			var v *ssa.Value
  3128  			if x, ok := temps[r]; ok {
  3129  				// This is a previously computed temporary.
  3130  				v = x
  3131  			} else {
  3132  				// This is an explicit value; evaluate it.
  3133  				v = s.expr(r)
  3134  			}
  3135  			args = append(args, callArg{l.Xoffset, v})
  3136  		default:
  3137  			s.Fatalf("function argument assignment target not allowed: %s", opnames[l.Op])
  3138  		}
  3139  	}
  3140  	sort.Sort(byOffset(args))
  3141  	res := make([]*ssa.Value, len(args))
  3142  	for i, a := range args {
  3143  		res[i] = a.v
  3144  	}
  3145  	return res
  3146  }
  3147  
  3148  // Calls the function n using the specified call type.
  3149  // Returns the address of the return value (or nil if none).
  3150  func (s *state) call(n *Node, k callKind) *ssa.Value {
  3151  	var sym *types.Sym     // target symbol (if static)
  3152  	var closure *ssa.Value // ptr to closure to run (if dynamic)
  3153  	var codeptr *ssa.Value // ptr to target code (if dynamic)
  3154  	var rcvr *ssa.Value    // receiver to set
  3155  	fn := n.Left
  3156  	switch n.Op {
  3157  	case OCALLFUNC:
  3158  		if k == callNormal && fn.Op == ONAME && fn.Class() == PFUNC {
  3159  			sym = fn.Sym
  3160  			break
  3161  		}
  3162  		closure = s.expr(fn)
  3163  	case OCALLMETH:
  3164  		if fn.Op != ODOTMETH {
  3165  			Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn)
  3166  		}
  3167  		if k == callNormal {
  3168  			sym = fn.Sym
  3169  			break
  3170  		}
  3171  		// Make a name n2 for the function.
  3172  		// fn.Sym might be sync.(*Mutex).Unlock.
  3173  		// Make a PFUNC node out of that, then evaluate it.
  3174  		// We get back an SSA value representing &sync.(*Mutex).Unlock·f.
  3175  		// We can then pass that to defer or go.
  3176  		n2 := newnamel(fn.Pos, fn.Sym)
  3177  		n2.Name.Curfn = s.curfn
  3178  		n2.SetClass(PFUNC)
  3179  		n2.Pos = fn.Pos
  3180  		n2.Type = types.Types[TUINT8] // dummy type for a static closure. Could use runtime.funcval if we had it.
  3181  		closure = s.expr(n2)
  3182  		// Note: receiver is already assigned in n.List, so we don't
  3183  		// want to set it here.
  3184  	case OCALLINTER:
  3185  		if fn.Op != ODOTINTER {
  3186  			Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op)
  3187  		}
  3188  		i := s.expr(fn.Left)
  3189  		itab := s.newValue1(ssa.OpITab, types.Types[TUINTPTR], i)
  3190  		if k != callNormal {
  3191  			s.nilCheck(itab)
  3192  		}
  3193  		itabidx := fn.Xoffset + 2*int64(Widthptr) + 8 // offset of fun field in runtime.itab
  3194  		itab = s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.UintptrPtr, itabidx, itab)
  3195  		if k == callNormal {
  3196  			codeptr = s.newValue2(ssa.OpLoad, types.Types[TUINTPTR], itab, s.mem())
  3197  		} else {
  3198  			closure = itab
  3199  		}
  3200  		rcvr = s.newValue1(ssa.OpIData, types.Types[TUINTPTR], i)
  3201  	}
  3202  	dowidth(fn.Type)
  3203  	stksize := fn.Type.ArgWidth() // includes receiver
  3204  
  3205  	// Run all argument assignments. The arg slots have already
  3206  	// been offset by the appropriate amount (+2*widthptr for go/defer,
  3207  	// +widthptr for interface calls).
  3208  	// For OCALLMETH, the receiver is set in these statements.
  3209  	s.stmtList(n.List)
  3210  
  3211  	// Set receiver (for interface calls)
  3212  	if rcvr != nil {
  3213  		argStart := Ctxt.FixedFrameSize()
  3214  		if k != callNormal {
  3215  			argStart += int64(2 * Widthptr)
  3216  		}
  3217  		addr := s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart)
  3218  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINTPTR], addr, rcvr, s.mem())
  3219  	}
  3220  
  3221  	// Defer/go args
  3222  	if k != callNormal {
  3223  		// Write argsize and closure (args to Newproc/Deferproc).
  3224  		argStart := Ctxt.FixedFrameSize()
  3225  		argsize := s.constInt32(types.Types[TUINT32], int32(stksize))
  3226  		addr := s.constOffPtrSP(s.f.Config.Types.UInt32Ptr, argStart)
  3227  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINT32], addr, argsize, s.mem())
  3228  		addr = s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart+int64(Widthptr))
  3229  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINTPTR], addr, closure, s.mem())
  3230  		stksize += 2 * int64(Widthptr)
  3231  	}
  3232  
  3233  	// call target
  3234  	var call *ssa.Value
  3235  	switch {
  3236  	case k == callDefer:
  3237  		call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, Deferproc, s.mem())
  3238  	case k == callGo:
  3239  		call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, Newproc, s.mem())
  3240  	case closure != nil:
  3241  		codeptr = s.newValue2(ssa.OpLoad, types.Types[TUINTPTR], closure, s.mem())
  3242  		call = s.newValue3(ssa.OpClosureCall, types.TypeMem, codeptr, closure, s.mem())
  3243  	case codeptr != nil:
  3244  		call = s.newValue2(ssa.OpInterCall, types.TypeMem, codeptr, s.mem())
  3245  	case sym != nil:
  3246  		call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, sym.Linksym(), s.mem())
  3247  	default:
  3248  		Fatalf("bad call type %v %v", n.Op, n)
  3249  	}
  3250  	call.AuxInt = stksize // Call operations carry the argsize of the callee along with them
  3251  	s.vars[&memVar] = call
  3252  
  3253  	// Finish block for defers
  3254  	if k == callDefer {
  3255  		b := s.endBlock()
  3256  		b.Kind = ssa.BlockDefer
  3257  		b.SetControl(call)
  3258  		bNext := s.f.NewBlock(ssa.BlockPlain)
  3259  		b.AddEdgeTo(bNext)
  3260  		// Add recover edge to exit code.
  3261  		r := s.f.NewBlock(ssa.BlockPlain)
  3262  		s.startBlock(r)
  3263  		s.exit()
  3264  		b.AddEdgeTo(r)
  3265  		b.Likely = ssa.BranchLikely
  3266  		s.startBlock(bNext)
  3267  	}
  3268  
  3269  	res := n.Left.Type.Results()
  3270  	if res.NumFields() == 0 || k != callNormal {
  3271  		// call has no return value. Continue with the next statement.
  3272  		return nil
  3273  	}
  3274  	fp := res.Field(0)
  3275  	return s.constOffPtrSP(types.NewPtr(fp.Type), fp.Offset+Ctxt.FixedFrameSize())
  3276  }
  3277  
  3278  // etypesign returns the signed-ness of e, for integer/pointer etypes.
  3279  // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer.
  3280  func etypesign(e types.EType) int8 {
  3281  	switch e {
  3282  	case TINT8, TINT16, TINT32, TINT64, TINT:
  3283  		return -1
  3284  	case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR:
  3285  		return +1
  3286  	}
  3287  	return 0
  3288  }
  3289  
  3290  // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
  3291  // The value that the returned Value represents is guaranteed to be non-nil.
  3292  // If bounded is true then this address does not require a nil check for its operand
  3293  // even if that would otherwise be implied.
  3294  func (s *state) addr(n *Node, bounded bool) *ssa.Value {
  3295  	t := types.NewPtr(n.Type)
  3296  	switch n.Op {
  3297  	case ONAME:
  3298  		switch n.Class() {
  3299  		case PEXTERN:
  3300  			// global variable
  3301  			v := s.entryNewValue1A(ssa.OpAddr, t, n.Sym.Linksym(), s.sb)
  3302  			// TODO: Make OpAddr use AuxInt as well as Aux.
  3303  			if n.Xoffset != 0 {
  3304  				v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v)
  3305  			}
  3306  			return v
  3307  		case PPARAM:
  3308  			// parameter slot
  3309  			v := s.decladdrs[n]
  3310  			if v != nil {
  3311  				return v
  3312  			}
  3313  			if n == nodfp {
  3314  				// Special arg that points to the frame pointer (Used by ORECOVER).
  3315  				return s.entryNewValue1A(ssa.OpAddr, t, n, s.sp)
  3316  			}
  3317  			s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs)
  3318  			return nil
  3319  		case PAUTO:
  3320  			return s.newValue1A(ssa.OpAddr, t, n, s.sp)
  3321  		case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early.
  3322  			// ensure that we reuse symbols for out parameters so
  3323  			// that cse works on their addresses
  3324  			return s.newValue1A(ssa.OpAddr, t, n, s.sp)
  3325  		default:
  3326  			s.Fatalf("variable address class %v not implemented", classnames[n.Class()])
  3327  			return nil
  3328  		}
  3329  	case OINDREGSP:
  3330  		// indirect off REGSP
  3331  		// used for storing/loading arguments/returns to/from callees
  3332  		return s.constOffPtrSP(t, n.Xoffset)
  3333  	case OINDEX:
  3334  		if n.Left.Type.IsSlice() {
  3335  			a := s.expr(n.Left)
  3336  			i := s.expr(n.Right)
  3337  			i = s.extendIndex(i, panicindex)
  3338  			len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], a)
  3339  			if !n.Bounded() {
  3340  				s.boundsCheck(i, len)
  3341  			}
  3342  			p := s.newValue1(ssa.OpSlicePtr, t, a)
  3343  			return s.newValue2(ssa.OpPtrIndex, t, p, i)
  3344  		} else { // array
  3345  			a := s.addr(n.Left, bounded)
  3346  			i := s.expr(n.Right)
  3347  			i = s.extendIndex(i, panicindex)
  3348  			len := s.constInt(types.Types[TINT], n.Left.Type.NumElem())
  3349  			if !n.Bounded() {
  3350  				s.boundsCheck(i, len)
  3351  			}
  3352  			return s.newValue2(ssa.OpPtrIndex, types.NewPtr(n.Left.Type.Elem()), a, i)
  3353  		}
  3354  	case OIND:
  3355  		return s.exprPtr(n.Left, bounded, n.Pos)
  3356  	case ODOT:
  3357  		p := s.addr(n.Left, bounded)
  3358  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p)
  3359  	case ODOTPTR:
  3360  		p := s.exprPtr(n.Left, bounded, n.Pos)
  3361  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p)
  3362  	case OCLOSUREVAR:
  3363  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset,
  3364  			s.entryNewValue0(ssa.OpGetClosurePtr, s.f.Config.Types.BytePtr))
  3365  	case OCONVNOP:
  3366  		addr := s.addr(n.Left, bounded)
  3367  		return s.newValue1(ssa.OpCopy, t, addr) // ensure that addr has the right type
  3368  	case OCALLFUNC, OCALLINTER, OCALLMETH:
  3369  		return s.call(n, callNormal)
  3370  	case ODOTTYPE:
  3371  		v, _ := s.dottype(n, false)
  3372  		if v.Op != ssa.OpLoad {
  3373  			s.Fatalf("dottype of non-load")
  3374  		}
  3375  		if v.Args[1] != s.mem() {
  3376  			s.Fatalf("memory no longer live from dottype load")
  3377  		}
  3378  		return v.Args[0]
  3379  	default:
  3380  		s.Fatalf("unhandled addr %v", n.Op)
  3381  		return nil
  3382  	}
  3383  }
  3384  
  3385  // canSSA reports whether n is SSA-able.
  3386  // n must be an ONAME (or an ODOT sequence with an ONAME base).
  3387  func (s *state) canSSA(n *Node) bool {
  3388  	if Debug['N'] != 0 {
  3389  		return false
  3390  	}
  3391  	for n.Op == ODOT || (n.Op == OINDEX && n.Left.Type.IsArray()) {
  3392  		n = n.Left
  3393  	}
  3394  	if n.Op != ONAME {
  3395  		return false
  3396  	}
  3397  	if n.Addrtaken() {
  3398  		return false
  3399  	}
  3400  	if n.isParamHeapCopy() {
  3401  		return false
  3402  	}
  3403  	if n.Class() == PAUTOHEAP {
  3404  		Fatalf("canSSA of PAUTOHEAP %v", n)
  3405  	}
  3406  	switch n.Class() {
  3407  	case PEXTERN:
  3408  		return false
  3409  	case PPARAMOUT:
  3410  		if s.hasdefer {
  3411  			// TODO: handle this case? Named return values must be
  3412  			// in memory so that the deferred function can see them.
  3413  			// Maybe do: if !strings.HasPrefix(n.String(), "~") { return false }
  3414  			// Or maybe not, see issue 18860.  Even unnamed return values
  3415  			// must be written back so if a defer recovers, the caller can see them.
  3416  			return false
  3417  		}
  3418  		if s.cgoUnsafeArgs {
  3419  			// Cgo effectively takes the address of all result args,
  3420  			// but the compiler can't see that.
  3421  			return false
  3422  		}
  3423  	}
  3424  	if n.Class() == PPARAM && n.Sym != nil && n.Sym.Name == ".this" {
  3425  		// wrappers generated by genwrapper need to update
  3426  		// the .this pointer in place.
  3427  		// TODO: treat as a PPARMOUT?
  3428  		return false
  3429  	}
  3430  	return canSSAType(n.Type)
  3431  	// TODO: try to make more variables SSAable?
  3432  }
  3433  
  3434  // canSSA reports whether variables of type t are SSA-able.
  3435  func canSSAType(t *types.Type) bool {
  3436  	dowidth(t)
  3437  	if t.Width > int64(4*Widthptr) {
  3438  		// 4*Widthptr is an arbitrary constant. We want it
  3439  		// to be at least 3*Widthptr so slices can be registerized.
  3440  		// Too big and we'll introduce too much register pressure.
  3441  		return false
  3442  	}
  3443  	switch t.Etype {
  3444  	case TARRAY:
  3445  		// We can't do larger arrays because dynamic indexing is
  3446  		// not supported on SSA variables.
  3447  		// TODO: allow if all indexes are constant.
  3448  		if t.NumElem() <= 1 {
  3449  			return canSSAType(t.Elem())
  3450  		}
  3451  		return false
  3452  	case TSTRUCT:
  3453  		if t.NumFields() > ssa.MaxStruct {
  3454  			return false
  3455  		}
  3456  		for _, t1 := range t.Fields().Slice() {
  3457  			if !canSSAType(t1.Type) {
  3458  				return false
  3459  			}
  3460  		}
  3461  		return true
  3462  	default:
  3463  		return true
  3464  	}
  3465  }
  3466  
  3467  // exprPtr evaluates n to a pointer and nil-checks it.
  3468  func (s *state) exprPtr(n *Node, bounded bool, lineno src.XPos) *ssa.Value {
  3469  	p := s.expr(n)
  3470  	if bounded || n.NonNil() {
  3471  		if s.f.Frontend().Debug_checknil() && lineno.Line() > 1 {
  3472  			s.f.Warnl(lineno, "removed nil check")
  3473  		}
  3474  		return p
  3475  	}
  3476  	s.nilCheck(p)
  3477  	return p
  3478  }
  3479  
  3480  // nilCheck generates nil pointer checking code.
  3481  // Used only for automatically inserted nil checks,
  3482  // not for user code like 'x != nil'.
  3483  func (s *state) nilCheck(ptr *ssa.Value) {
  3484  	if disable_checknil != 0 || s.curfn.Func.NilCheckDisabled() {
  3485  		return
  3486  	}
  3487  	s.newValue2(ssa.OpNilCheck, types.TypeVoid, ptr, s.mem())
  3488  }
  3489  
  3490  // boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not.
  3491  // Starts a new block on return.
  3492  // idx is already converted to full int width.
  3493  func (s *state) boundsCheck(idx, len *ssa.Value) {
  3494  	if Debug['B'] != 0 {
  3495  		return
  3496  	}
  3497  
  3498  	// bounds check
  3499  	cmp := s.newValue2(ssa.OpIsInBounds, types.Types[TBOOL], idx, len)
  3500  	s.check(cmp, panicindex)
  3501  }
  3502  
  3503  // sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not.
  3504  // Starts a new block on return.
  3505  // idx and len are already converted to full int width.
  3506  func (s *state) sliceBoundsCheck(idx, len *ssa.Value) {
  3507  	if Debug['B'] != 0 {
  3508  		return
  3509  	}
  3510  
  3511  	// bounds check
  3512  	cmp := s.newValue2(ssa.OpIsSliceInBounds, types.Types[TBOOL], idx, len)
  3513  	s.check(cmp, panicslice)
  3514  }
  3515  
  3516  // If cmp (a bool) is false, panic using the given function.
  3517  func (s *state) check(cmp *ssa.Value, fn *obj.LSym) {
  3518  	b := s.endBlock()
  3519  	b.Kind = ssa.BlockIf
  3520  	b.SetControl(cmp)
  3521  	b.Likely = ssa.BranchLikely
  3522  	bNext := s.f.NewBlock(ssa.BlockPlain)
  3523  	line := s.peekPos()
  3524  	pos := Ctxt.PosTable.Pos(line)
  3525  	fl := funcLine{f: fn, base: pos.Base(), line: pos.Line()}
  3526  	bPanic := s.panics[fl]
  3527  	if bPanic == nil {
  3528  		bPanic = s.f.NewBlock(ssa.BlockPlain)
  3529  		s.panics[fl] = bPanic
  3530  		s.startBlock(bPanic)
  3531  		// The panic call takes/returns memory to ensure that the right
  3532  		// memory state is observed if the panic happens.
  3533  		s.rtcall(fn, false, nil)
  3534  	}
  3535  	b.AddEdgeTo(bNext)
  3536  	b.AddEdgeTo(bPanic)
  3537  	s.startBlock(bNext)
  3538  }
  3539  
  3540  func (s *state) intDivide(n *Node, a, b *ssa.Value) *ssa.Value {
  3541  	needcheck := true
  3542  	switch b.Op {
  3543  	case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64:
  3544  		if b.AuxInt != 0 {
  3545  			needcheck = false
  3546  		}
  3547  	}
  3548  	if needcheck {
  3549  		// do a size-appropriate check for zero
  3550  		cmp := s.newValue2(s.ssaOp(ONE, n.Type), types.Types[TBOOL], b, s.zeroVal(n.Type))
  3551  		s.check(cmp, panicdivide)
  3552  	}
  3553  	return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  3554  }
  3555  
  3556  // rtcall issues a call to the given runtime function fn with the listed args.
  3557  // Returns a slice of results of the given result types.
  3558  // The call is added to the end of the current block.
  3559  // If returns is false, the block is marked as an exit block.
  3560  func (s *state) rtcall(fn *obj.LSym, returns bool, results []*types.Type, args ...*ssa.Value) []*ssa.Value {
  3561  	// Write args to the stack
  3562  	off := Ctxt.FixedFrameSize()
  3563  	for _, arg := range args {
  3564  		t := arg.Type
  3565  		off = Rnd(off, t.Alignment())
  3566  		ptr := s.constOffPtrSP(t.PtrTo(), off)
  3567  		size := t.Size()
  3568  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, ptr, arg, s.mem())
  3569  		off += size
  3570  	}
  3571  	off = Rnd(off, int64(Widthreg))
  3572  
  3573  	// Issue call
  3574  	call := s.newValue1A(ssa.OpStaticCall, types.TypeMem, fn, s.mem())
  3575  	s.vars[&memVar] = call
  3576  
  3577  	if !returns {
  3578  		// Finish block
  3579  		b := s.endBlock()
  3580  		b.Kind = ssa.BlockExit
  3581  		b.SetControl(call)
  3582  		call.AuxInt = off - Ctxt.FixedFrameSize()
  3583  		if len(results) > 0 {
  3584  			Fatalf("panic call can't have results")
  3585  		}
  3586  		return nil
  3587  	}
  3588  
  3589  	// Load results
  3590  	res := make([]*ssa.Value, len(results))
  3591  	for i, t := range results {
  3592  		off = Rnd(off, t.Alignment())
  3593  		ptr := s.constOffPtrSP(types.NewPtr(t), off)
  3594  		res[i] = s.newValue2(ssa.OpLoad, t, ptr, s.mem())
  3595  		off += t.Size()
  3596  	}
  3597  	off = Rnd(off, int64(Widthptr))
  3598  
  3599  	// Remember how much callee stack space we needed.
  3600  	call.AuxInt = off
  3601  
  3602  	return res
  3603  }
  3604  
  3605  // do *left = right for type t.
  3606  func (s *state) storeType(t *types.Type, left, right *ssa.Value, skip skipMask) {
  3607  	if skip == 0 && (!types.Haspointers(t) || ssa.IsStackAddr(left)) {
  3608  		// Known to not have write barrier. Store the whole type.
  3609  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, left, right, s.mem())
  3610  		return
  3611  	}
  3612  
  3613  	// store scalar fields first, so write barrier stores for
  3614  	// pointer fields can be grouped together, and scalar values
  3615  	// don't need to be live across the write barrier call.
  3616  	// TODO: if the writebarrier pass knows how to reorder stores,
  3617  	// we can do a single store here as long as skip==0.
  3618  	s.storeTypeScalars(t, left, right, skip)
  3619  	if skip&skipPtr == 0 && types.Haspointers(t) {
  3620  		s.storeTypePtrs(t, left, right)
  3621  	}
  3622  }
  3623  
  3624  // do *left = right for all scalar (non-pointer) parts of t.
  3625  func (s *state) storeTypeScalars(t *types.Type, left, right *ssa.Value, skip skipMask) {
  3626  	switch {
  3627  	case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex():
  3628  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, left, right, s.mem())
  3629  	case t.IsPtrShaped():
  3630  		// no scalar fields.
  3631  	case t.IsString():
  3632  		if skip&skipLen != 0 {
  3633  			return
  3634  		}
  3635  		len := s.newValue1(ssa.OpStringLen, types.Types[TINT], right)
  3636  		lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left)
  3637  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], lenAddr, len, s.mem())
  3638  	case t.IsSlice():
  3639  		if skip&skipLen == 0 {
  3640  			len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], right)
  3641  			lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left)
  3642  			s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], lenAddr, len, s.mem())
  3643  		}
  3644  		if skip&skipCap == 0 {
  3645  			cap := s.newValue1(ssa.OpSliceCap, types.Types[TINT], right)
  3646  			capAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, 2*s.config.PtrSize, left)
  3647  			s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], capAddr, cap, s.mem())
  3648  		}
  3649  	case t.IsInterface():
  3650  		// itab field doesn't need a write barrier (even though it is a pointer).
  3651  		itab := s.newValue1(ssa.OpITab, s.f.Config.Types.BytePtr, right)
  3652  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINTPTR], left, itab, s.mem())
  3653  	case t.IsStruct():
  3654  		n := t.NumFields()
  3655  		for i := 0; i < n; i++ {
  3656  			ft := t.FieldType(i)
  3657  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3658  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3659  			s.storeTypeScalars(ft, addr, val, 0)
  3660  		}
  3661  	case t.IsArray() && t.NumElem() == 0:
  3662  		// nothing
  3663  	case t.IsArray() && t.NumElem() == 1:
  3664  		s.storeTypeScalars(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right), 0)
  3665  	default:
  3666  		s.Fatalf("bad write barrier type %v", t)
  3667  	}
  3668  }
  3669  
  3670  // do *left = right for all pointer parts of t.
  3671  func (s *state) storeTypePtrs(t *types.Type, left, right *ssa.Value) {
  3672  	switch {
  3673  	case t.IsPtrShaped():
  3674  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, left, right, s.mem())
  3675  	case t.IsString():
  3676  		ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, right)
  3677  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, s.f.Config.Types.BytePtr, left, ptr, s.mem())
  3678  	case t.IsSlice():
  3679  		ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, right)
  3680  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, s.f.Config.Types.BytePtr, left, ptr, s.mem())
  3681  	case t.IsInterface():
  3682  		// itab field is treated as a scalar.
  3683  		idata := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, right)
  3684  		idataAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.BytePtrPtr, s.config.PtrSize, left)
  3685  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, s.f.Config.Types.BytePtr, idataAddr, idata, s.mem())
  3686  	case t.IsStruct():
  3687  		n := t.NumFields()
  3688  		for i := 0; i < n; i++ {
  3689  			ft := t.FieldType(i)
  3690  			if !types.Haspointers(ft) {
  3691  				continue
  3692  			}
  3693  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3694  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3695  			s.storeTypePtrs(ft, addr, val)
  3696  		}
  3697  	case t.IsArray() && t.NumElem() == 0:
  3698  		// nothing
  3699  	case t.IsArray() && t.NumElem() == 1:
  3700  		s.storeTypePtrs(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right))
  3701  	default:
  3702  		s.Fatalf("bad write barrier type %v", t)
  3703  	}
  3704  }
  3705  
  3706  // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result.
  3707  // i,j,k may be nil, in which case they are set to their default value.
  3708  // t is a slice, ptr to array, or string type.
  3709  func (s *state) slice(t *types.Type, v, i, j, k *ssa.Value) (p, l, c *ssa.Value) {
  3710  	var elemtype *types.Type
  3711  	var ptrtype *types.Type
  3712  	var ptr *ssa.Value
  3713  	var len *ssa.Value
  3714  	var cap *ssa.Value
  3715  	zero := s.constInt(types.Types[TINT], 0)
  3716  	switch {
  3717  	case t.IsSlice():
  3718  		elemtype = t.Elem()
  3719  		ptrtype = types.NewPtr(elemtype)
  3720  		ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v)
  3721  		len = s.newValue1(ssa.OpSliceLen, types.Types[TINT], v)
  3722  		cap = s.newValue1(ssa.OpSliceCap, types.Types[TINT], v)
  3723  	case t.IsString():
  3724  		elemtype = types.Types[TUINT8]
  3725  		ptrtype = types.NewPtr(elemtype)
  3726  		ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v)
  3727  		len = s.newValue1(ssa.OpStringLen, types.Types[TINT], v)
  3728  		cap = len
  3729  	case t.IsPtr():
  3730  		if !t.Elem().IsArray() {
  3731  			s.Fatalf("bad ptr to array in slice %v\n", t)
  3732  		}
  3733  		elemtype = t.Elem().Elem()
  3734  		ptrtype = types.NewPtr(elemtype)
  3735  		s.nilCheck(v)
  3736  		ptr = v
  3737  		len = s.constInt(types.Types[TINT], t.Elem().NumElem())
  3738  		cap = len
  3739  	default:
  3740  		s.Fatalf("bad type in slice %v\n", t)
  3741  	}
  3742  
  3743  	// Set default values
  3744  	if i == nil {
  3745  		i = zero
  3746  	}
  3747  	if j == nil {
  3748  		j = len
  3749  	}
  3750  	if k == nil {
  3751  		k = cap
  3752  	}
  3753  
  3754  	// Panic if slice indices are not in bounds.
  3755  	s.sliceBoundsCheck(i, j)
  3756  	if j != k {
  3757  		s.sliceBoundsCheck(j, k)
  3758  	}
  3759  	if k != cap {
  3760  		s.sliceBoundsCheck(k, cap)
  3761  	}
  3762  
  3763  	// Generate the following code assuming that indexes are in bounds.
  3764  	// The masking is to make sure that we don't generate a slice
  3765  	// that points to the next object in memory.
  3766  	// rlen = j - i
  3767  	// rcap = k - i
  3768  	// delta = i * elemsize
  3769  	// rptr = p + delta&mask(rcap)
  3770  	// result = (SliceMake rptr rlen rcap)
  3771  	// where mask(x) is 0 if x==0 and -1 if x>0.
  3772  	subOp := s.ssaOp(OSUB, types.Types[TINT])
  3773  	mulOp := s.ssaOp(OMUL, types.Types[TINT])
  3774  	andOp := s.ssaOp(OAND, types.Types[TINT])
  3775  	rlen := s.newValue2(subOp, types.Types[TINT], j, i)
  3776  	var rcap *ssa.Value
  3777  	switch {
  3778  	case t.IsString():
  3779  		// Capacity of the result is unimportant. However, we use
  3780  		// rcap to test if we've generated a zero-length slice.
  3781  		// Use length of strings for that.
  3782  		rcap = rlen
  3783  	case j == k:
  3784  		rcap = rlen
  3785  	default:
  3786  		rcap = s.newValue2(subOp, types.Types[TINT], k, i)
  3787  	}
  3788  
  3789  	var rptr *ssa.Value
  3790  	if (i.Op == ssa.OpConst64 || i.Op == ssa.OpConst32) && i.AuxInt == 0 {
  3791  		// No pointer arithmetic necessary.
  3792  		rptr = ptr
  3793  	} else {
  3794  		// delta = # of bytes to offset pointer by.
  3795  		delta := s.newValue2(mulOp, types.Types[TINT], i, s.constInt(types.Types[TINT], elemtype.Width))
  3796  		// If we're slicing to the point where the capacity is zero,
  3797  		// zero out the delta.
  3798  		mask := s.newValue1(ssa.OpSlicemask, types.Types[TINT], rcap)
  3799  		delta = s.newValue2(andOp, types.Types[TINT], delta, mask)
  3800  		// Compute rptr = ptr + delta
  3801  		rptr = s.newValue2(ssa.OpAddPtr, ptrtype, ptr, delta)
  3802  	}
  3803  
  3804  	return rptr, rlen, rcap
  3805  }
  3806  
  3807  type u642fcvtTab struct {
  3808  	geq, cvt2F, and, rsh, or, add ssa.Op
  3809  	one                           func(*state, *types.Type, int64) *ssa.Value
  3810  }
  3811  
  3812  var u64_f64 = u642fcvtTab{
  3813  	geq:   ssa.OpGeq64,
  3814  	cvt2F: ssa.OpCvt64to64F,
  3815  	and:   ssa.OpAnd64,
  3816  	rsh:   ssa.OpRsh64Ux64,
  3817  	or:    ssa.OpOr64,
  3818  	add:   ssa.OpAdd64F,
  3819  	one:   (*state).constInt64,
  3820  }
  3821  
  3822  var u64_f32 = u642fcvtTab{
  3823  	geq:   ssa.OpGeq64,
  3824  	cvt2F: ssa.OpCvt64to32F,
  3825  	and:   ssa.OpAnd64,
  3826  	rsh:   ssa.OpRsh64Ux64,
  3827  	or:    ssa.OpOr64,
  3828  	add:   ssa.OpAdd32F,
  3829  	one:   (*state).constInt64,
  3830  }
  3831  
  3832  func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3833  	return s.uint64Tofloat(&u64_f64, n, x, ft, tt)
  3834  }
  3835  
  3836  func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3837  	return s.uint64Tofloat(&u64_f32, n, x, ft, tt)
  3838  }
  3839  
  3840  func (s *state) uint64Tofloat(cvttab *u642fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3841  	// if x >= 0 {
  3842  	//    result = (floatY) x
  3843  	// } else {
  3844  	// 	  y = uintX(x) ; y = x & 1
  3845  	// 	  z = uintX(x) ; z = z >> 1
  3846  	// 	  z = z >> 1
  3847  	// 	  z = z | y
  3848  	// 	  result = floatY(z)
  3849  	// 	  result = result + result
  3850  	// }
  3851  	//
  3852  	// Code borrowed from old code generator.
  3853  	// What's going on: large 64-bit "unsigned" looks like
  3854  	// negative number to hardware's integer-to-float
  3855  	// conversion. However, because the mantissa is only
  3856  	// 63 bits, we don't need the LSB, so instead we do an
  3857  	// unsigned right shift (divide by two), convert, and
  3858  	// double. However, before we do that, we need to be
  3859  	// sure that we do not lose a "1" if that made the
  3860  	// difference in the resulting rounding. Therefore, we
  3861  	// preserve it, and OR (not ADD) it back in. The case
  3862  	// that matters is when the eleven discarded bits are
  3863  	// equal to 10000000001; that rounds up, and the 1 cannot
  3864  	// be lost else it would round down if the LSB of the
  3865  	// candidate mantissa is 0.
  3866  	cmp := s.newValue2(cvttab.geq, types.Types[TBOOL], x, s.zeroVal(ft))
  3867  	b := s.endBlock()
  3868  	b.Kind = ssa.BlockIf
  3869  	b.SetControl(cmp)
  3870  	b.Likely = ssa.BranchLikely
  3871  
  3872  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3873  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3874  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3875  
  3876  	b.AddEdgeTo(bThen)
  3877  	s.startBlock(bThen)
  3878  	a0 := s.newValue1(cvttab.cvt2F, tt, x)
  3879  	s.vars[n] = a0
  3880  	s.endBlock()
  3881  	bThen.AddEdgeTo(bAfter)
  3882  
  3883  	b.AddEdgeTo(bElse)
  3884  	s.startBlock(bElse)
  3885  	one := cvttab.one(s, ft, 1)
  3886  	y := s.newValue2(cvttab.and, ft, x, one)
  3887  	z := s.newValue2(cvttab.rsh, ft, x, one)
  3888  	z = s.newValue2(cvttab.or, ft, z, y)
  3889  	a := s.newValue1(cvttab.cvt2F, tt, z)
  3890  	a1 := s.newValue2(cvttab.add, tt, a, a)
  3891  	s.vars[n] = a1
  3892  	s.endBlock()
  3893  	bElse.AddEdgeTo(bAfter)
  3894  
  3895  	s.startBlock(bAfter)
  3896  	return s.variable(n, n.Type)
  3897  }
  3898  
  3899  type u322fcvtTab struct {
  3900  	cvtI2F, cvtF2F ssa.Op
  3901  }
  3902  
  3903  var u32_f64 = u322fcvtTab{
  3904  	cvtI2F: ssa.OpCvt32to64F,
  3905  	cvtF2F: ssa.OpCopy,
  3906  }
  3907  
  3908  var u32_f32 = u322fcvtTab{
  3909  	cvtI2F: ssa.OpCvt32to32F,
  3910  	cvtF2F: ssa.OpCvt64Fto32F,
  3911  }
  3912  
  3913  func (s *state) uint32Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3914  	return s.uint32Tofloat(&u32_f64, n, x, ft, tt)
  3915  }
  3916  
  3917  func (s *state) uint32Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3918  	return s.uint32Tofloat(&u32_f32, n, x, ft, tt)
  3919  }
  3920  
  3921  func (s *state) uint32Tofloat(cvttab *u322fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3922  	// if x >= 0 {
  3923  	// 	result = floatY(x)
  3924  	// } else {
  3925  	// 	result = floatY(float64(x) + (1<<32))
  3926  	// }
  3927  	cmp := s.newValue2(ssa.OpGeq32, types.Types[TBOOL], x, s.zeroVal(ft))
  3928  	b := s.endBlock()
  3929  	b.Kind = ssa.BlockIf
  3930  	b.SetControl(cmp)
  3931  	b.Likely = ssa.BranchLikely
  3932  
  3933  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3934  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3935  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3936  
  3937  	b.AddEdgeTo(bThen)
  3938  	s.startBlock(bThen)
  3939  	a0 := s.newValue1(cvttab.cvtI2F, tt, x)
  3940  	s.vars[n] = a0
  3941  	s.endBlock()
  3942  	bThen.AddEdgeTo(bAfter)
  3943  
  3944  	b.AddEdgeTo(bElse)
  3945  	s.startBlock(bElse)
  3946  	a1 := s.newValue1(ssa.OpCvt32to64F, types.Types[TFLOAT64], x)
  3947  	twoToThe32 := s.constFloat64(types.Types[TFLOAT64], float64(1<<32))
  3948  	a2 := s.newValue2(ssa.OpAdd64F, types.Types[TFLOAT64], a1, twoToThe32)
  3949  	a3 := s.newValue1(cvttab.cvtF2F, tt, a2)
  3950  
  3951  	s.vars[n] = a3
  3952  	s.endBlock()
  3953  	bElse.AddEdgeTo(bAfter)
  3954  
  3955  	s.startBlock(bAfter)
  3956  	return s.variable(n, n.Type)
  3957  }
  3958  
  3959  // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels.
  3960  func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value {
  3961  	if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() {
  3962  		s.Fatalf("node must be a map or a channel")
  3963  	}
  3964  	// if n == nil {
  3965  	//   return 0
  3966  	// } else {
  3967  	//   // len
  3968  	//   return *((*int)n)
  3969  	//   // cap
  3970  	//   return *(((*int)n)+1)
  3971  	// }
  3972  	lenType := n.Type
  3973  	nilValue := s.constNil(types.Types[TUINTPTR])
  3974  	cmp := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], x, nilValue)
  3975  	b := s.endBlock()
  3976  	b.Kind = ssa.BlockIf
  3977  	b.SetControl(cmp)
  3978  	b.Likely = ssa.BranchUnlikely
  3979  
  3980  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3981  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3982  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3983  
  3984  	// length/capacity of a nil map/chan is zero
  3985  	b.AddEdgeTo(bThen)
  3986  	s.startBlock(bThen)
  3987  	s.vars[n] = s.zeroVal(lenType)
  3988  	s.endBlock()
  3989  	bThen.AddEdgeTo(bAfter)
  3990  
  3991  	b.AddEdgeTo(bElse)
  3992  	s.startBlock(bElse)
  3993  	if n.Op == OLEN {
  3994  		// length is stored in the first word for map/chan
  3995  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, x, s.mem())
  3996  	} else if n.Op == OCAP {
  3997  		// capacity is stored in the second word for chan
  3998  		sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x)
  3999  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, sw, s.mem())
  4000  	} else {
  4001  		s.Fatalf("op must be OLEN or OCAP")
  4002  	}
  4003  	s.endBlock()
  4004  	bElse.AddEdgeTo(bAfter)
  4005  
  4006  	s.startBlock(bAfter)
  4007  	return s.variable(n, lenType)
  4008  }
  4009  
  4010  type f2uCvtTab struct {
  4011  	ltf, cvt2U, subf, or ssa.Op
  4012  	floatValue           func(*state, *types.Type, float64) *ssa.Value
  4013  	intValue             func(*state, *types.Type, int64) *ssa.Value
  4014  	cutoff               uint64
  4015  }
  4016  
  4017  var f32_u64 = f2uCvtTab{
  4018  	ltf:        ssa.OpLess32F,
  4019  	cvt2U:      ssa.OpCvt32Fto64,
  4020  	subf:       ssa.OpSub32F,
  4021  	or:         ssa.OpOr64,
  4022  	floatValue: (*state).constFloat32,
  4023  	intValue:   (*state).constInt64,
  4024  	cutoff:     9223372036854775808,
  4025  }
  4026  
  4027  var f64_u64 = f2uCvtTab{
  4028  	ltf:        ssa.OpLess64F,
  4029  	cvt2U:      ssa.OpCvt64Fto64,
  4030  	subf:       ssa.OpSub64F,
  4031  	or:         ssa.OpOr64,
  4032  	floatValue: (*state).constFloat64,
  4033  	intValue:   (*state).constInt64,
  4034  	cutoff:     9223372036854775808,
  4035  }
  4036  
  4037  var f32_u32 = f2uCvtTab{
  4038  	ltf:        ssa.OpLess32F,
  4039  	cvt2U:      ssa.OpCvt32Fto32,
  4040  	subf:       ssa.OpSub32F,
  4041  	or:         ssa.OpOr32,
  4042  	floatValue: (*state).constFloat32,
  4043  	intValue:   func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
  4044  	cutoff:     2147483648,
  4045  }
  4046  
  4047  var f64_u32 = f2uCvtTab{
  4048  	ltf:        ssa.OpLess64F,
  4049  	cvt2U:      ssa.OpCvt64Fto32,
  4050  	subf:       ssa.OpSub64F,
  4051  	or:         ssa.OpOr32,
  4052  	floatValue: (*state).constFloat64,
  4053  	intValue:   func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
  4054  	cutoff:     2147483648,
  4055  }
  4056  
  4057  func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4058  	return s.floatToUint(&f32_u64, n, x, ft, tt)
  4059  }
  4060  func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4061  	return s.floatToUint(&f64_u64, n, x, ft, tt)
  4062  }
  4063  
  4064  func (s *state) float32ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4065  	return s.floatToUint(&f32_u32, n, x, ft, tt)
  4066  }
  4067  
  4068  func (s *state) float64ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4069  	return s.floatToUint(&f64_u32, n, x, ft, tt)
  4070  }
  4071  
  4072  func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4073  	// cutoff:=1<<(intY_Size-1)
  4074  	// if x < floatX(cutoff) {
  4075  	// 	result = uintY(x)
  4076  	// } else {
  4077  	// 	y = x - floatX(cutoff)
  4078  	// 	z = uintY(y)
  4079  	// 	result = z | -(cutoff)
  4080  	// }
  4081  	cutoff := cvttab.floatValue(s, ft, float64(cvttab.cutoff))
  4082  	cmp := s.newValue2(cvttab.ltf, types.Types[TBOOL], x, cutoff)
  4083  	b := s.endBlock()
  4084  	b.Kind = ssa.BlockIf
  4085  	b.SetControl(cmp)
  4086  	b.Likely = ssa.BranchLikely
  4087  
  4088  	bThen := s.f.NewBlock(ssa.BlockPlain)
  4089  	bElse := s.f.NewBlock(ssa.BlockPlain)
  4090  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  4091  
  4092  	b.AddEdgeTo(bThen)
  4093  	s.startBlock(bThen)
  4094  	a0 := s.newValue1(cvttab.cvt2U, tt, x)
  4095  	s.vars[n] = a0
  4096  	s.endBlock()
  4097  	bThen.AddEdgeTo(bAfter)
  4098  
  4099  	b.AddEdgeTo(bElse)
  4100  	s.startBlock(bElse)
  4101  	y := s.newValue2(cvttab.subf, ft, x, cutoff)
  4102  	y = s.newValue1(cvttab.cvt2U, tt, y)
  4103  	z := cvttab.intValue(s, tt, int64(-cvttab.cutoff))
  4104  	a1 := s.newValue2(cvttab.or, tt, y, z)
  4105  	s.vars[n] = a1
  4106  	s.endBlock()
  4107  	bElse.AddEdgeTo(bAfter)
  4108  
  4109  	s.startBlock(bAfter)
  4110  	return s.variable(n, n.Type)
  4111  }
  4112  
  4113  // dottype generates SSA for a type assertion node.
  4114  // commaok indicates whether to panic or return a bool.
  4115  // If commaok is false, resok will be nil.
  4116  func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) {
  4117  	iface := s.expr(n.Left)   // input interface
  4118  	target := s.expr(n.Right) // target type
  4119  	byteptr := s.f.Config.Types.BytePtr
  4120  
  4121  	if n.Type.IsInterface() {
  4122  		if n.Type.IsEmptyInterface() {
  4123  			// Converting to an empty interface.
  4124  			// Input could be an empty or nonempty interface.
  4125  			if Debug_typeassert > 0 {
  4126  				Warnl(n.Pos, "type assertion inlined")
  4127  			}
  4128  
  4129  			// Get itab/type field from input.
  4130  			itab := s.newValue1(ssa.OpITab, byteptr, iface)
  4131  			// Conversion succeeds iff that field is not nil.
  4132  			cond := s.newValue2(ssa.OpNeqPtr, types.Types[TBOOL], itab, s.constNil(byteptr))
  4133  
  4134  			if n.Left.Type.IsEmptyInterface() && commaok {
  4135  				// Converting empty interface to empty interface with ,ok is just a nil check.
  4136  				return iface, cond
  4137  			}
  4138  
  4139  			// Branch on nilness.
  4140  			b := s.endBlock()
  4141  			b.Kind = ssa.BlockIf
  4142  			b.SetControl(cond)
  4143  			b.Likely = ssa.BranchLikely
  4144  			bOk := s.f.NewBlock(ssa.BlockPlain)
  4145  			bFail := s.f.NewBlock(ssa.BlockPlain)
  4146  			b.AddEdgeTo(bOk)
  4147  			b.AddEdgeTo(bFail)
  4148  
  4149  			if !commaok {
  4150  				// On failure, panic by calling panicnildottype.
  4151  				s.startBlock(bFail)
  4152  				s.rtcall(panicnildottype, false, nil, target)
  4153  
  4154  				// On success, return (perhaps modified) input interface.
  4155  				s.startBlock(bOk)
  4156  				if n.Left.Type.IsEmptyInterface() {
  4157  					res = iface // Use input interface unchanged.
  4158  					return
  4159  				}
  4160  				// Load type out of itab, build interface with existing idata.
  4161  				off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab)
  4162  				typ := s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
  4163  				idata := s.newValue1(ssa.OpIData, n.Type, iface)
  4164  				res = s.newValue2(ssa.OpIMake, n.Type, typ, idata)
  4165  				return
  4166  			}
  4167  
  4168  			s.startBlock(bOk)
  4169  			// nonempty -> empty
  4170  			// Need to load type from itab
  4171  			off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab)
  4172  			s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
  4173  			s.endBlock()
  4174  
  4175  			// itab is nil, might as well use that as the nil result.
  4176  			s.startBlock(bFail)
  4177  			s.vars[&typVar] = itab
  4178  			s.endBlock()
  4179  
  4180  			// Merge point.
  4181  			bEnd := s.f.NewBlock(ssa.BlockPlain)
  4182  			bOk.AddEdgeTo(bEnd)
  4183  			bFail.AddEdgeTo(bEnd)
  4184  			s.startBlock(bEnd)
  4185  			idata := s.newValue1(ssa.OpIData, n.Type, iface)
  4186  			res = s.newValue2(ssa.OpIMake, n.Type, s.variable(&typVar, byteptr), idata)
  4187  			resok = cond
  4188  			delete(s.vars, &typVar)
  4189  			return
  4190  		}
  4191  		// converting to a nonempty interface needs a runtime call.
  4192  		if Debug_typeassert > 0 {
  4193  			Warnl(n.Pos, "type assertion not inlined")
  4194  		}
  4195  		if n.Left.Type.IsEmptyInterface() {
  4196  			if commaok {
  4197  				call := s.rtcall(assertE2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface)
  4198  				return call[0], call[1]
  4199  			}
  4200  			return s.rtcall(assertE2I, true, []*types.Type{n.Type}, target, iface)[0], nil
  4201  		}
  4202  		if commaok {
  4203  			call := s.rtcall(assertI2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface)
  4204  			return call[0], call[1]
  4205  		}
  4206  		return s.rtcall(assertI2I, true, []*types.Type{n.Type}, target, iface)[0], nil
  4207  	}
  4208  
  4209  	if Debug_typeassert > 0 {
  4210  		Warnl(n.Pos, "type assertion inlined")
  4211  	}
  4212  
  4213  	// Converting to a concrete type.
  4214  	direct := isdirectiface(n.Type)
  4215  	itab := s.newValue1(ssa.OpITab, byteptr, iface) // type word of interface
  4216  	if Debug_typeassert > 0 {
  4217  		Warnl(n.Pos, "type assertion inlined")
  4218  	}
  4219  	var targetITab *ssa.Value
  4220  	if n.Left.Type.IsEmptyInterface() {
  4221  		// Looking for pointer to target type.
  4222  		targetITab = target
  4223  	} else {
  4224  		// Looking for pointer to itab for target type and source interface.
  4225  		targetITab = s.expr(n.List.First())
  4226  	}
  4227  
  4228  	var tmp *Node       // temporary for use with large types
  4229  	var addr *ssa.Value // address of tmp
  4230  	if commaok && !canSSAType(n.Type) {
  4231  		// unSSAable type, use temporary.
  4232  		// TODO: get rid of some of these temporaries.
  4233  		tmp = tempAt(n.Pos, s.curfn, n.Type)
  4234  		addr = s.addr(tmp, false)
  4235  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, tmp, s.mem())
  4236  	}
  4237  
  4238  	cond := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], itab, targetITab)
  4239  	b := s.endBlock()
  4240  	b.Kind = ssa.BlockIf
  4241  	b.SetControl(cond)
  4242  	b.Likely = ssa.BranchLikely
  4243  
  4244  	bOk := s.f.NewBlock(ssa.BlockPlain)
  4245  	bFail := s.f.NewBlock(ssa.BlockPlain)
  4246  	b.AddEdgeTo(bOk)
  4247  	b.AddEdgeTo(bFail)
  4248  
  4249  	if !commaok {
  4250  		// on failure, panic by calling panicdottype
  4251  		s.startBlock(bFail)
  4252  		taddr := s.expr(n.Right.Right)
  4253  		if n.Left.Type.IsEmptyInterface() {
  4254  			s.rtcall(panicdottypeE, false, nil, itab, target, taddr)
  4255  		} else {
  4256  			s.rtcall(panicdottypeI, false, nil, itab, target, taddr)
  4257  		}
  4258  
  4259  		// on success, return data from interface
  4260  		s.startBlock(bOk)
  4261  		if direct {
  4262  			return s.newValue1(ssa.OpIData, n.Type, iface), nil
  4263  		}
  4264  		p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
  4265  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()), nil
  4266  	}
  4267  
  4268  	// commaok is the more complicated case because we have
  4269  	// a control flow merge point.
  4270  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  4271  	// Note that we need a new valVar each time (unlike okVar where we can
  4272  	// reuse the variable) because it might have a different type every time.
  4273  	valVar := &Node{Op: ONAME, Sym: &types.Sym{Name: "val"}}
  4274  
  4275  	// type assertion succeeded
  4276  	s.startBlock(bOk)
  4277  	if tmp == nil {
  4278  		if direct {
  4279  			s.vars[valVar] = s.newValue1(ssa.OpIData, n.Type, iface)
  4280  		} else {
  4281  			p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
  4282  			s.vars[valVar] = s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  4283  		}
  4284  	} else {
  4285  		p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
  4286  		store := s.newValue3I(ssa.OpMove, types.TypeMem, n.Type.Size(), addr, p, s.mem())
  4287  		store.Aux = n.Type
  4288  		s.vars[&memVar] = store
  4289  	}
  4290  	s.vars[&okVar] = s.constBool(true)
  4291  	s.endBlock()
  4292  	bOk.AddEdgeTo(bEnd)
  4293  
  4294  	// type assertion failed
  4295  	s.startBlock(bFail)
  4296  	if tmp == nil {
  4297  		s.vars[valVar] = s.zeroVal(n.Type)
  4298  	} else {
  4299  		store := s.newValue2I(ssa.OpZero, types.TypeMem, n.Type.Size(), addr, s.mem())
  4300  		store.Aux = n.Type
  4301  		s.vars[&memVar] = store
  4302  	}
  4303  	s.vars[&okVar] = s.constBool(false)
  4304  	s.endBlock()
  4305  	bFail.AddEdgeTo(bEnd)
  4306  
  4307  	// merge point
  4308  	s.startBlock(bEnd)
  4309  	if tmp == nil {
  4310  		res = s.variable(valVar, n.Type)
  4311  		delete(s.vars, valVar)
  4312  	} else {
  4313  		res = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  4314  		s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, types.TypeMem, tmp, s.mem())
  4315  	}
  4316  	resok = s.variable(&okVar, types.Types[TBOOL])
  4317  	delete(s.vars, &okVar)
  4318  	return res, resok
  4319  }
  4320  
  4321  // variable returns the value of a variable at the current location.
  4322  func (s *state) variable(name *Node, t *types.Type) *ssa.Value {
  4323  	v := s.vars[name]
  4324  	if v != nil {
  4325  		return v
  4326  	}
  4327  	v = s.fwdVars[name]
  4328  	if v != nil {
  4329  		return v
  4330  	}
  4331  
  4332  	if s.curBlock == s.f.Entry {
  4333  		// No variable should be live at entry.
  4334  		s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, name, v)
  4335  	}
  4336  	// Make a FwdRef, which records a value that's live on block input.
  4337  	// We'll find the matching definition as part of insertPhis.
  4338  	v = s.newValue0A(ssa.OpFwdRef, t, name)
  4339  	s.fwdVars[name] = v
  4340  	s.addNamedValue(name, v)
  4341  	return v
  4342  }
  4343  
  4344  func (s *state) mem() *ssa.Value {
  4345  	return s.variable(&memVar, types.TypeMem)
  4346  }
  4347  
  4348  func (s *state) addNamedValue(n *Node, v *ssa.Value) {
  4349  	if n.Class() == Pxxx {
  4350  		// Don't track our dummy nodes (&memVar etc.).
  4351  		return
  4352  	}
  4353  	if n.IsAutoTmp() {
  4354  		// Don't track temporary variables.
  4355  		return
  4356  	}
  4357  	if n.Class() == PPARAMOUT {
  4358  		// Don't track named output values.  This prevents return values
  4359  		// from being assigned too early. See #14591 and #14762. TODO: allow this.
  4360  		return
  4361  	}
  4362  	if n.Class() == PAUTO && n.Xoffset != 0 {
  4363  		s.Fatalf("AUTO var with offset %v %d", n, n.Xoffset)
  4364  	}
  4365  	loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0}
  4366  	values, ok := s.f.NamedValues[loc]
  4367  	if !ok {
  4368  		s.f.Names = append(s.f.Names, loc)
  4369  	}
  4370  	s.f.NamedValues[loc] = append(values, v)
  4371  }
  4372  
  4373  // Branch is an unresolved branch.
  4374  type Branch struct {
  4375  	P *obj.Prog  // branch instruction
  4376  	B *ssa.Block // target
  4377  }
  4378  
  4379  // SSAGenState contains state needed during Prog generation.
  4380  type SSAGenState struct {
  4381  	pp *Progs
  4382  
  4383  	// Branches remembers all the branch instructions we've seen
  4384  	// and where they would like to go.
  4385  	Branches []Branch
  4386  
  4387  	// bstart remembers where each block starts (indexed by block ID)
  4388  	bstart []*obj.Prog
  4389  
  4390  	// 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?)
  4391  	SSEto387 map[int16]int16
  4392  	// Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8.
  4393  	ScratchFpMem *Node
  4394  
  4395  	maxarg int64 // largest frame size for arguments to calls made by the function
  4396  
  4397  	// Map from GC safe points to stack map index, generated by
  4398  	// liveness analysis.
  4399  	stackMapIndex map[*ssa.Value]int
  4400  }
  4401  
  4402  // Prog appends a new Prog.
  4403  func (s *SSAGenState) Prog(as obj.As) *obj.Prog {
  4404  	return s.pp.Prog(as)
  4405  }
  4406  
  4407  // Pc returns the current Prog.
  4408  func (s *SSAGenState) Pc() *obj.Prog {
  4409  	return s.pp.next
  4410  }
  4411  
  4412  // SetPos sets the current source position.
  4413  func (s *SSAGenState) SetPos(pos src.XPos) {
  4414  	s.pp.pos = pos
  4415  }
  4416  
  4417  // DebugFriendlySetPos sets the position subject to heuristics
  4418  // that reduce "jumpy" line number churn when debugging.
  4419  // Spill/fill/copy instructions from the register allocator,
  4420  // phi functions, and instructions with a no-pos position
  4421  // are examples of instructions that can cause churn.
  4422  func (s *SSAGenState) DebugFriendlySetPosFrom(v *ssa.Value) {
  4423  	// The two choices here are either to leave lineno unchanged,
  4424  	// or to explicitly set it to src.NoXPos.  Leaving it unchanged
  4425  	// (reusing the preceding line number) produces slightly better-
  4426  	// looking assembly language output from the compiler, and is
  4427  	// expected by some already-existing tests.
  4428  	// The debug information appears to be the same in either case
  4429  	switch v.Op {
  4430  	case ssa.OpPhi, ssa.OpCopy, ssa.OpLoadReg, ssa.OpStoreReg:
  4431  		// leave the position unchanged from beginning of block
  4432  		// or previous line number.
  4433  	default:
  4434  		if v.Pos != src.NoXPos {
  4435  			s.SetPos(v.Pos)
  4436  		}
  4437  	}
  4438  }
  4439  
  4440  // genssa appends entries to pp for each instruction in f.
  4441  func genssa(f *ssa.Func, pp *Progs) {
  4442  	var s SSAGenState
  4443  
  4444  	e := f.Frontend().(*ssafn)
  4445  
  4446  	// Generate GC bitmaps, except if the stack is too large,
  4447  	// in which compilation will fail later anyway (issue 20529).
  4448  	if e.stksize < maxStackSize {
  4449  		s.stackMapIndex = liveness(e, f)
  4450  	}
  4451  
  4452  	// Remember where each block starts.
  4453  	s.bstart = make([]*obj.Prog, f.NumBlocks())
  4454  	s.pp = pp
  4455  	var progToValue map[*obj.Prog]*ssa.Value
  4456  	var progToBlock map[*obj.Prog]*ssa.Block
  4457  	var valueToProg []*obj.Prog
  4458  	var logProgs = e.log
  4459  	if logProgs {
  4460  		progToValue = make(map[*obj.Prog]*ssa.Value, f.NumValues())
  4461  		progToBlock = make(map[*obj.Prog]*ssa.Block, f.NumBlocks())
  4462  		f.Logf("genssa %s\n", f.Name)
  4463  		progToBlock[s.pp.next] = f.Blocks[0]
  4464  	}
  4465  
  4466  	if thearch.Use387 {
  4467  		s.SSEto387 = map[int16]int16{}
  4468  	}
  4469  
  4470  	s.ScratchFpMem = e.scratchFpMem
  4471  
  4472  	logLocationLists := Debug_locationlist != 0
  4473  	if Ctxt.Flag_locationlists {
  4474  		e.curfn.Func.DebugInfo = ssa.BuildFuncDebug(f, logLocationLists)
  4475  		valueToProg = make([]*obj.Prog, f.NumValues())
  4476  	}
  4477  	// Emit basic blocks
  4478  	for i, b := range f.Blocks {
  4479  		s.bstart[b.ID] = s.pp.next
  4480  		// Emit values in block
  4481  		thearch.SSAMarkMoves(&s, b)
  4482  		for _, v := range b.Values {
  4483  			x := s.pp.next
  4484  			s.DebugFriendlySetPosFrom(v)
  4485  			switch v.Op {
  4486  			case ssa.OpInitMem:
  4487  				// memory arg needs no code
  4488  			case ssa.OpArg:
  4489  				// input args need no code
  4490  			case ssa.OpSP, ssa.OpSB:
  4491  				// nothing to do
  4492  			case ssa.OpSelect0, ssa.OpSelect1:
  4493  				// nothing to do
  4494  			case ssa.OpGetG:
  4495  				// nothing to do when there's a g register,
  4496  				// and checkLower complains if there's not
  4497  			case ssa.OpVarDef, ssa.OpVarLive, ssa.OpKeepAlive:
  4498  				// nothing to do; already used by liveness
  4499  			case ssa.OpVarKill:
  4500  				// Zero variable if it is ambiguously live.
  4501  				// After the VARKILL anything this variable references
  4502  				// might be collected. If it were to become live again later,
  4503  				// the GC will see references to already-collected objects.
  4504  				// See issue 20029.
  4505  				n := v.Aux.(*Node)
  4506  				if n.Name.Needzero() {
  4507  					if n.Class() != PAUTO {
  4508  						v.Fatalf("zero of variable which isn't PAUTO %v", n)
  4509  					}
  4510  					if n.Type.Size()%int64(Widthptr) != 0 {
  4511  						v.Fatalf("zero of variable not a multiple of ptr size %v", n)
  4512  					}
  4513  					thearch.ZeroAuto(s.pp, n)
  4514  				}
  4515  			case ssa.OpPhi:
  4516  				CheckLoweredPhi(v)
  4517  			case ssa.OpRegKill:
  4518  				// nothing to do
  4519  			default:
  4520  				// let the backend handle it
  4521  				thearch.SSAGenValue(&s, v)
  4522  			}
  4523  
  4524  			if Ctxt.Flag_locationlists {
  4525  				valueToProg[v.ID] = x
  4526  			}
  4527  			if logProgs {
  4528  				for ; x != s.pp.next; x = x.Link {
  4529  					progToValue[x] = v
  4530  				}
  4531  			}
  4532  		}
  4533  		// Emit control flow instructions for block
  4534  		var next *ssa.Block
  4535  		if i < len(f.Blocks)-1 && Debug['N'] == 0 {
  4536  			// If -N, leave next==nil so every block with successors
  4537  			// ends in a JMP (except call blocks - plive doesn't like
  4538  			// select{send,recv} followed by a JMP call).  Helps keep
  4539  			// line numbers for otherwise empty blocks.
  4540  			next = f.Blocks[i+1]
  4541  		}
  4542  		x := s.pp.next
  4543  		s.SetPos(b.Pos)
  4544  		thearch.SSAGenBlock(&s, b, next)
  4545  		if logProgs {
  4546  			for ; x != s.pp.next; x = x.Link {
  4547  				progToBlock[x] = b
  4548  			}
  4549  		}
  4550  	}
  4551  
  4552  	if Ctxt.Flag_locationlists {
  4553  		for i := range f.Blocks {
  4554  			blockDebug := e.curfn.Func.DebugInfo.Blocks[i]
  4555  			for _, locList := range blockDebug.Variables {
  4556  				for _, loc := range locList.Locations {
  4557  					if loc.Start == ssa.BlockStart {
  4558  						loc.StartProg = s.bstart[f.Blocks[i].ID]
  4559  					} else {
  4560  						loc.StartProg = valueToProg[loc.Start.ID]
  4561  					}
  4562  					if loc.End == nil {
  4563  						Fatalf("empty loc %v compiling %v", loc, f.Name)
  4564  					}
  4565  
  4566  					if loc.End == ssa.BlockEnd {
  4567  						// If this variable was live at the end of the block, it should be
  4568  						// live over the control flow instructions. Extend it up to the
  4569  						// beginning of the next block.
  4570  						// If this is the last block, then there's no Prog to use for it, and
  4571  						// EndProg is unset.
  4572  						if i < len(f.Blocks)-1 {
  4573  							loc.EndProg = s.bstart[f.Blocks[i+1].ID]
  4574  						}
  4575  					} else {
  4576  						loc.EndProg = valueToProg[loc.End.ID]
  4577  					}
  4578  					if !logLocationLists {
  4579  						loc.Start = nil
  4580  						loc.End = nil
  4581  					}
  4582  				}
  4583  			}
  4584  		}
  4585  	}
  4586  
  4587  	// Resolve branches
  4588  	for _, br := range s.Branches {
  4589  		br.P.To.Val = s.bstart[br.B.ID]
  4590  	}
  4591  
  4592  	if logProgs {
  4593  		for p := pp.Text; p != nil; p = p.Link {
  4594  			var s string
  4595  			if v, ok := progToValue[p]; ok {
  4596  				s = v.String()
  4597  			} else if b, ok := progToBlock[p]; ok {
  4598  				s = b.String()
  4599  			} else {
  4600  				s = "   " // most value and branch strings are 2-3 characters long
  4601  			}
  4602  			f.Logf("%s\t%s\n", s, p)
  4603  		}
  4604  		if f.HTMLWriter != nil {
  4605  			// LineHist is defunct now - this code won't do
  4606  			// anything.
  4607  			// TODO: fix this (ideally without a global variable)
  4608  			// saved := pp.Text.Ctxt.LineHist.PrintFilenameOnly
  4609  			// pp.Text.Ctxt.LineHist.PrintFilenameOnly = true
  4610  			var buf bytes.Buffer
  4611  			buf.WriteString("<code>")
  4612  			buf.WriteString("<dl class=\"ssa-gen\">")
  4613  			for p := pp.Text; p != nil; p = p.Link {
  4614  				buf.WriteString("<dt class=\"ssa-prog-src\">")
  4615  				if v, ok := progToValue[p]; ok {
  4616  					buf.WriteString(v.HTML())
  4617  				} else if b, ok := progToBlock[p]; ok {
  4618  					buf.WriteString(b.HTML())
  4619  				}
  4620  				buf.WriteString("</dt>")
  4621  				buf.WriteString("<dd class=\"ssa-prog\">")
  4622  				buf.WriteString(html.EscapeString(p.String()))
  4623  				buf.WriteString("</dd>")
  4624  				buf.WriteString("</li>")
  4625  			}
  4626  			buf.WriteString("</dl>")
  4627  			buf.WriteString("</code>")
  4628  			f.HTMLWriter.WriteColumn("genssa", buf.String())
  4629  			// pp.Text.Ctxt.LineHist.PrintFilenameOnly = saved
  4630  		}
  4631  	}
  4632  
  4633  	defframe(&s, e)
  4634  	if Debug['f'] != 0 {
  4635  		frame(0)
  4636  	}
  4637  
  4638  	f.HTMLWriter.Close()
  4639  	f.HTMLWriter = nil
  4640  }
  4641  
  4642  func defframe(s *SSAGenState, e *ssafn) {
  4643  	pp := s.pp
  4644  
  4645  	frame := Rnd(s.maxarg+e.stksize, int64(Widthreg))
  4646  	if thearch.PadFrame != nil {
  4647  		frame = thearch.PadFrame(frame)
  4648  	}
  4649  
  4650  	// Fill in argument and frame size.
  4651  	pp.Text.To.Type = obj.TYPE_TEXTSIZE
  4652  	pp.Text.To.Val = int32(Rnd(e.curfn.Type.ArgWidth(), int64(Widthreg)))
  4653  	pp.Text.To.Offset = frame
  4654  
  4655  	// Insert code to zero ambiguously live variables so that the
  4656  	// garbage collector only sees initialized values when it
  4657  	// looks for pointers.
  4658  	p := pp.Text
  4659  	var lo, hi int64
  4660  
  4661  	// Opaque state for backend to use. Current backends use it to
  4662  	// keep track of which helper registers have been zeroed.
  4663  	var state uint32
  4664  
  4665  	// Iterate through declarations. They are sorted in decreasing Xoffset order.
  4666  	for _, n := range e.curfn.Func.Dcl {
  4667  		if !n.Name.Needzero() {
  4668  			continue
  4669  		}
  4670  		if n.Class() != PAUTO {
  4671  			Fatalf("needzero class %d", n.Class())
  4672  		}
  4673  		if n.Type.Size()%int64(Widthptr) != 0 || n.Xoffset%int64(Widthptr) != 0 || n.Type.Size() == 0 {
  4674  			Fatalf("var %L has size %d offset %d", n, n.Type.Size(), n.Xoffset)
  4675  		}
  4676  
  4677  		if lo != hi && n.Xoffset+n.Type.Size() >= lo-int64(2*Widthreg) {
  4678  			// Merge with range we already have.
  4679  			lo = n.Xoffset
  4680  			continue
  4681  		}
  4682  
  4683  		// Zero old range
  4684  		p = thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state)
  4685  
  4686  		// Set new range.
  4687  		lo = n.Xoffset
  4688  		hi = lo + n.Type.Size()
  4689  	}
  4690  
  4691  	// Zero final range.
  4692  	thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state)
  4693  }
  4694  
  4695  type FloatingEQNEJump struct {
  4696  	Jump  obj.As
  4697  	Index int
  4698  }
  4699  
  4700  func (s *SSAGenState) oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump) {
  4701  	p := s.Prog(jumps.Jump)
  4702  	p.To.Type = obj.TYPE_BRANCH
  4703  	p.Pos = b.Pos
  4704  	to := jumps.Index
  4705  	s.Branches = append(s.Branches, Branch{p, b.Succs[to].Block()})
  4706  }
  4707  
  4708  func (s *SSAGenState) FPJump(b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) {
  4709  	switch next {
  4710  	case b.Succs[0].Block():
  4711  		s.oneFPJump(b, &jumps[0][0])
  4712  		s.oneFPJump(b, &jumps[0][1])
  4713  	case b.Succs[1].Block():
  4714  		s.oneFPJump(b, &jumps[1][0])
  4715  		s.oneFPJump(b, &jumps[1][1])
  4716  	default:
  4717  		s.oneFPJump(b, &jumps[1][0])
  4718  		s.oneFPJump(b, &jumps[1][1])
  4719  		q := s.Prog(obj.AJMP)
  4720  		q.Pos = b.Pos
  4721  		q.To.Type = obj.TYPE_BRANCH
  4722  		s.Branches = append(s.Branches, Branch{q, b.Succs[1].Block()})
  4723  	}
  4724  }
  4725  
  4726  func AuxOffset(v *ssa.Value) (offset int64) {
  4727  	if v.Aux == nil {
  4728  		return 0
  4729  	}
  4730  	n, ok := v.Aux.(*Node)
  4731  	if !ok {
  4732  		v.Fatalf("bad aux type in %s\n", v.LongString())
  4733  	}
  4734  	if n.Class() == PAUTO {
  4735  		return n.Xoffset
  4736  	}
  4737  	return 0
  4738  }
  4739  
  4740  // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a.
  4741  func AddAux(a *obj.Addr, v *ssa.Value) {
  4742  	AddAux2(a, v, v.AuxInt)
  4743  }
  4744  func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) {
  4745  	if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR {
  4746  		v.Fatalf("bad AddAux addr %v", a)
  4747  	}
  4748  	// add integer offset
  4749  	a.Offset += offset
  4750  
  4751  	// If no additional symbol offset, we're done.
  4752  	if v.Aux == nil {
  4753  		return
  4754  	}
  4755  	// Add symbol's offset from its base register.
  4756  	switch n := v.Aux.(type) {
  4757  	case *obj.LSym:
  4758  		a.Name = obj.NAME_EXTERN
  4759  		a.Sym = n
  4760  	case *Node:
  4761  		if n.Class() == PPARAM || n.Class() == PPARAMOUT {
  4762  			a.Name = obj.NAME_PARAM
  4763  			a.Sym = n.Orig.Sym.Linksym()
  4764  			a.Offset += n.Xoffset
  4765  			break
  4766  		}
  4767  		a.Name = obj.NAME_AUTO
  4768  		a.Sym = n.Sym.Linksym()
  4769  		a.Offset += n.Xoffset
  4770  	default:
  4771  		v.Fatalf("aux in %s not implemented %#v", v, v.Aux)
  4772  	}
  4773  }
  4774  
  4775  // extendIndex extends v to a full int width.
  4776  // panic using the given function if v does not fit in an int (only on 32-bit archs).
  4777  func (s *state) extendIndex(v *ssa.Value, panicfn *obj.LSym) *ssa.Value {
  4778  	size := v.Type.Size()
  4779  	if size == s.config.PtrSize {
  4780  		return v
  4781  	}
  4782  	if size > s.config.PtrSize {
  4783  		// truncate 64-bit indexes on 32-bit pointer archs. Test the
  4784  		// high word and branch to out-of-bounds failure if it is not 0.
  4785  		if Debug['B'] == 0 {
  4786  			hi := s.newValue1(ssa.OpInt64Hi, types.Types[TUINT32], v)
  4787  			cmp := s.newValue2(ssa.OpEq32, types.Types[TBOOL], hi, s.constInt32(types.Types[TUINT32], 0))
  4788  			s.check(cmp, panicfn)
  4789  		}
  4790  		return s.newValue1(ssa.OpTrunc64to32, types.Types[TINT], v)
  4791  	}
  4792  
  4793  	// Extend value to the required size
  4794  	var op ssa.Op
  4795  	if v.Type.IsSigned() {
  4796  		switch 10*size + s.config.PtrSize {
  4797  		case 14:
  4798  			op = ssa.OpSignExt8to32
  4799  		case 18:
  4800  			op = ssa.OpSignExt8to64
  4801  		case 24:
  4802  			op = ssa.OpSignExt16to32
  4803  		case 28:
  4804  			op = ssa.OpSignExt16to64
  4805  		case 48:
  4806  			op = ssa.OpSignExt32to64
  4807  		default:
  4808  			s.Fatalf("bad signed index extension %s", v.Type)
  4809  		}
  4810  	} else {
  4811  		switch 10*size + s.config.PtrSize {
  4812  		case 14:
  4813  			op = ssa.OpZeroExt8to32
  4814  		case 18:
  4815  			op = ssa.OpZeroExt8to64
  4816  		case 24:
  4817  			op = ssa.OpZeroExt16to32
  4818  		case 28:
  4819  			op = ssa.OpZeroExt16to64
  4820  		case 48:
  4821  			op = ssa.OpZeroExt32to64
  4822  		default:
  4823  			s.Fatalf("bad unsigned index extension %s", v.Type)
  4824  		}
  4825  	}
  4826  	return s.newValue1(op, types.Types[TINT], v)
  4827  }
  4828  
  4829  // CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values.
  4830  // Called during ssaGenValue.
  4831  func CheckLoweredPhi(v *ssa.Value) {
  4832  	if v.Op != ssa.OpPhi {
  4833  		v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString())
  4834  	}
  4835  	if v.Type.IsMemory() {
  4836  		return
  4837  	}
  4838  	f := v.Block.Func
  4839  	loc := f.RegAlloc[v.ID]
  4840  	for _, a := range v.Args {
  4841  		if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead?
  4842  			v.Fatalf("phi arg at different location than phi: %v @ %s, but arg %v @ %s\n%s\n", v, loc, a, aloc, v.Block.Func)
  4843  		}
  4844  	}
  4845  }
  4846  
  4847  // CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block.
  4848  // The output of LoweredGetClosurePtr is generally hardwired to the correct register.
  4849  // That register contains the closure pointer on closure entry.
  4850  func CheckLoweredGetClosurePtr(v *ssa.Value) {
  4851  	entry := v.Block.Func.Entry
  4852  	if entry != v.Block || entry.Values[0] != v {
  4853  		Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v)
  4854  	}
  4855  }
  4856  
  4857  // AutoVar returns a *Node and int64 representing the auto variable and offset within it
  4858  // where v should be spilled.
  4859  func AutoVar(v *ssa.Value) (*Node, int64) {
  4860  	loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot)
  4861  	if v.Type.Size() > loc.Type.Size() {
  4862  		v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type)
  4863  	}
  4864  	return loc.N.(*Node), loc.Off
  4865  }
  4866  
  4867  func AddrAuto(a *obj.Addr, v *ssa.Value) {
  4868  	n, off := AutoVar(v)
  4869  	a.Type = obj.TYPE_MEM
  4870  	a.Sym = n.Sym.Linksym()
  4871  	a.Reg = int16(thearch.REGSP)
  4872  	a.Offset = n.Xoffset + off
  4873  	if n.Class() == PPARAM || n.Class() == PPARAMOUT {
  4874  		a.Name = obj.NAME_PARAM
  4875  	} else {
  4876  		a.Name = obj.NAME_AUTO
  4877  	}
  4878  }
  4879  
  4880  func (s *SSAGenState) AddrScratch(a *obj.Addr) {
  4881  	if s.ScratchFpMem == nil {
  4882  		panic("no scratch memory available; forgot to declare usesScratch for Op?")
  4883  	}
  4884  	a.Type = obj.TYPE_MEM
  4885  	a.Name = obj.NAME_AUTO
  4886  	a.Sym = s.ScratchFpMem.Sym.Linksym()
  4887  	a.Reg = int16(thearch.REGSP)
  4888  	a.Offset = s.ScratchFpMem.Xoffset
  4889  }
  4890  
  4891  func (s *SSAGenState) Call(v *ssa.Value) *obj.Prog {
  4892  	idx, ok := s.stackMapIndex[v]
  4893  	if !ok {
  4894  		Fatalf("missing stack map index for %v", v.LongString())
  4895  	}
  4896  	p := s.Prog(obj.APCDATA)
  4897  	Addrconst(&p.From, objabi.PCDATA_StackMapIndex)
  4898  	Addrconst(&p.To, int64(idx))
  4899  
  4900  	if sym, _ := v.Aux.(*obj.LSym); sym == Deferreturn {
  4901  		// Deferred calls will appear to be returning to
  4902  		// the CALL deferreturn(SB) that we are about to emit.
  4903  		// However, the stack trace code will show the line
  4904  		// of the instruction byte before the return PC.
  4905  		// To avoid that being an unrelated instruction,
  4906  		// insert an actual hardware NOP that will have the right line number.
  4907  		// This is different from obj.ANOP, which is a virtual no-op
  4908  		// that doesn't make it into the instruction stream.
  4909  		thearch.Ginsnop(s.pp)
  4910  	}
  4911  
  4912  	p = s.Prog(obj.ACALL)
  4913  	if sym, ok := v.Aux.(*obj.LSym); ok {
  4914  		p.To.Type = obj.TYPE_MEM
  4915  		p.To.Name = obj.NAME_EXTERN
  4916  		p.To.Sym = sym
  4917  	} else {
  4918  		// TODO(mdempsky): Can these differences be eliminated?
  4919  		switch thearch.LinkArch.Family {
  4920  		case sys.AMD64, sys.I386, sys.PPC64, sys.S390X:
  4921  			p.To.Type = obj.TYPE_REG
  4922  		case sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64:
  4923  			p.To.Type = obj.TYPE_MEM
  4924  		default:
  4925  			Fatalf("unknown indirect call family")
  4926  		}
  4927  		p.To.Reg = v.Args[0].Reg()
  4928  	}
  4929  	if s.maxarg < v.AuxInt {
  4930  		s.maxarg = v.AuxInt
  4931  	}
  4932  	return p
  4933  }
  4934  
  4935  // fieldIdx finds the index of the field referred to by the ODOT node n.
  4936  func fieldIdx(n *Node) int {
  4937  	t := n.Left.Type
  4938  	f := n.Sym
  4939  	if !t.IsStruct() {
  4940  		panic("ODOT's LHS is not a struct")
  4941  	}
  4942  
  4943  	var i int
  4944  	for _, t1 := range t.Fields().Slice() {
  4945  		if t1.Sym != f {
  4946  			i++
  4947  			continue
  4948  		}
  4949  		if t1.Offset != n.Xoffset {
  4950  			panic("field offset doesn't match")
  4951  		}
  4952  		return i
  4953  	}
  4954  	panic(fmt.Sprintf("can't find field in expr %v\n", n))
  4955  
  4956  	// TODO: keep the result of this function somewhere in the ODOT Node
  4957  	// so we don't have to recompute it each time we need it.
  4958  }
  4959  
  4960  // ssafn holds frontend information about a function that the backend is processing.
  4961  // It also exports a bunch of compiler services for the ssa backend.
  4962  type ssafn struct {
  4963  	curfn        *Node
  4964  	strings      map[string]interface{} // map from constant string to data symbols
  4965  	scratchFpMem *Node                  // temp for floating point register / memory moves on some architectures
  4966  	stksize      int64                  // stack size for current frame
  4967  	stkptrsize   int64                  // prefix of stack containing pointers
  4968  	log          bool
  4969  }
  4970  
  4971  // StringData returns a symbol (a *types.Sym wrapped in an interface) which
  4972  // is the data component of a global string constant containing s.
  4973  func (e *ssafn) StringData(s string) interface{} {
  4974  	if aux, ok := e.strings[s]; ok {
  4975  		return aux
  4976  	}
  4977  	if e.strings == nil {
  4978  		e.strings = make(map[string]interface{})
  4979  	}
  4980  	data := stringsym(s)
  4981  	e.strings[s] = data
  4982  	return data
  4983  }
  4984  
  4985  func (e *ssafn) Auto(pos src.XPos, t *types.Type) ssa.GCNode {
  4986  	n := tempAt(pos, e.curfn, t) // Note: adds new auto to e.curfn.Func.Dcl list
  4987  	return n
  4988  }
  4989  
  4990  func (e *ssafn) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4991  	n := name.N.(*Node)
  4992  	ptrType := types.NewPtr(types.Types[TUINT8])
  4993  	lenType := types.Types[TINT]
  4994  	if n.Class() == PAUTO && !n.Addrtaken() {
  4995  		// Split this string up into two separate variables.
  4996  		p := e.splitSlot(&name, ".ptr", 0, ptrType)
  4997  		l := e.splitSlot(&name, ".len", ptrType.Size(), lenType)
  4998  		return p, l
  4999  	}
  5000  	// Return the two parts of the larger variable.
  5001  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}
  5002  }
  5003  
  5004  func (e *ssafn) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  5005  	n := name.N.(*Node)
  5006  	t := types.NewPtr(types.Types[TUINT8])
  5007  	if n.Class() == PAUTO && !n.Addrtaken() {
  5008  		// Split this interface up into two separate variables.
  5009  		f := ".itab"
  5010  		if n.Type.IsEmptyInterface() {
  5011  			f = ".type"
  5012  		}
  5013  		c := e.splitSlot(&name, f, 0, t)
  5014  		d := e.splitSlot(&name, ".data", t.Size(), t)
  5015  		return c, d
  5016  	}
  5017  	// Return the two parts of the larger variable.
  5018  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)}
  5019  }
  5020  
  5021  func (e *ssafn) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) {
  5022  	n := name.N.(*Node)
  5023  	ptrType := types.NewPtr(name.Type.ElemType())
  5024  	lenType := types.Types[TINT]
  5025  	if n.Class() == PAUTO && !n.Addrtaken() {
  5026  		// Split this slice up into three separate variables.
  5027  		p := e.splitSlot(&name, ".ptr", 0, ptrType)
  5028  		l := e.splitSlot(&name, ".len", ptrType.Size(), lenType)
  5029  		c := e.splitSlot(&name, ".cap", ptrType.Size()+lenType.Size(), lenType)
  5030  		return p, l, c
  5031  	}
  5032  	// Return the three parts of the larger variable.
  5033  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off},
  5034  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)},
  5035  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)}
  5036  }
  5037  
  5038  func (e *ssafn) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  5039  	n := name.N.(*Node)
  5040  	s := name.Type.Size() / 2
  5041  	var t *types.Type
  5042  	if s == 8 {
  5043  		t = types.Types[TFLOAT64]
  5044  	} else {
  5045  		t = types.Types[TFLOAT32]
  5046  	}
  5047  	if n.Class() == PAUTO && !n.Addrtaken() {
  5048  		// Split this complex up into two separate variables.
  5049  		r := e.splitSlot(&name, ".real", 0, t)
  5050  		i := e.splitSlot(&name, ".imag", t.Size(), t)
  5051  		return r, i
  5052  	}
  5053  	// Return the two parts of the larger variable.
  5054  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s}
  5055  }
  5056  
  5057  func (e *ssafn) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  5058  	n := name.N.(*Node)
  5059  	var t *types.Type
  5060  	if name.Type.IsSigned() {
  5061  		t = types.Types[TINT32]
  5062  	} else {
  5063  		t = types.Types[TUINT32]
  5064  	}
  5065  	if n.Class() == PAUTO && !n.Addrtaken() {
  5066  		// Split this int64 up into two separate variables.
  5067  		if thearch.LinkArch.ByteOrder == binary.BigEndian {
  5068  			return e.splitSlot(&name, ".hi", 0, t), e.splitSlot(&name, ".lo", t.Size(), types.Types[TUINT32])
  5069  		}
  5070  		return e.splitSlot(&name, ".hi", t.Size(), t), e.splitSlot(&name, ".lo", 0, types.Types[TUINT32])
  5071  	}
  5072  	// Return the two parts of the larger variable.
  5073  	if thearch.LinkArch.ByteOrder == binary.BigEndian {
  5074  		return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off + 4}
  5075  	}
  5076  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off}
  5077  }
  5078  
  5079  func (e *ssafn) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot {
  5080  	n := name.N.(*Node)
  5081  	st := name.Type
  5082  	ft := st.FieldType(i)
  5083  	var offset int64
  5084  	for f := 0; f < i; f++ {
  5085  		offset += st.FieldType(f).Size()
  5086  	}
  5087  	if n.Class() == PAUTO && !n.Addrtaken() {
  5088  		// Note: the _ field may appear several times.  But
  5089  		// have no fear, identically-named but distinct Autos are
  5090  		// ok, albeit maybe confusing for a debugger.
  5091  		return e.splitSlot(&name, "."+st.FieldName(i), offset, ft)
  5092  	}
  5093  	return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)}
  5094  }
  5095  
  5096  func (e *ssafn) SplitArray(name ssa.LocalSlot) ssa.LocalSlot {
  5097  	n := name.N.(*Node)
  5098  	at := name.Type
  5099  	if at.NumElem() != 1 {
  5100  		Fatalf("bad array size")
  5101  	}
  5102  	et := at.ElemType()
  5103  	if n.Class() == PAUTO && !n.Addrtaken() {
  5104  		return e.splitSlot(&name, "[0]", 0, et)
  5105  	}
  5106  	return ssa.LocalSlot{N: n, Type: et, Off: name.Off}
  5107  }
  5108  
  5109  func (e *ssafn) DerefItab(it *obj.LSym, offset int64) *obj.LSym {
  5110  	return itabsym(it, offset)
  5111  }
  5112  
  5113  // splitSlot returns a slot representing the data of parent starting at offset.
  5114  func (e *ssafn) splitSlot(parent *ssa.LocalSlot, suffix string, offset int64, t *types.Type) ssa.LocalSlot {
  5115  	s := &types.Sym{Name: parent.N.(*Node).Sym.Name + suffix, Pkg: localpkg}
  5116  
  5117  	n := new(Node)
  5118  	n.Name = new(Name)
  5119  	n.Op = ONAME
  5120  	n.Pos = parent.N.(*Node).Pos
  5121  	n.Orig = n
  5122  
  5123  	s.Def = asTypesNode(n)
  5124  	asNode(s.Def).Name.SetUsed(true)
  5125  	n.Sym = s
  5126  	n.Type = t
  5127  	n.SetClass(PAUTO)
  5128  	n.SetAddable(true)
  5129  	n.Esc = EscNever
  5130  	n.Name.Curfn = e.curfn
  5131  	e.curfn.Func.Dcl = append(e.curfn.Func.Dcl, n)
  5132  	dowidth(t)
  5133  	return ssa.LocalSlot{N: n, Type: t, Off: 0, SplitOf: parent, SplitOffset: offset}
  5134  }
  5135  
  5136  func (e *ssafn) CanSSA(t *types.Type) bool {
  5137  	return canSSAType(t)
  5138  }
  5139  
  5140  func (e *ssafn) Line(pos src.XPos) string {
  5141  	return linestr(pos)
  5142  }
  5143  
  5144  // Log logs a message from the compiler.
  5145  func (e *ssafn) Logf(msg string, args ...interface{}) {
  5146  	if e.log {
  5147  		fmt.Printf(msg, args...)
  5148  	}
  5149  }
  5150  
  5151  func (e *ssafn) Log() bool {
  5152  	return e.log
  5153  }
  5154  
  5155  // Fatal reports a compiler error and exits.
  5156  func (e *ssafn) Fatalf(pos src.XPos, msg string, args ...interface{}) {
  5157  	lineno = pos
  5158  	Fatalf(msg, args...)
  5159  }
  5160  
  5161  // Warnl reports a "warning", which is usually flag-triggered
  5162  // logging output for the benefit of tests.
  5163  func (e *ssafn) Warnl(pos src.XPos, fmt_ string, args ...interface{}) {
  5164  	Warnl(pos, fmt_, args...)
  5165  }
  5166  
  5167  func (e *ssafn) Debug_checknil() bool {
  5168  	return Debug_checknil != 0
  5169  }
  5170  
  5171  func (e *ssafn) Debug_wb() bool {
  5172  	return Debug_wb != 0
  5173  }
  5174  
  5175  func (e *ssafn) UseWriteBarrier() bool {
  5176  	return use_writebarrier
  5177  }
  5178  
  5179  func (e *ssafn) Syslook(name string) *obj.LSym {
  5180  	switch name {
  5181  	case "goschedguarded":
  5182  		return goschedguarded
  5183  	case "writeBarrier":
  5184  		return writeBarrier
  5185  	case "writebarrierptr":
  5186  		return writebarrierptr
  5187  	case "typedmemmove":
  5188  		return typedmemmove
  5189  	case "typedmemclr":
  5190  		return typedmemclr
  5191  	}
  5192  	Fatalf("unknown Syslook func %v", name)
  5193  	return nil
  5194  }
  5195  
  5196  func (n *Node) Typ() *types.Type {
  5197  	return n.Type
  5198  }
  5199  func (n *Node) StorageClass() ssa.StorageClass {
  5200  	switch n.Class() {
  5201  	case PPARAM:
  5202  		return ssa.ClassParam
  5203  	case PPARAMOUT:
  5204  		return ssa.ClassParamOut
  5205  	case PAUTO:
  5206  		return ssa.ClassAuto
  5207  	default:
  5208  		Fatalf("untranslateable storage class for %v: %s", n, n.Class())
  5209  		return 0
  5210  	}
  5211  }