github.com/mattn/go@v0.0.0-20171011075504-07f7db3ea99f/src/cmd/link/internal/ld/data.go (about)

     1  // Derived from Inferno utils/6l/obj.c and utils/6l/span.c
     2  // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/obj.c
     3  // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/span.c
     4  //
     5  //	Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     6  //	Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     7  //	Portions Copyright © 1997-1999 Vita Nuova Limited
     8  //	Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
     9  //	Portions Copyright © 2004,2006 Bruce Ellis
    10  //	Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
    11  //	Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
    12  //	Portions Copyright © 2009 The Go Authors. All rights reserved.
    13  //
    14  // Permission is hereby granted, free of charge, to any person obtaining a copy
    15  // of this software and associated documentation files (the "Software"), to deal
    16  // in the Software without restriction, including without limitation the rights
    17  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    18  // copies of the Software, and to permit persons to whom the Software is
    19  // furnished to do so, subject to the following conditions:
    20  //
    21  // The above copyright notice and this permission notice shall be included in
    22  // all copies or substantial portions of the Software.
    23  //
    24  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    25  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    26  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    27  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    28  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    29  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    30  // THE SOFTWARE.
    31  
    32  package ld
    33  
    34  import (
    35  	"cmd/internal/gcprog"
    36  	"cmd/internal/objabi"
    37  	"cmd/internal/sys"
    38  	"cmd/link/internal/sym"
    39  	"fmt"
    40  	"log"
    41  	"os"
    42  	"sort"
    43  	"strconv"
    44  	"strings"
    45  	"sync"
    46  )
    47  
    48  // isRuntimeDepPkg returns whether pkg is the runtime package or its dependency
    49  func isRuntimeDepPkg(pkg string) bool {
    50  	switch pkg {
    51  	case "runtime",
    52  		"sync/atomic": // runtime may call to sync/atomic, due to go:linkname
    53  		return true
    54  	}
    55  	return strings.HasPrefix(pkg, "runtime/internal/") && !strings.HasSuffix(pkg, "_test")
    56  }
    57  
    58  // Estimate the max size needed to hold any new trampolines created for this function. This
    59  // is used to determine when the section can be split if it becomes too large, to ensure that
    60  // the trampolines are in the same section as the function that uses them.
    61  func maxSizeTrampolinesPPC64(s *sym.Symbol, isTramp bool) uint64 {
    62  	// If Thearch.Trampoline is nil, then trampoline support is not available on this arch.
    63  	// A trampoline does not need any dependent trampolines.
    64  	if Thearch.Trampoline == nil || isTramp {
    65  		return 0
    66  	}
    67  
    68  	n := uint64(0)
    69  	for ri := range s.R {
    70  		r := &s.R[ri]
    71  		if r.Type.IsDirectJump() {
    72  			n++
    73  		}
    74  	}
    75  	// Trampolines in ppc64 are 4 instructions.
    76  	return n * 16
    77  }
    78  
    79  // detect too-far jumps in function s, and add trampolines if necessary
    80  // ARM, PPC64 & PPC64LE support trampoline insertion for internal and external linking
    81  // On PPC64 & PPC64LE the text sections might be split but will still insert trampolines
    82  // where necessary.
    83  func trampoline(ctxt *Link, s *sym.Symbol) {
    84  	if Thearch.Trampoline == nil {
    85  		return // no need or no support of trampolines on this arch
    86  	}
    87  
    88  	for ri := range s.R {
    89  		r := &s.R[ri]
    90  		if !r.Type.IsDirectJump() {
    91  			continue
    92  		}
    93  		if Symaddr(r.Sym) == 0 && r.Sym.Type != sym.SDYNIMPORT {
    94  			if r.Sym.File != s.File {
    95  				if !isRuntimeDepPkg(s.File) || !isRuntimeDepPkg(r.Sym.File) {
    96  					Errorf(s, "unresolved inter-package jump to %s(%s)", r.Sym, r.Sym.File)
    97  				}
    98  				// runtime and its dependent packages may call to each other.
    99  				// they are fine, as they will be laid down together.
   100  			}
   101  			continue
   102  		}
   103  
   104  		Thearch.Trampoline(ctxt, r, s)
   105  	}
   106  
   107  }
   108  
   109  // resolve relocations in s.
   110  func relocsym(ctxt *Link, s *sym.Symbol) {
   111  	for ri := int32(0); ri < int32(len(s.R)); ri++ {
   112  		r := &s.R[ri]
   113  		r.Done = true
   114  		off := r.Off
   115  		siz := int32(r.Siz)
   116  		if off < 0 || off+siz > int32(len(s.P)) {
   117  			rname := ""
   118  			if r.Sym != nil {
   119  				rname = r.Sym.Name
   120  			}
   121  			Errorf(s, "invalid relocation %s: %d+%d not in [%d,%d)", rname, off, siz, 0, len(s.P))
   122  			continue
   123  		}
   124  
   125  		if r.Sym != nil && (r.Sym.Type&(sym.SMASK|sym.SHIDDEN) == 0 || r.Sym.Type&sym.SMASK == sym.SXREF) {
   126  			// When putting the runtime but not main into a shared library
   127  			// these symbols are undefined and that's OK.
   128  			if ctxt.BuildMode == BuildModeShared {
   129  				if r.Sym.Name == "main.main" || r.Sym.Name == "main.init" {
   130  					r.Sym.Type = sym.SDYNIMPORT
   131  				} else if strings.HasPrefix(r.Sym.Name, "go.info.") {
   132  					// Skip go.info symbols. They are only needed to communicate
   133  					// DWARF info between the compiler and linker.
   134  					continue
   135  				}
   136  			} else {
   137  				Errorf(s, "relocation target %s not defined", r.Sym.Name)
   138  				continue
   139  			}
   140  		}
   141  
   142  		if r.Type >= 256 {
   143  			continue
   144  		}
   145  		if r.Siz == 0 { // informational relocation - no work to do
   146  			continue
   147  		}
   148  
   149  		// We need to be able to reference dynimport symbols when linking against
   150  		// shared libraries, and Solaris needs it always
   151  		if Headtype != objabi.Hsolaris && r.Sym != nil && r.Sym.Type == sym.SDYNIMPORT && !ctxt.DynlinkingGo() {
   152  			if !(ctxt.Arch.Family == sys.PPC64 && ctxt.LinkMode == LinkExternal && r.Sym.Name == ".TOC.") {
   153  				Errorf(s, "unhandled relocation for %s (type %d (%s) rtype %d (%s))", r.Sym.Name, r.Sym.Type, r.Sym.Type, r.Type, sym.RelocName(ctxt.Arch, r.Type))
   154  			}
   155  		}
   156  		if r.Sym != nil && r.Sym.Type != sym.STLSBSS && r.Type != objabi.R_WEAKADDROFF && !r.Sym.Attr.Reachable() {
   157  			Errorf(s, "unreachable sym in relocation: %s", r.Sym.Name)
   158  		}
   159  
   160  		// TODO(mundaym): remove this special case - see issue 14218.
   161  		if ctxt.Arch.Family == sys.S390X {
   162  			switch r.Type {
   163  			case objabi.R_PCRELDBL:
   164  				r.Type = objabi.R_PCREL
   165  				r.Variant = sym.RV_390_DBL
   166  			case objabi.R_CALL:
   167  				r.Variant = sym.RV_390_DBL
   168  			}
   169  		}
   170  
   171  		var o int64
   172  		switch r.Type {
   173  		default:
   174  			switch siz {
   175  			default:
   176  				Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name)
   177  			case 1:
   178  				o = int64(s.P[off])
   179  			case 2:
   180  				o = int64(ctxt.Arch.ByteOrder.Uint16(s.P[off:]))
   181  			case 4:
   182  				o = int64(ctxt.Arch.ByteOrder.Uint32(s.P[off:]))
   183  			case 8:
   184  				o = int64(ctxt.Arch.ByteOrder.Uint64(s.P[off:]))
   185  			}
   186  			if !Thearch.Archreloc(ctxt, r, s, &o) {
   187  				Errorf(s, "unknown reloc to %v: %d (%s)", r.Sym.Name, r.Type, sym.RelocName(ctxt.Arch, r.Type))
   188  			}
   189  		case objabi.R_TLS_LE:
   190  			isAndroidX86 := objabi.GOOS == "android" && (ctxt.Arch.InFamily(sys.AMD64, sys.I386))
   191  
   192  			if ctxt.LinkMode == LinkExternal && Iself && !isAndroidX86 {
   193  				r.Done = false
   194  				if r.Sym == nil {
   195  					r.Sym = ctxt.Tlsg
   196  				}
   197  				r.Xsym = r.Sym
   198  				r.Xadd = r.Add
   199  				o = 0
   200  				if ctxt.Arch.Family != sys.AMD64 {
   201  					o = r.Add
   202  				}
   203  				break
   204  			}
   205  
   206  			if Iself && ctxt.Arch.Family == sys.ARM {
   207  				// On ELF ARM, the thread pointer is 8 bytes before
   208  				// the start of the thread-local data block, so add 8
   209  				// to the actual TLS offset (r->sym->value).
   210  				// This 8 seems to be a fundamental constant of
   211  				// ELF on ARM (or maybe Glibc on ARM); it is not
   212  				// related to the fact that our own TLS storage happens
   213  				// to take up 8 bytes.
   214  				o = 8 + r.Sym.Value
   215  			} else if Iself || Headtype == objabi.Hplan9 || Headtype == objabi.Hdarwin || isAndroidX86 {
   216  				o = int64(ctxt.Tlsoffset) + r.Add
   217  			} else if Headtype == objabi.Hwindows {
   218  				o = r.Add
   219  			} else {
   220  				log.Fatalf("unexpected R_TLS_LE relocation for %v", Headtype)
   221  			}
   222  		case objabi.R_TLS_IE:
   223  			isAndroidX86 := objabi.GOOS == "android" && (ctxt.Arch.InFamily(sys.AMD64, sys.I386))
   224  
   225  			if ctxt.LinkMode == LinkExternal && Iself && !isAndroidX86 {
   226  				r.Done = false
   227  				if r.Sym == nil {
   228  					r.Sym = ctxt.Tlsg
   229  				}
   230  				r.Xsym = r.Sym
   231  				r.Xadd = r.Add
   232  				o = 0
   233  				if ctxt.Arch.Family != sys.AMD64 {
   234  					o = r.Add
   235  				}
   236  				break
   237  			}
   238  			if ctxt.BuildMode == BuildModePIE && Iself {
   239  				// We are linking the final executable, so we
   240  				// can optimize any TLS IE relocation to LE.
   241  				if Thearch.TLSIEtoLE == nil {
   242  					log.Fatalf("internal linking of TLS IE not supported on %v", ctxt.Arch.Family)
   243  				}
   244  				Thearch.TLSIEtoLE(s, int(off), int(r.Siz))
   245  				o = int64(ctxt.Tlsoffset)
   246  				// TODO: o += r.Add when ctxt.Arch.Family != sys.AMD64?
   247  				// Why do we treat r.Add differently on AMD64?
   248  				// Is the external linker using Xadd at all?
   249  			} else {
   250  				log.Fatalf("cannot handle R_TLS_IE (sym %s) when linking internally", s.Name)
   251  			}
   252  		case objabi.R_ADDR:
   253  			if ctxt.LinkMode == LinkExternal && r.Sym.Type != sym.SCONST {
   254  				r.Done = false
   255  
   256  				// set up addend for eventual relocation via outer symbol.
   257  				rs := r.Sym
   258  
   259  				r.Xadd = r.Add
   260  				for rs.Outer != nil {
   261  					r.Xadd += Symaddr(rs) - Symaddr(rs.Outer)
   262  					rs = rs.Outer
   263  				}
   264  
   265  				if rs.Type != sym.SHOSTOBJ && rs.Type != sym.SDYNIMPORT && rs.Sect == nil {
   266  					Errorf(s, "missing section for relocation target %s", rs.Name)
   267  				}
   268  				r.Xsym = rs
   269  
   270  				o = r.Xadd
   271  				if Iself {
   272  					if ctxt.Arch.Family == sys.AMD64 {
   273  						o = 0
   274  					}
   275  				} else if Headtype == objabi.Hdarwin {
   276  					// ld64 for arm64 has a bug where if the address pointed to by o exists in the
   277  					// symbol table (dynid >= 0), or is inside a symbol that exists in the symbol
   278  					// table, then it will add o twice into the relocated value.
   279  					// The workaround is that on arm64 don't ever add symaddr to o and always use
   280  					// extern relocation by requiring rs->dynid >= 0.
   281  					if rs.Type != sym.SHOSTOBJ {
   282  						if ctxt.Arch.Family == sys.ARM64 && rs.Dynid < 0 {
   283  							Errorf(s, "R_ADDR reloc to %s+%d is not supported on darwin/arm64", rs.Name, o)
   284  						}
   285  						if ctxt.Arch.Family != sys.ARM64 {
   286  							o += Symaddr(rs)
   287  						}
   288  					}
   289  				} else if Headtype == objabi.Hwindows {
   290  					// nothing to do
   291  				} else {
   292  					Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, Headtype)
   293  				}
   294  
   295  				break
   296  			}
   297  
   298  			o = Symaddr(r.Sym) + r.Add
   299  
   300  			// On amd64, 4-byte offsets will be sign-extended, so it is impossible to
   301  			// access more than 2GB of static data; fail at link time is better than
   302  			// fail at runtime. See https://golang.org/issue/7980.
   303  			// Instead of special casing only amd64, we treat this as an error on all
   304  			// 64-bit architectures so as to be future-proof.
   305  			if int32(o) < 0 && ctxt.Arch.PtrSize > 4 && siz == 4 {
   306  				Errorf(s, "non-pc-relative relocation address for %s is too big: %#x (%#x + %#x)", r.Sym.Name, uint64(o), Symaddr(r.Sym), r.Add)
   307  				errorexit()
   308  			}
   309  		case objabi.R_DWARFREF:
   310  			if r.Sym.Sect == nil {
   311  				Errorf(s, "missing DWARF section for relocation target %s", r.Sym.Name)
   312  			}
   313  
   314  			if ctxt.LinkMode == LinkExternal {
   315  				r.Done = false
   316  				// PE code emits IMAGE_REL_I386_SECREL and IMAGE_REL_AMD64_SECREL
   317  				// for R_DWARFREF relocations, while R_ADDR is replaced with
   318  				// IMAGE_REL_I386_DIR32, IMAGE_REL_AMD64_ADDR64 and IMAGE_REL_AMD64_ADDR32.
   319  				// Do not replace R_DWARFREF with R_ADDR for windows -
   320  				// let PE code emit correct relocations.
   321  				if Headtype != objabi.Hwindows {
   322  					r.Type = objabi.R_ADDR
   323  				}
   324  
   325  				r.Xsym = ctxt.Syms.ROLookup(r.Sym.Sect.Name, 0)
   326  				r.Xadd = r.Add + Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr)
   327  
   328  				o = r.Xadd
   329  				if Iself && ctxt.Arch.Family == sys.AMD64 {
   330  					o = 0
   331  				}
   332  				break
   333  			}
   334  			o = Symaddr(r.Sym) + r.Add - int64(r.Sym.Sect.Vaddr)
   335  		case objabi.R_WEAKADDROFF:
   336  			if !r.Sym.Attr.Reachable() {
   337  				continue
   338  			}
   339  			fallthrough
   340  		case objabi.R_ADDROFF:
   341  			// The method offset tables using this relocation expect the offset to be relative
   342  			// to the start of the first text section, even if there are multiple.
   343  
   344  			if r.Sym.Sect.Name == ".text" {
   345  				o = Symaddr(r.Sym) - int64(Segtext.Sections[0].Vaddr) + r.Add
   346  			} else {
   347  				o = Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) + r.Add
   348  			}
   349  
   350  			// r->sym can be null when CALL $(constant) is transformed from absolute PC to relative PC call.
   351  		case objabi.R_GOTPCREL:
   352  			if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin && r.Sym != nil && r.Sym.Type != sym.SCONST {
   353  				r.Done = false
   354  				r.Xadd = r.Add
   355  				r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk
   356  				r.Xsym = r.Sym
   357  
   358  				o = r.Xadd
   359  				o += int64(r.Siz)
   360  				break
   361  			}
   362  			fallthrough
   363  		case objabi.R_CALL, objabi.R_PCREL:
   364  			if ctxt.LinkMode == LinkExternal && r.Sym != nil && r.Sym.Type != sym.SCONST && (r.Sym.Sect != s.Sect || r.Type == objabi.R_GOTPCREL) {
   365  				r.Done = false
   366  
   367  				// set up addend for eventual relocation via outer symbol.
   368  				rs := r.Sym
   369  
   370  				r.Xadd = r.Add
   371  				for rs.Outer != nil {
   372  					r.Xadd += Symaddr(rs) - Symaddr(rs.Outer)
   373  					rs = rs.Outer
   374  				}
   375  
   376  				r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk
   377  				if rs.Type != sym.SHOSTOBJ && rs.Type != sym.SDYNIMPORT && rs.Sect == nil {
   378  					Errorf(s, "missing section for relocation target %s", rs.Name)
   379  				}
   380  				r.Xsym = rs
   381  
   382  				o = r.Xadd
   383  				if Iself {
   384  					if ctxt.Arch.Family == sys.AMD64 {
   385  						o = 0
   386  					}
   387  				} else if Headtype == objabi.Hdarwin {
   388  					if r.Type == objabi.R_CALL {
   389  						if rs.Type != sym.SHOSTOBJ {
   390  							o += int64(uint64(Symaddr(rs)) - rs.Sect.Vaddr)
   391  						}
   392  						o -= int64(r.Off) // relative to section offset, not symbol
   393  					} else if ctxt.Arch.Family == sys.ARM {
   394  						// see ../arm/asm.go:/machoreloc1
   395  						o += Symaddr(rs) - int64(s.Value) - int64(r.Off)
   396  					} else {
   397  						o += int64(r.Siz)
   398  					}
   399  				} else if Headtype == objabi.Hwindows && ctxt.Arch.Family == sys.AMD64 { // only amd64 needs PCREL
   400  					// PE/COFF's PC32 relocation uses the address after the relocated
   401  					// bytes as the base. Compensate by skewing the addend.
   402  					o += int64(r.Siz)
   403  				} else {
   404  					Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, Headtype)
   405  				}
   406  
   407  				break
   408  			}
   409  
   410  			o = 0
   411  			if r.Sym != nil {
   412  				o += Symaddr(r.Sym)
   413  			}
   414  
   415  			o += r.Add - (s.Value + int64(r.Off) + int64(r.Siz))
   416  		case objabi.R_SIZE:
   417  			o = r.Sym.Size + r.Add
   418  		}
   419  
   420  		if r.Variant != sym.RV_NONE {
   421  			o = Thearch.Archrelocvariant(ctxt, r, s, o)
   422  		}
   423  
   424  		if false {
   425  			nam := "<nil>"
   426  			if r.Sym != nil {
   427  				nam = r.Sym.Name
   428  			}
   429  			fmt.Printf("relocate %s %#x (%#x+%#x, size %d) => %s %#x +%#x [type %d (%s)/%d, %x]\n", s.Name, s.Value+int64(off), s.Value, r.Off, r.Siz, nam, Symaddr(r.Sym), r.Add, r.Type, sym.RelocName(ctxt.Arch, r.Type), r.Variant, o)
   430  		}
   431  		switch siz {
   432  		default:
   433  			Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name)
   434  			fallthrough
   435  
   436  			// TODO(rsc): Remove.
   437  		case 1:
   438  			s.P[off] = byte(int8(o))
   439  		case 2:
   440  			if o != int64(int16(o)) {
   441  				Errorf(s, "relocation address for %s is too big: %#x", r.Sym.Name, o)
   442  			}
   443  			i16 := int16(o)
   444  			ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(i16))
   445  		case 4:
   446  			if r.Type == objabi.R_PCREL || r.Type == objabi.R_CALL {
   447  				if o != int64(int32(o)) {
   448  					Errorf(s, "pc-relative relocation address for %s is too big: %#x", r.Sym.Name, o)
   449  				}
   450  			} else {
   451  				if o != int64(int32(o)) && o != int64(uint32(o)) {
   452  					Errorf(s, "non-pc-relative relocation address for %s is too big: %#x", r.Sym.Name, uint64(o))
   453  				}
   454  			}
   455  
   456  			fl := int32(o)
   457  			ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(fl))
   458  		case 8:
   459  			ctxt.Arch.ByteOrder.PutUint64(s.P[off:], uint64(o))
   460  		}
   461  	}
   462  }
   463  
   464  func (ctxt *Link) reloc() {
   465  	if ctxt.Debugvlog != 0 {
   466  		ctxt.Logf("%5.2f reloc\n", Cputime())
   467  	}
   468  
   469  	for _, s := range ctxt.Textp {
   470  		relocsym(ctxt, s)
   471  	}
   472  	for _, s := range datap {
   473  		relocsym(ctxt, s)
   474  	}
   475  	for _, s := range dwarfp {
   476  		relocsym(ctxt, s)
   477  	}
   478  }
   479  
   480  func windynrelocsym(ctxt *Link, s *sym.Symbol) {
   481  	rel := ctxt.Syms.Lookup(".rel", 0)
   482  	if s == rel {
   483  		return
   484  	}
   485  	for ri := 0; ri < len(s.R); ri++ {
   486  		r := &s.R[ri]
   487  		targ := r.Sym
   488  		if targ == nil {
   489  			continue
   490  		}
   491  		if !targ.Attr.Reachable() {
   492  			if r.Type == objabi.R_WEAKADDROFF {
   493  				continue
   494  			}
   495  			Errorf(s, "dynamic relocation to unreachable symbol %s", targ.Name)
   496  		}
   497  		if r.Sym.Plt == -2 && r.Sym.Got != -2 { // make dynimport JMP table for PE object files.
   498  			targ.Plt = int32(rel.Size)
   499  			r.Sym = rel
   500  			r.Add = int64(targ.Plt)
   501  
   502  			// jmp *addr
   503  			if ctxt.Arch.Family == sys.I386 {
   504  				rel.AddUint8(0xff)
   505  				rel.AddUint8(0x25)
   506  				rel.AddAddr(ctxt.Arch, targ)
   507  				rel.AddUint8(0x90)
   508  				rel.AddUint8(0x90)
   509  			} else {
   510  				rel.AddUint8(0xff)
   511  				rel.AddUint8(0x24)
   512  				rel.AddUint8(0x25)
   513  				rel.AddAddrPlus4(targ, 0)
   514  				rel.AddUint8(0x90)
   515  			}
   516  		} else if r.Sym.Plt >= 0 {
   517  			r.Sym = rel
   518  			r.Add = int64(targ.Plt)
   519  		}
   520  	}
   521  }
   522  
   523  func dynrelocsym(ctxt *Link, s *sym.Symbol) {
   524  	if Headtype == objabi.Hwindows {
   525  		if ctxt.LinkMode == LinkInternal {
   526  			windynrelocsym(ctxt, s)
   527  		}
   528  		return
   529  	}
   530  
   531  	for ri := 0; ri < len(s.R); ri++ {
   532  		r := &s.R[ri]
   533  		if ctxt.BuildMode == BuildModePIE && ctxt.LinkMode == LinkInternal {
   534  			// It's expected that some relocations will be done
   535  			// later by relocsym (R_TLS_LE, R_ADDROFF), so
   536  			// don't worry if Adddynrel returns false.
   537  			Thearch.Adddynrel(ctxt, s, r)
   538  			continue
   539  		}
   540  		if r.Sym != nil && r.Sym.Type == sym.SDYNIMPORT || r.Type >= 256 {
   541  			if r.Sym != nil && !r.Sym.Attr.Reachable() {
   542  				Errorf(s, "dynamic relocation to unreachable symbol %s", r.Sym.Name)
   543  			}
   544  			if !Thearch.Adddynrel(ctxt, s, r) {
   545  				Errorf(s, "unsupported dynamic relocation for symbol %s (type=%d (%s) stype=%d (%s))", r.Sym.Name, r.Type, sym.RelocName(ctxt.Arch, r.Type), r.Sym.Type, r.Sym.Type)
   546  			}
   547  		}
   548  	}
   549  }
   550  
   551  func dynreloc(ctxt *Link, data *[sym.SXREF][]*sym.Symbol) {
   552  	// -d suppresses dynamic loader format, so we may as well not
   553  	// compute these sections or mark their symbols as reachable.
   554  	if *FlagD && Headtype != objabi.Hwindows {
   555  		return
   556  	}
   557  	if ctxt.Debugvlog != 0 {
   558  		ctxt.Logf("%5.2f dynreloc\n", Cputime())
   559  	}
   560  
   561  	for _, s := range ctxt.Textp {
   562  		dynrelocsym(ctxt, s)
   563  	}
   564  	for _, syms := range data {
   565  		for _, s := range syms {
   566  			dynrelocsym(ctxt, s)
   567  		}
   568  	}
   569  	if Iself {
   570  		elfdynhash(ctxt)
   571  	}
   572  }
   573  
   574  func Codeblk(ctxt *Link, addr int64, size int64) {
   575  	CodeblkPad(ctxt, addr, size, zeros[:])
   576  }
   577  func CodeblkPad(ctxt *Link, addr int64, size int64, pad []byte) {
   578  	if *flagA {
   579  		ctxt.Logf("codeblk [%#x,%#x) at offset %#x\n", addr, addr+size, ctxt.Out.Offset())
   580  	}
   581  
   582  	blk(ctxt, ctxt.Textp, addr, size, pad)
   583  
   584  	/* again for printing */
   585  	if !*flagA {
   586  		return
   587  	}
   588  
   589  	syms := ctxt.Textp
   590  	for i, s := range syms {
   591  		if !s.Attr.Reachable() {
   592  			continue
   593  		}
   594  		if s.Value >= addr {
   595  			syms = syms[i:]
   596  			break
   597  		}
   598  	}
   599  
   600  	eaddr := addr + size
   601  	var q []byte
   602  	for _, s := range syms {
   603  		if !s.Attr.Reachable() {
   604  			continue
   605  		}
   606  		if s.Value >= eaddr {
   607  			break
   608  		}
   609  
   610  		if addr < s.Value {
   611  			ctxt.Logf("%-20s %.8x|", "_", uint64(addr))
   612  			for ; addr < s.Value; addr++ {
   613  				ctxt.Logf(" %.2x", 0)
   614  			}
   615  			ctxt.Logf("\n")
   616  		}
   617  
   618  		ctxt.Logf("%.6x\t%-20s\n", uint64(addr), s.Name)
   619  		q = s.P
   620  
   621  		for len(q) >= 16 {
   622  			ctxt.Logf("%.6x\t% x\n", uint64(addr), q[:16])
   623  			addr += 16
   624  			q = q[16:]
   625  		}
   626  
   627  		if len(q) > 0 {
   628  			ctxt.Logf("%.6x\t% x\n", uint64(addr), q)
   629  			addr += int64(len(q))
   630  		}
   631  	}
   632  
   633  	if addr < eaddr {
   634  		ctxt.Logf("%-20s %.8x|", "_", uint64(addr))
   635  		for ; addr < eaddr; addr++ {
   636  			ctxt.Logf(" %.2x", 0)
   637  		}
   638  	}
   639  }
   640  
   641  func blk(ctxt *Link, syms []*sym.Symbol, addr, size int64, pad []byte) {
   642  	for i, s := range syms {
   643  		if s.Type&sym.SSUB == 0 && s.Value >= addr {
   644  			syms = syms[i:]
   645  			break
   646  		}
   647  	}
   648  
   649  	eaddr := addr + size
   650  	for _, s := range syms {
   651  		if s.Type&sym.SSUB != 0 {
   652  			continue
   653  		}
   654  		if s.Value >= eaddr {
   655  			break
   656  		}
   657  		if s.Value < addr {
   658  			Errorf(s, "phase error: addr=%#x but sym=%#x type=%d", addr, s.Value, s.Type)
   659  			errorexit()
   660  		}
   661  		if addr < s.Value {
   662  			ctxt.Out.WriteStringPad("", int(s.Value-addr), pad)
   663  			addr = s.Value
   664  		}
   665  		ctxt.Out.Write(s.P)
   666  		addr += int64(len(s.P))
   667  		if addr < s.Value+s.Size {
   668  			ctxt.Out.WriteStringPad("", int(s.Value+s.Size-addr), pad)
   669  			addr = s.Value + s.Size
   670  		}
   671  		if addr != s.Value+s.Size {
   672  			Errorf(s, "phase error: addr=%#x value+size=%#x", addr, s.Value+s.Size)
   673  			errorexit()
   674  		}
   675  		if s.Value+s.Size >= eaddr {
   676  			break
   677  		}
   678  	}
   679  
   680  	if addr < eaddr {
   681  		ctxt.Out.WriteStringPad("", int(eaddr-addr), pad)
   682  	}
   683  	ctxt.Out.Flush()
   684  }
   685  
   686  func Datblk(ctxt *Link, addr int64, size int64) {
   687  	if *flagA {
   688  		ctxt.Logf("datblk [%#x,%#x) at offset %#x\n", addr, addr+size, ctxt.Out.Offset())
   689  	}
   690  
   691  	blk(ctxt, datap, addr, size, zeros[:])
   692  
   693  	/* again for printing */
   694  	if !*flagA {
   695  		return
   696  	}
   697  
   698  	syms := datap
   699  	for i, sym := range syms {
   700  		if sym.Value >= addr {
   701  			syms = syms[i:]
   702  			break
   703  		}
   704  	}
   705  
   706  	eaddr := addr + size
   707  	for _, sym := range syms {
   708  		if sym.Value >= eaddr {
   709  			break
   710  		}
   711  		if addr < sym.Value {
   712  			ctxt.Logf("\t%.8x| 00 ...\n", uint64(addr))
   713  			addr = sym.Value
   714  		}
   715  
   716  		ctxt.Logf("%s\n\t%.8x|", sym.Name, uint64(addr))
   717  		for i, b := range sym.P {
   718  			if i > 0 && i%16 == 0 {
   719  				ctxt.Logf("\n\t%.8x|", uint64(addr)+uint64(i))
   720  			}
   721  			ctxt.Logf(" %.2x", b)
   722  		}
   723  
   724  		addr += int64(len(sym.P))
   725  		for ; addr < sym.Value+sym.Size; addr++ {
   726  			ctxt.Logf(" %.2x", 0)
   727  		}
   728  		ctxt.Logf("\n")
   729  
   730  		if ctxt.LinkMode != LinkExternal {
   731  			continue
   732  		}
   733  		for _, r := range sym.R {
   734  			rsname := ""
   735  			if r.Sym != nil {
   736  				rsname = r.Sym.Name
   737  			}
   738  			typ := "?"
   739  			switch r.Type {
   740  			case objabi.R_ADDR:
   741  				typ = "addr"
   742  			case objabi.R_PCREL:
   743  				typ = "pcrel"
   744  			case objabi.R_CALL:
   745  				typ = "call"
   746  			}
   747  			ctxt.Logf("\treloc %.8x/%d %s %s+%#x [%#x]\n", uint(sym.Value+int64(r.Off)), r.Siz, typ, rsname, r.Add, r.Sym.Value+r.Add)
   748  		}
   749  	}
   750  
   751  	if addr < eaddr {
   752  		ctxt.Logf("\t%.8x| 00 ...\n", uint(addr))
   753  	}
   754  	ctxt.Logf("\t%.8x|\n", uint(eaddr))
   755  }
   756  
   757  func Dwarfblk(ctxt *Link, addr int64, size int64) {
   758  	if *flagA {
   759  		ctxt.Logf("dwarfblk [%#x,%#x) at offset %#x\n", addr, addr+size, ctxt.Out.Offset())
   760  	}
   761  
   762  	blk(ctxt, dwarfp, addr, size, zeros[:])
   763  }
   764  
   765  var zeros [512]byte
   766  
   767  var strdata []*sym.Symbol
   768  
   769  func addstrdata1(ctxt *Link, arg string) {
   770  	eq := strings.Index(arg, "=")
   771  	dot := strings.LastIndex(arg[:eq+1], ".")
   772  	if eq < 0 || dot < 0 {
   773  		Exitf("-X flag requires argument of the form importpath.name=value")
   774  	}
   775  	pkg := objabi.PathToPrefix(arg[:dot])
   776  	if ctxt.BuildMode == BuildModePlugin && pkg == "main" {
   777  		pkg = *flagPluginPath
   778  	}
   779  	addstrdata(ctxt, pkg+arg[dot:eq], arg[eq+1:])
   780  }
   781  
   782  func addstrdata(ctxt *Link, name string, value string) {
   783  	p := fmt.Sprintf("%s.str", name)
   784  	sp := ctxt.Syms.Lookup(p, 0)
   785  
   786  	Addstring(sp, value)
   787  	sp.Type = sym.SRODATA
   788  
   789  	s := ctxt.Syms.Lookup(name, 0)
   790  	s.Size = 0
   791  	s.Attr |= sym.AttrDuplicateOK
   792  	reachable := s.Attr.Reachable()
   793  	s.AddAddr(ctxt.Arch, sp)
   794  	s.AddUint(ctxt.Arch, uint64(len(value)))
   795  
   796  	// addstring, addaddr, etc., mark the symbols as reachable.
   797  	// In this case that is not necessarily true, so stick to what
   798  	// we know before entering this function.
   799  	s.Attr.Set(sym.AttrReachable, reachable)
   800  
   801  	strdata = append(strdata, s)
   802  
   803  	sp.Attr.Set(sym.AttrReachable, reachable)
   804  }
   805  
   806  func (ctxt *Link) checkstrdata() {
   807  	for _, s := range strdata {
   808  		if s.Type == sym.STEXT {
   809  			Errorf(s, "cannot use -X with text symbol")
   810  		} else if s.Gotype != nil && s.Gotype.Name != "type.string" {
   811  			Errorf(s, "cannot use -X with non-string symbol")
   812  		}
   813  	}
   814  }
   815  
   816  func Addstring(s *sym.Symbol, str string) int64 {
   817  	if s.Type == 0 {
   818  		s.Type = sym.SNOPTRDATA
   819  	}
   820  	s.Attr |= sym.AttrReachable
   821  	r := s.Size
   822  	if s.Name == ".shstrtab" {
   823  		elfsetstring(s, str, int(r))
   824  	}
   825  	s.P = append(s.P, str...)
   826  	s.P = append(s.P, 0)
   827  	s.Size = int64(len(s.P))
   828  	return r
   829  }
   830  
   831  // addgostring adds str, as a Go string value, to s. symname is the name of the
   832  // symbol used to define the string data and must be unique per linked object.
   833  func addgostring(ctxt *Link, s *sym.Symbol, symname, str string) {
   834  	sdata := ctxt.Syms.Lookup(symname, 0)
   835  	if sdata.Type != sym.Sxxx {
   836  		Errorf(s, "duplicate symname in addgostring: %s", symname)
   837  	}
   838  	sdata.Attr |= sym.AttrReachable
   839  	sdata.Attr |= sym.AttrLocal
   840  	sdata.Type = sym.SRODATA
   841  	sdata.Size = int64(len(str))
   842  	sdata.P = []byte(str)
   843  	s.AddAddr(ctxt.Arch, sdata)
   844  	s.AddUint(ctxt.Arch, uint64(len(str)))
   845  }
   846  
   847  func addinitarrdata(ctxt *Link, s *sym.Symbol) {
   848  	p := s.Name + ".ptr"
   849  	sp := ctxt.Syms.Lookup(p, 0)
   850  	sp.Type = sym.SINITARR
   851  	sp.Size = 0
   852  	sp.Attr |= sym.AttrDuplicateOK
   853  	sp.AddAddr(ctxt.Arch, s)
   854  }
   855  
   856  func dosymtype(ctxt *Link) {
   857  	switch ctxt.BuildMode {
   858  	case BuildModeCArchive, BuildModeCShared:
   859  		for _, s := range ctxt.Syms.Allsym {
   860  			// Create a new entry in the .init_array section that points to the
   861  			// library initializer function.
   862  			if s.Name == *flagEntrySymbol {
   863  				addinitarrdata(ctxt, s)
   864  			}
   865  		}
   866  	}
   867  }
   868  
   869  // symalign returns the required alignment for the given symbol s.
   870  func symalign(s *sym.Symbol) int32 {
   871  	min := int32(Thearch.Minalign)
   872  	if s.Align >= min {
   873  		return s.Align
   874  	} else if s.Align != 0 {
   875  		return min
   876  	}
   877  	if strings.HasPrefix(s.Name, "go.string.") || strings.HasPrefix(s.Name, "type..namedata.") {
   878  		// String data is just bytes.
   879  		// If we align it, we waste a lot of space to padding.
   880  		return min
   881  	}
   882  	align := int32(Thearch.Maxalign)
   883  	for int64(align) > s.Size && align > min {
   884  		align >>= 1
   885  	}
   886  	return align
   887  }
   888  
   889  func aligndatsize(datsize int64, s *sym.Symbol) int64 {
   890  	return Rnd(datsize, int64(symalign(s)))
   891  }
   892  
   893  const debugGCProg = false
   894  
   895  type GCProg struct {
   896  	ctxt *Link
   897  	sym  *sym.Symbol
   898  	w    gcprog.Writer
   899  }
   900  
   901  func (p *GCProg) Init(ctxt *Link, name string) {
   902  	p.ctxt = ctxt
   903  	p.sym = ctxt.Syms.Lookup(name, 0)
   904  	p.w.Init(p.writeByte(ctxt))
   905  	if debugGCProg {
   906  		fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name)
   907  		p.w.Debug(os.Stderr)
   908  	}
   909  }
   910  
   911  func (p *GCProg) writeByte(ctxt *Link) func(x byte) {
   912  	return func(x byte) {
   913  		p.sym.AddUint8(x)
   914  	}
   915  }
   916  
   917  func (p *GCProg) End(size int64) {
   918  	p.w.ZeroUntil(size / int64(p.ctxt.Arch.PtrSize))
   919  	p.w.End()
   920  	if debugGCProg {
   921  		fmt.Fprintf(os.Stderr, "ld: end GCProg\n")
   922  	}
   923  }
   924  
   925  func (p *GCProg) AddSym(s *sym.Symbol) {
   926  	typ := s.Gotype
   927  	// Things without pointers should be in sym.SNOPTRDATA or sym.SNOPTRBSS;
   928  	// everything we see should have pointers and should therefore have a type.
   929  	if typ == nil {
   930  		switch s.Name {
   931  		case "runtime.data", "runtime.edata", "runtime.bss", "runtime.ebss":
   932  			// Ignore special symbols that are sometimes laid out
   933  			// as real symbols. See comment about dyld on darwin in
   934  			// the address function.
   935  			return
   936  		}
   937  		Errorf(s, "missing Go type information for global symbol: size %d", s.Size)
   938  		return
   939  	}
   940  
   941  	ptrsize := int64(p.ctxt.Arch.PtrSize)
   942  	nptr := decodetypePtrdata(p.ctxt.Arch, typ) / ptrsize
   943  
   944  	if debugGCProg {
   945  		fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", s.Name, s.Value, s.Value/ptrsize, nptr)
   946  	}
   947  
   948  	if decodetypeUsegcprog(p.ctxt.Arch, typ) == 0 {
   949  		// Copy pointers from mask into program.
   950  		mask := decodetypeGcmask(p.ctxt, typ)
   951  		for i := int64(0); i < nptr; i++ {
   952  			if (mask[i/8]>>uint(i%8))&1 != 0 {
   953  				p.w.Ptr(s.Value/ptrsize + i)
   954  			}
   955  		}
   956  		return
   957  	}
   958  
   959  	// Copy program.
   960  	prog := decodetypeGcprog(p.ctxt, typ)
   961  	p.w.ZeroUntil(s.Value / ptrsize)
   962  	p.w.Append(prog[4:], nptr)
   963  }
   964  
   965  // dataSortKey is used to sort a slice of data symbol *sym.Symbol pointers.
   966  // The sort keys are kept inline to improve cache behavior while sorting.
   967  type dataSortKey struct {
   968  	size int64
   969  	name string
   970  	sym  *sym.Symbol
   971  }
   972  
   973  type bySizeAndName []dataSortKey
   974  
   975  func (d bySizeAndName) Len() int      { return len(d) }
   976  func (d bySizeAndName) Swap(i, j int) { d[i], d[j] = d[j], d[i] }
   977  func (d bySizeAndName) Less(i, j int) bool {
   978  	s1, s2 := d[i], d[j]
   979  	if s1.size != s2.size {
   980  		return s1.size < s2.size
   981  	}
   982  	return s1.name < s2.name
   983  }
   984  
   985  const cutoff int64 = 2e9 // 2 GB (or so; looks better in errors than 2^31)
   986  
   987  func checkdatsize(ctxt *Link, datsize int64, symn sym.SymKind) {
   988  	if datsize > cutoff {
   989  		Errorf(nil, "too much data in section %v (over %d bytes)", symn, cutoff)
   990  	}
   991  }
   992  
   993  // datap is a collection of reachable data symbols in address order.
   994  // Generated by dodata.
   995  var datap []*sym.Symbol
   996  
   997  func (ctxt *Link) dodata() {
   998  	if ctxt.Debugvlog != 0 {
   999  		ctxt.Logf("%5.2f dodata\n", Cputime())
  1000  	}
  1001  
  1002  	if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin {
  1003  		// The values in moduledata are filled out by relocations
  1004  		// pointing to the addresses of these special symbols.
  1005  		// Typically these symbols have no size and are not laid
  1006  		// out with their matching section.
  1007  		//
  1008  		// However on darwin, dyld will find the special symbol
  1009  		// in the first loaded module, even though it is local.
  1010  		//
  1011  		// (An hypothesis, formed without looking in the dyld sources:
  1012  		// these special symbols have no size, so their address
  1013  		// matches a real symbol. The dynamic linker assumes we
  1014  		// want the normal symbol with the same address and finds
  1015  		// it in the other module.)
  1016  		//
  1017  		// To work around this we lay out the symbls whose
  1018  		// addresses are vital for multi-module programs to work
  1019  		// as normal symbols, and give them a little size.
  1020  		bss := ctxt.Syms.Lookup("runtime.bss", 0)
  1021  		bss.Size = 8
  1022  		bss.Attr.Set(sym.AttrSpecial, false)
  1023  
  1024  		ctxt.Syms.Lookup("runtime.ebss", 0).Attr.Set(sym.AttrSpecial, false)
  1025  
  1026  		data := ctxt.Syms.Lookup("runtime.data", 0)
  1027  		data.Size = 8
  1028  		data.Attr.Set(sym.AttrSpecial, false)
  1029  
  1030  		ctxt.Syms.Lookup("runtime.edata", 0).Attr.Set(sym.AttrSpecial, false)
  1031  
  1032  		types := ctxt.Syms.Lookup("runtime.types", 0)
  1033  		types.Type = sym.STYPE
  1034  		types.Size = 8
  1035  		types.Attr.Set(sym.AttrSpecial, false)
  1036  
  1037  		etypes := ctxt.Syms.Lookup("runtime.etypes", 0)
  1038  		etypes.Type = sym.SFUNCTAB
  1039  		etypes.Attr.Set(sym.AttrSpecial, false)
  1040  	}
  1041  
  1042  	// Collect data symbols by type into data.
  1043  	var data [sym.SXREF][]*sym.Symbol
  1044  	for _, s := range ctxt.Syms.Allsym {
  1045  		if !s.Attr.Reachable() || s.Attr.Special() {
  1046  			continue
  1047  		}
  1048  		if s.Type <= sym.STEXT || s.Type >= sym.SXREF {
  1049  			continue
  1050  		}
  1051  		data[s.Type] = append(data[s.Type], s)
  1052  	}
  1053  
  1054  	// Now that we have the data symbols, but before we start
  1055  	// to assign addresses, record all the necessary
  1056  	// dynamic relocations. These will grow the relocation
  1057  	// symbol, which is itself data.
  1058  	//
  1059  	// On darwin, we need the symbol table numbers for dynreloc.
  1060  	if Headtype == objabi.Hdarwin {
  1061  		machosymorder(ctxt)
  1062  	}
  1063  	dynreloc(ctxt, &data)
  1064  
  1065  	if ctxt.UseRelro() {
  1066  		// "read only" data with relocations needs to go in its own section
  1067  		// when building a shared library. We do this by boosting objects of
  1068  		// type SXXX with relocations to type SXXXRELRO.
  1069  		for _, symnro := range sym.ReadOnly {
  1070  			symnrelro := sym.RelROMap[symnro]
  1071  
  1072  			ro := []*sym.Symbol{}
  1073  			relro := data[symnrelro]
  1074  
  1075  			for _, s := range data[symnro] {
  1076  				isRelro := len(s.R) > 0
  1077  				switch s.Type {
  1078  				case sym.STYPE, sym.STYPERELRO, sym.SGOFUNCRELRO:
  1079  					// Symbols are not sorted yet, so it is possible
  1080  					// that an Outer symbol has been changed to a
  1081  					// relro Type before it reaches here.
  1082  					isRelro = true
  1083  				}
  1084  				if isRelro {
  1085  					s.Type = symnrelro
  1086  					if s.Outer != nil {
  1087  						s.Outer.Type = s.Type
  1088  					}
  1089  					relro = append(relro, s)
  1090  				} else {
  1091  					ro = append(ro, s)
  1092  				}
  1093  			}
  1094  
  1095  			// Check that we haven't made two symbols with the same .Outer into
  1096  			// different types (because references two symbols with non-nil Outer
  1097  			// become references to the outer symbol + offset it's vital that the
  1098  			// symbol and the outer end up in the same section).
  1099  			for _, s := range relro {
  1100  				if s.Outer != nil && s.Outer.Type != s.Type {
  1101  					Errorf(s, "inconsistent types for symbol and its Outer %s (%v != %v)",
  1102  						s.Outer.Name, s.Type, s.Outer.Type)
  1103  				}
  1104  			}
  1105  
  1106  			data[symnro] = ro
  1107  			data[symnrelro] = relro
  1108  		}
  1109  	}
  1110  
  1111  	// Sort symbols.
  1112  	var dataMaxAlign [sym.SXREF]int32
  1113  	var wg sync.WaitGroup
  1114  	for symn := range data {
  1115  		symn := sym.SymKind(symn)
  1116  		wg.Add(1)
  1117  		go func() {
  1118  			data[symn], dataMaxAlign[symn] = dodataSect(ctxt, symn, data[symn])
  1119  			wg.Done()
  1120  		}()
  1121  	}
  1122  	wg.Wait()
  1123  
  1124  	// Allocate sections.
  1125  	// Data is processed before segtext, because we need
  1126  	// to see all symbols in the .data and .bss sections in order
  1127  	// to generate garbage collection information.
  1128  	datsize := int64(0)
  1129  
  1130  	// Writable data sections that do not need any specialized handling.
  1131  	writable := []sym.SymKind{
  1132  		sym.SELFSECT,
  1133  		sym.SMACHO,
  1134  		sym.SMACHOGOT,
  1135  		sym.SWINDOWS,
  1136  	}
  1137  	for _, symn := range writable {
  1138  		for _, s := range data[symn] {
  1139  			sect := addsection(ctxt.Arch, &Segdata, s.Name, 06)
  1140  			sect.Align = symalign(s)
  1141  			datsize = Rnd(datsize, int64(sect.Align))
  1142  			sect.Vaddr = uint64(datsize)
  1143  			s.Sect = sect
  1144  			s.Type = sym.SDATA
  1145  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1146  			datsize += s.Size
  1147  			sect.Length = uint64(datsize) - sect.Vaddr
  1148  		}
  1149  		checkdatsize(ctxt, datsize, symn)
  1150  	}
  1151  
  1152  	// .got (and .toc on ppc64)
  1153  	if len(data[sym.SELFGOT]) > 0 {
  1154  		sect := addsection(ctxt.Arch, &Segdata, ".got", 06)
  1155  		sect.Align = dataMaxAlign[sym.SELFGOT]
  1156  		datsize = Rnd(datsize, int64(sect.Align))
  1157  		sect.Vaddr = uint64(datsize)
  1158  		var toc *sym.Symbol
  1159  		for _, s := range data[sym.SELFGOT] {
  1160  			datsize = aligndatsize(datsize, s)
  1161  			s.Sect = sect
  1162  			s.Type = sym.SDATA
  1163  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1164  
  1165  			// Resolve .TOC. symbol for this object file (ppc64)
  1166  			toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version))
  1167  			if toc != nil {
  1168  				toc.Sect = sect
  1169  				toc.Outer = s
  1170  				toc.Sub = s.Sub
  1171  				s.Sub = toc
  1172  
  1173  				toc.Value = 0x8000
  1174  			}
  1175  
  1176  			datsize += s.Size
  1177  		}
  1178  		checkdatsize(ctxt, datsize, sym.SELFGOT)
  1179  		sect.Length = uint64(datsize) - sect.Vaddr
  1180  	}
  1181  
  1182  	/* pointer-free data */
  1183  	sect := addsection(ctxt.Arch, &Segdata, ".noptrdata", 06)
  1184  	sect.Align = dataMaxAlign[sym.SNOPTRDATA]
  1185  	datsize = Rnd(datsize, int64(sect.Align))
  1186  	sect.Vaddr = uint64(datsize)
  1187  	ctxt.Syms.Lookup("runtime.noptrdata", 0).Sect = sect
  1188  	ctxt.Syms.Lookup("runtime.enoptrdata", 0).Sect = sect
  1189  	for _, s := range data[sym.SNOPTRDATA] {
  1190  		datsize = aligndatsize(datsize, s)
  1191  		s.Sect = sect
  1192  		s.Type = sym.SDATA
  1193  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1194  		datsize += s.Size
  1195  	}
  1196  	checkdatsize(ctxt, datsize, sym.SNOPTRDATA)
  1197  	sect.Length = uint64(datsize) - sect.Vaddr
  1198  
  1199  	hasinitarr := *FlagLinkshared
  1200  
  1201  	/* shared library initializer */
  1202  	switch ctxt.BuildMode {
  1203  	case BuildModeCArchive, BuildModeCShared, BuildModeShared, BuildModePlugin:
  1204  		hasinitarr = true
  1205  	}
  1206  	if hasinitarr {
  1207  		sect := addsection(ctxt.Arch, &Segdata, ".init_array", 06)
  1208  		sect.Align = dataMaxAlign[sym.SINITARR]
  1209  		datsize = Rnd(datsize, int64(sect.Align))
  1210  		sect.Vaddr = uint64(datsize)
  1211  		for _, s := range data[sym.SINITARR] {
  1212  			datsize = aligndatsize(datsize, s)
  1213  			s.Sect = sect
  1214  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1215  			datsize += s.Size
  1216  		}
  1217  		sect.Length = uint64(datsize) - sect.Vaddr
  1218  		checkdatsize(ctxt, datsize, sym.SINITARR)
  1219  	}
  1220  
  1221  	/* data */
  1222  	sect = addsection(ctxt.Arch, &Segdata, ".data", 06)
  1223  	sect.Align = dataMaxAlign[sym.SDATA]
  1224  	datsize = Rnd(datsize, int64(sect.Align))
  1225  	sect.Vaddr = uint64(datsize)
  1226  	ctxt.Syms.Lookup("runtime.data", 0).Sect = sect
  1227  	ctxt.Syms.Lookup("runtime.edata", 0).Sect = sect
  1228  	var gc GCProg
  1229  	gc.Init(ctxt, "runtime.gcdata")
  1230  	for _, s := range data[sym.SDATA] {
  1231  		s.Sect = sect
  1232  		s.Type = sym.SDATA
  1233  		datsize = aligndatsize(datsize, s)
  1234  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1235  		gc.AddSym(s)
  1236  		datsize += s.Size
  1237  	}
  1238  	checkdatsize(ctxt, datsize, sym.SDATA)
  1239  	sect.Length = uint64(datsize) - sect.Vaddr
  1240  	gc.End(int64(sect.Length))
  1241  
  1242  	/* bss */
  1243  	sect = addsection(ctxt.Arch, &Segdata, ".bss", 06)
  1244  	sect.Align = dataMaxAlign[sym.SBSS]
  1245  	datsize = Rnd(datsize, int64(sect.Align))
  1246  	sect.Vaddr = uint64(datsize)
  1247  	ctxt.Syms.Lookup("runtime.bss", 0).Sect = sect
  1248  	ctxt.Syms.Lookup("runtime.ebss", 0).Sect = sect
  1249  	gc = GCProg{}
  1250  	gc.Init(ctxt, "runtime.gcbss")
  1251  	for _, s := range data[sym.SBSS] {
  1252  		s.Sect = sect
  1253  		datsize = aligndatsize(datsize, s)
  1254  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1255  		gc.AddSym(s)
  1256  		datsize += s.Size
  1257  	}
  1258  	checkdatsize(ctxt, datsize, sym.SBSS)
  1259  	sect.Length = uint64(datsize) - sect.Vaddr
  1260  	gc.End(int64(sect.Length))
  1261  
  1262  	/* pointer-free bss */
  1263  	sect = addsection(ctxt.Arch, &Segdata, ".noptrbss", 06)
  1264  	sect.Align = dataMaxAlign[sym.SNOPTRBSS]
  1265  	datsize = Rnd(datsize, int64(sect.Align))
  1266  	sect.Vaddr = uint64(datsize)
  1267  	ctxt.Syms.Lookup("runtime.noptrbss", 0).Sect = sect
  1268  	ctxt.Syms.Lookup("runtime.enoptrbss", 0).Sect = sect
  1269  	for _, s := range data[sym.SNOPTRBSS] {
  1270  		datsize = aligndatsize(datsize, s)
  1271  		s.Sect = sect
  1272  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1273  		datsize += s.Size
  1274  	}
  1275  
  1276  	sect.Length = uint64(datsize) - sect.Vaddr
  1277  	ctxt.Syms.Lookup("runtime.end", 0).Sect = sect
  1278  	checkdatsize(ctxt, datsize, sym.SNOPTRBSS)
  1279  
  1280  	if len(data[sym.STLSBSS]) > 0 {
  1281  		var sect *sym.Section
  1282  		if Iself && (ctxt.LinkMode == LinkExternal || !*FlagD) {
  1283  			sect = addsection(ctxt.Arch, &Segdata, ".tbss", 06)
  1284  			sect.Align = int32(ctxt.Arch.PtrSize)
  1285  			sect.Vaddr = 0
  1286  		}
  1287  		datsize = 0
  1288  
  1289  		for _, s := range data[sym.STLSBSS] {
  1290  			datsize = aligndatsize(datsize, s)
  1291  			s.Sect = sect
  1292  			s.Value = datsize
  1293  			datsize += s.Size
  1294  		}
  1295  		checkdatsize(ctxt, datsize, sym.STLSBSS)
  1296  
  1297  		if sect != nil {
  1298  			sect.Length = uint64(datsize)
  1299  		}
  1300  	}
  1301  
  1302  	/*
  1303  	 * We finished data, begin read-only data.
  1304  	 * Not all systems support a separate read-only non-executable data section.
  1305  	 * ELF systems do.
  1306  	 * OS X and Plan 9 do not.
  1307  	 * Windows PE may, but if so we have not implemented it.
  1308  	 * And if we're using external linking mode, the point is moot,
  1309  	 * since it's not our decision; that code expects the sections in
  1310  	 * segtext.
  1311  	 */
  1312  	var segro *sym.Segment
  1313  	if Iself && ctxt.LinkMode == LinkInternal {
  1314  		segro = &Segrodata
  1315  	} else {
  1316  		segro = &Segtext
  1317  	}
  1318  
  1319  	datsize = 0
  1320  
  1321  	/* read-only executable ELF, Mach-O sections */
  1322  	if len(data[sym.STEXT]) != 0 {
  1323  		Errorf(nil, "dodata found an sym.STEXT symbol: %s", data[sym.STEXT][0].Name)
  1324  	}
  1325  	for _, s := range data[sym.SELFRXSECT] {
  1326  		sect := addsection(ctxt.Arch, &Segtext, s.Name, 04)
  1327  		sect.Align = symalign(s)
  1328  		datsize = Rnd(datsize, int64(sect.Align))
  1329  		sect.Vaddr = uint64(datsize)
  1330  		s.Sect = sect
  1331  		s.Type = sym.SRODATA
  1332  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1333  		datsize += s.Size
  1334  		sect.Length = uint64(datsize) - sect.Vaddr
  1335  		checkdatsize(ctxt, datsize, sym.SELFRXSECT)
  1336  	}
  1337  
  1338  	/* read-only data */
  1339  	sect = addsection(ctxt.Arch, segro, ".rodata", 04)
  1340  
  1341  	sect.Vaddr = 0
  1342  	ctxt.Syms.Lookup("runtime.rodata", 0).Sect = sect
  1343  	ctxt.Syms.Lookup("runtime.erodata", 0).Sect = sect
  1344  	if !ctxt.UseRelro() {
  1345  		ctxt.Syms.Lookup("runtime.types", 0).Sect = sect
  1346  		ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect
  1347  	}
  1348  	for _, symn := range sym.ReadOnly {
  1349  		align := dataMaxAlign[symn]
  1350  		if sect.Align < align {
  1351  			sect.Align = align
  1352  		}
  1353  	}
  1354  	datsize = Rnd(datsize, int64(sect.Align))
  1355  	for _, symn := range sym.ReadOnly {
  1356  		for _, s := range data[symn] {
  1357  			datsize = aligndatsize(datsize, s)
  1358  			s.Sect = sect
  1359  			s.Type = sym.SRODATA
  1360  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1361  			datsize += s.Size
  1362  		}
  1363  		checkdatsize(ctxt, datsize, symn)
  1364  	}
  1365  	sect.Length = uint64(datsize) - sect.Vaddr
  1366  
  1367  	/* read-only ELF, Mach-O sections */
  1368  	for _, s := range data[sym.SELFROSECT] {
  1369  		sect = addsection(ctxt.Arch, segro, s.Name, 04)
  1370  		sect.Align = symalign(s)
  1371  		datsize = Rnd(datsize, int64(sect.Align))
  1372  		sect.Vaddr = uint64(datsize)
  1373  		s.Sect = sect
  1374  		s.Type = sym.SRODATA
  1375  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1376  		datsize += s.Size
  1377  		sect.Length = uint64(datsize) - sect.Vaddr
  1378  	}
  1379  	checkdatsize(ctxt, datsize, sym.SELFROSECT)
  1380  
  1381  	for _, s := range data[sym.SMACHOPLT] {
  1382  		sect = addsection(ctxt.Arch, segro, s.Name, 04)
  1383  		sect.Align = symalign(s)
  1384  		datsize = Rnd(datsize, int64(sect.Align))
  1385  		sect.Vaddr = uint64(datsize)
  1386  		s.Sect = sect
  1387  		s.Type = sym.SRODATA
  1388  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1389  		datsize += s.Size
  1390  		sect.Length = uint64(datsize) - sect.Vaddr
  1391  	}
  1392  	checkdatsize(ctxt, datsize, sym.SMACHOPLT)
  1393  
  1394  	// There is some data that are conceptually read-only but are written to by
  1395  	// relocations. On GNU systems, we can arrange for the dynamic linker to
  1396  	// mprotect sections after relocations are applied by giving them write
  1397  	// permissions in the object file and calling them ".data.rel.ro.FOO". We
  1398  	// divide the .rodata section between actual .rodata and .data.rel.ro.rodata,
  1399  	// but for the other sections that this applies to, we just write a read-only
  1400  	// .FOO section or a read-write .data.rel.ro.FOO section depending on the
  1401  	// situation.
  1402  	// TODO(mwhudson): It would make sense to do this more widely, but it makes
  1403  	// the system linker segfault on darwin.
  1404  	addrelrosection := func(suffix string) *sym.Section {
  1405  		return addsection(ctxt.Arch, segro, suffix, 04)
  1406  	}
  1407  
  1408  	if ctxt.UseRelro() {
  1409  		addrelrosection = func(suffix string) *sym.Section {
  1410  			seg := &Segrelrodata
  1411  			if ctxt.LinkMode == LinkExternal {
  1412  				// Using a separate segment with an external
  1413  				// linker results in some programs moving
  1414  				// their data sections unexpectedly, which
  1415  				// corrupts the moduledata. So we use the
  1416  				// rodata segment and let the external linker
  1417  				// sort out a rel.ro segment.
  1418  				seg = &Segrodata
  1419  			}
  1420  			return addsection(ctxt.Arch, seg, ".data.rel.ro"+suffix, 06)
  1421  		}
  1422  		/* data only written by relocations */
  1423  		sect = addrelrosection("")
  1424  
  1425  		sect.Vaddr = 0
  1426  		ctxt.Syms.Lookup("runtime.types", 0).Sect = sect
  1427  		ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect
  1428  		for _, symnro := range sym.ReadOnly {
  1429  			symn := sym.RelROMap[symnro]
  1430  			align := dataMaxAlign[symn]
  1431  			if sect.Align < align {
  1432  				sect.Align = align
  1433  			}
  1434  		}
  1435  		datsize = Rnd(datsize, int64(sect.Align))
  1436  		for _, symnro := range sym.ReadOnly {
  1437  			symn := sym.RelROMap[symnro]
  1438  			for _, s := range data[symn] {
  1439  				datsize = aligndatsize(datsize, s)
  1440  				if s.Outer != nil && s.Outer.Sect != nil && s.Outer.Sect != sect {
  1441  					Errorf(s, "s.Outer (%s) in different section from s, %s != %s", s.Outer.Name, s.Outer.Sect.Name, sect.Name)
  1442  				}
  1443  				s.Sect = sect
  1444  				s.Type = sym.SRODATA
  1445  				s.Value = int64(uint64(datsize) - sect.Vaddr)
  1446  				datsize += s.Size
  1447  			}
  1448  			checkdatsize(ctxt, datsize, symn)
  1449  		}
  1450  
  1451  		sect.Length = uint64(datsize) - sect.Vaddr
  1452  	}
  1453  
  1454  	/* typelink */
  1455  	sect = addrelrosection(".typelink")
  1456  	sect.Align = dataMaxAlign[sym.STYPELINK]
  1457  	datsize = Rnd(datsize, int64(sect.Align))
  1458  	sect.Vaddr = uint64(datsize)
  1459  	typelink := ctxt.Syms.Lookup("runtime.typelink", 0)
  1460  	typelink.Sect = sect
  1461  	typelink.Type = sym.SRODATA
  1462  	datsize += typelink.Size
  1463  	checkdatsize(ctxt, datsize, sym.STYPELINK)
  1464  	sect.Length = uint64(datsize) - sect.Vaddr
  1465  
  1466  	/* itablink */
  1467  	sect = addrelrosection(".itablink")
  1468  	sect.Align = dataMaxAlign[sym.SITABLINK]
  1469  	datsize = Rnd(datsize, int64(sect.Align))
  1470  	sect.Vaddr = uint64(datsize)
  1471  	ctxt.Syms.Lookup("runtime.itablink", 0).Sect = sect
  1472  	ctxt.Syms.Lookup("runtime.eitablink", 0).Sect = sect
  1473  	for _, s := range data[sym.SITABLINK] {
  1474  		datsize = aligndatsize(datsize, s)
  1475  		s.Sect = sect
  1476  		s.Type = sym.SRODATA
  1477  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1478  		datsize += s.Size
  1479  	}
  1480  	checkdatsize(ctxt, datsize, sym.SITABLINK)
  1481  	sect.Length = uint64(datsize) - sect.Vaddr
  1482  
  1483  	/* gosymtab */
  1484  	sect = addrelrosection(".gosymtab")
  1485  	sect.Align = dataMaxAlign[sym.SSYMTAB]
  1486  	datsize = Rnd(datsize, int64(sect.Align))
  1487  	sect.Vaddr = uint64(datsize)
  1488  	ctxt.Syms.Lookup("runtime.symtab", 0).Sect = sect
  1489  	ctxt.Syms.Lookup("runtime.esymtab", 0).Sect = sect
  1490  	for _, s := range data[sym.SSYMTAB] {
  1491  		datsize = aligndatsize(datsize, s)
  1492  		s.Sect = sect
  1493  		s.Type = sym.SRODATA
  1494  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1495  		datsize += s.Size
  1496  	}
  1497  	checkdatsize(ctxt, datsize, sym.SSYMTAB)
  1498  	sect.Length = uint64(datsize) - sect.Vaddr
  1499  
  1500  	/* gopclntab */
  1501  	sect = addrelrosection(".gopclntab")
  1502  	sect.Align = dataMaxAlign[sym.SPCLNTAB]
  1503  	datsize = Rnd(datsize, int64(sect.Align))
  1504  	sect.Vaddr = uint64(datsize)
  1505  	ctxt.Syms.Lookup("runtime.pclntab", 0).Sect = sect
  1506  	ctxt.Syms.Lookup("runtime.epclntab", 0).Sect = sect
  1507  	for _, s := range data[sym.SPCLNTAB] {
  1508  		datsize = aligndatsize(datsize, s)
  1509  		s.Sect = sect
  1510  		s.Type = sym.SRODATA
  1511  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1512  		datsize += s.Size
  1513  	}
  1514  	checkdatsize(ctxt, datsize, sym.SRODATA)
  1515  	sect.Length = uint64(datsize) - sect.Vaddr
  1516  
  1517  	// 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits.
  1518  	if datsize != int64(uint32(datsize)) {
  1519  		Errorf(nil, "read-only data segment too large: %d", datsize)
  1520  	}
  1521  
  1522  	for symn := sym.SELFRXSECT; symn < sym.SXREF; symn++ {
  1523  		datap = append(datap, data[symn]...)
  1524  	}
  1525  
  1526  	dwarfgeneratedebugsyms(ctxt)
  1527  
  1528  	var i int
  1529  	for ; i < len(dwarfp); i++ {
  1530  		s := dwarfp[i]
  1531  		if s.Type != sym.SDWARFSECT {
  1532  			break
  1533  		}
  1534  
  1535  		sect = addsection(ctxt.Arch, &Segdwarf, s.Name, 04)
  1536  		sect.Align = 1
  1537  		datsize = Rnd(datsize, int64(sect.Align))
  1538  		sect.Vaddr = uint64(datsize)
  1539  		s.Sect = sect
  1540  		s.Type = sym.SRODATA
  1541  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1542  		datsize += s.Size
  1543  		sect.Length = uint64(datsize) - sect.Vaddr
  1544  	}
  1545  	checkdatsize(ctxt, datsize, sym.SDWARFSECT)
  1546  
  1547  	for i < len(dwarfp) {
  1548  		curType := dwarfp[i].Type
  1549  		var sect *sym.Section
  1550  		switch curType {
  1551  		case sym.SDWARFINFO:
  1552  			sect = addsection(ctxt.Arch, &Segdwarf, ".debug_info", 04)
  1553  		case sym.SDWARFRANGE:
  1554  			sect = addsection(ctxt.Arch, &Segdwarf, ".debug_ranges", 04)
  1555  		case sym.SDWARFLOC:
  1556  			sect = addsection(ctxt.Arch, &Segdwarf, ".debug_loc", 04)
  1557  		default:
  1558  			Errorf(dwarfp[i], "unknown DWARF section %v", curType)
  1559  		}
  1560  
  1561  		sect.Align = 1
  1562  		datsize = Rnd(datsize, int64(sect.Align))
  1563  		sect.Vaddr = uint64(datsize)
  1564  		for ; i < len(dwarfp); i++ {
  1565  			s := dwarfp[i]
  1566  			if s.Type != curType {
  1567  				break
  1568  			}
  1569  			s.Sect = sect
  1570  			s.Type = sym.SRODATA
  1571  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1572  			s.Attr |= sym.AttrLocal
  1573  			datsize += s.Size
  1574  		}
  1575  		sect.Length = uint64(datsize) - sect.Vaddr
  1576  		checkdatsize(ctxt, datsize, curType)
  1577  	}
  1578  
  1579  	/* number the sections */
  1580  	n := int32(1)
  1581  
  1582  	for _, sect := range Segtext.Sections {
  1583  		sect.Extnum = int16(n)
  1584  		n++
  1585  	}
  1586  	for _, sect := range Segrodata.Sections {
  1587  		sect.Extnum = int16(n)
  1588  		n++
  1589  	}
  1590  	for _, sect := range Segrelrodata.Sections {
  1591  		sect.Extnum = int16(n)
  1592  		n++
  1593  	}
  1594  	for _, sect := range Segdata.Sections {
  1595  		sect.Extnum = int16(n)
  1596  		n++
  1597  	}
  1598  	for _, sect := range Segdwarf.Sections {
  1599  		sect.Extnum = int16(n)
  1600  		n++
  1601  	}
  1602  }
  1603  
  1604  func dodataSect(ctxt *Link, symn sym.SymKind, syms []*sym.Symbol) (result []*sym.Symbol, maxAlign int32) {
  1605  	if Headtype == objabi.Hdarwin {
  1606  		// Some symbols may no longer belong in syms
  1607  		// due to movement in machosymorder.
  1608  		newSyms := make([]*sym.Symbol, 0, len(syms))
  1609  		for _, s := range syms {
  1610  			if s.Type == symn {
  1611  				newSyms = append(newSyms, s)
  1612  			}
  1613  		}
  1614  		syms = newSyms
  1615  	}
  1616  
  1617  	var head, tail *sym.Symbol
  1618  	symsSort := make([]dataSortKey, 0, len(syms))
  1619  	for _, s := range syms {
  1620  		if s.Attr.OnList() {
  1621  			log.Fatalf("symbol %s listed multiple times", s.Name)
  1622  		}
  1623  		s.Attr |= sym.AttrOnList
  1624  		switch {
  1625  		case s.Size < int64(len(s.P)):
  1626  			Errorf(s, "initialize bounds (%d < %d)", s.Size, len(s.P))
  1627  		case s.Size < 0:
  1628  			Errorf(s, "negative size (%d bytes)", s.Size)
  1629  		case s.Size > cutoff:
  1630  			Errorf(s, "symbol too large (%d bytes)", s.Size)
  1631  		}
  1632  
  1633  		// If the usually-special section-marker symbols are being laid
  1634  		// out as regular symbols, put them either at the beginning or
  1635  		// end of their section.
  1636  		if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin {
  1637  			switch s.Name {
  1638  			case "runtime.text", "runtime.bss", "runtime.data", "runtime.types":
  1639  				head = s
  1640  				continue
  1641  			case "runtime.etext", "runtime.ebss", "runtime.edata", "runtime.etypes":
  1642  				tail = s
  1643  				continue
  1644  			}
  1645  		}
  1646  
  1647  		key := dataSortKey{
  1648  			size: s.Size,
  1649  			name: s.Name,
  1650  			sym:  s,
  1651  		}
  1652  
  1653  		switch s.Type {
  1654  		case sym.SELFGOT:
  1655  			// For ppc64, we want to interleave the .got and .toc sections
  1656  			// from input files. Both are type sym.SELFGOT, so in that case
  1657  			// we skip size comparison and fall through to the name
  1658  			// comparison (conveniently, .got sorts before .toc).
  1659  			key.size = 0
  1660  		}
  1661  
  1662  		symsSort = append(symsSort, key)
  1663  	}
  1664  
  1665  	sort.Sort(bySizeAndName(symsSort))
  1666  
  1667  	off := 0
  1668  	if head != nil {
  1669  		syms[0] = head
  1670  		off++
  1671  	}
  1672  	for i, symSort := range symsSort {
  1673  		syms[i+off] = symSort.sym
  1674  		align := symalign(symSort.sym)
  1675  		if maxAlign < align {
  1676  			maxAlign = align
  1677  		}
  1678  	}
  1679  	if tail != nil {
  1680  		syms[len(syms)-1] = tail
  1681  	}
  1682  
  1683  	if Iself && symn == sym.SELFROSECT {
  1684  		// Make .rela and .rela.plt contiguous, the ELF ABI requires this
  1685  		// and Solaris actually cares.
  1686  		reli, plti := -1, -1
  1687  		for i, s := range syms {
  1688  			switch s.Name {
  1689  			case ".rel.plt", ".rela.plt":
  1690  				plti = i
  1691  			case ".rel", ".rela":
  1692  				reli = i
  1693  			}
  1694  		}
  1695  		if reli >= 0 && plti >= 0 && plti != reli+1 {
  1696  			var first, second int
  1697  			if plti > reli {
  1698  				first, second = reli, plti
  1699  			} else {
  1700  				first, second = plti, reli
  1701  			}
  1702  			rel, plt := syms[reli], syms[plti]
  1703  			copy(syms[first+2:], syms[first+1:second])
  1704  			syms[first+0] = rel
  1705  			syms[first+1] = plt
  1706  
  1707  			// Make sure alignment doesn't introduce a gap.
  1708  			// Setting the alignment explicitly prevents
  1709  			// symalign from basing it on the size and
  1710  			// getting it wrong.
  1711  			rel.Align = int32(ctxt.Arch.RegSize)
  1712  			plt.Align = int32(ctxt.Arch.RegSize)
  1713  		}
  1714  	}
  1715  
  1716  	return syms, maxAlign
  1717  }
  1718  
  1719  // Add buildid to beginning of text segment, on non-ELF systems.
  1720  // Non-ELF binary formats are not always flexible enough to
  1721  // give us a place to put the Go build ID. On those systems, we put it
  1722  // at the very beginning of the text segment.
  1723  // This ``header'' is read by cmd/go.
  1724  func (ctxt *Link) textbuildid() {
  1725  	if Iself || ctxt.BuildMode == BuildModePlugin || *flagBuildid == "" {
  1726  		return
  1727  	}
  1728  
  1729  	s := ctxt.Syms.Lookup("go.buildid", 0)
  1730  	s.Attr |= sym.AttrReachable
  1731  	// The \xff is invalid UTF-8, meant to make it less likely
  1732  	// to find one of these accidentally.
  1733  	data := "\xff Go build ID: " + strconv.Quote(*flagBuildid) + "\n \xff"
  1734  	s.Type = sym.STEXT
  1735  	s.P = []byte(data)
  1736  	s.Size = int64(len(s.P))
  1737  
  1738  	ctxt.Textp = append(ctxt.Textp, nil)
  1739  	copy(ctxt.Textp[1:], ctxt.Textp)
  1740  	ctxt.Textp[0] = s
  1741  }
  1742  
  1743  // assign addresses to text
  1744  func (ctxt *Link) textaddress() {
  1745  	addsection(ctxt.Arch, &Segtext, ".text", 05)
  1746  
  1747  	// Assign PCs in text segment.
  1748  	// Could parallelize, by assigning to text
  1749  	// and then letting threads copy down, but probably not worth it.
  1750  	sect := Segtext.Sections[0]
  1751  
  1752  	sect.Align = int32(Funcalign)
  1753  
  1754  	text := ctxt.Syms.Lookup("runtime.text", 0)
  1755  	text.Sect = sect
  1756  
  1757  	if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin {
  1758  		etext := ctxt.Syms.Lookup("runtime.etext", 0)
  1759  		etext.Sect = sect
  1760  
  1761  		ctxt.Textp = append(ctxt.Textp, etext, nil)
  1762  		copy(ctxt.Textp[1:], ctxt.Textp)
  1763  		ctxt.Textp[0] = text
  1764  	}
  1765  
  1766  	va := uint64(*FlagTextAddr)
  1767  	n := 1
  1768  	sect.Vaddr = va
  1769  	ntramps := 0
  1770  	for _, s := range ctxt.Textp {
  1771  		sect, n, va = assignAddress(ctxt, sect, n, s, va, false)
  1772  
  1773  		trampoline(ctxt, s) // resolve jumps, may add trampolines if jump too far
  1774  
  1775  		// lay down trampolines after each function
  1776  		for ; ntramps < len(ctxt.tramps); ntramps++ {
  1777  			tramp := ctxt.tramps[ntramps]
  1778  			sect, n, va = assignAddress(ctxt, sect, n, tramp, va, true)
  1779  		}
  1780  	}
  1781  
  1782  	sect.Length = va - sect.Vaddr
  1783  	ctxt.Syms.Lookup("runtime.etext", 0).Sect = sect
  1784  
  1785  	// merge tramps into Textp, keeping Textp in address order
  1786  	if ntramps != 0 {
  1787  		newtextp := make([]*sym.Symbol, 0, len(ctxt.Textp)+ntramps)
  1788  		i := 0
  1789  		for _, s := range ctxt.Textp {
  1790  			for ; i < ntramps && ctxt.tramps[i].Value < s.Value; i++ {
  1791  				newtextp = append(newtextp, ctxt.tramps[i])
  1792  			}
  1793  			newtextp = append(newtextp, s)
  1794  		}
  1795  		newtextp = append(newtextp, ctxt.tramps[i:ntramps]...)
  1796  
  1797  		ctxt.Textp = newtextp
  1798  	}
  1799  }
  1800  
  1801  // assigns address for a text symbol, returns (possibly new) section, its number, and the address
  1802  // Note: once we have trampoline insertion support for external linking, this function
  1803  // will not need to create new text sections, and so no need to return sect and n.
  1804  func assignAddress(ctxt *Link, sect *sym.Section, n int, s *sym.Symbol, va uint64, isTramp bool) (*sym.Section, int, uint64) {
  1805  	s.Sect = sect
  1806  	if s.Type&sym.SSUB != 0 {
  1807  		return sect, n, va
  1808  	}
  1809  	if s.Align != 0 {
  1810  		va = uint64(Rnd(int64(va), int64(s.Align)))
  1811  	} else {
  1812  		va = uint64(Rnd(int64(va), int64(Funcalign)))
  1813  	}
  1814  	s.Value = 0
  1815  	for sub := s; sub != nil; sub = sub.Sub {
  1816  		sub.Value += int64(va)
  1817  	}
  1818  
  1819  	funcsize := uint64(MINFUNC) // spacing required for findfunctab
  1820  	if s.Size > MINFUNC {
  1821  		funcsize = uint64(s.Size)
  1822  	}
  1823  
  1824  	// On ppc64x a text section should not be larger than 2^26 bytes due to the size of
  1825  	// call target offset field in the bl instruction.  Splitting into smaller text
  1826  	// sections smaller than this limit allows the GNU linker to modify the long calls
  1827  	// appropriately.  The limit allows for the space needed for tables inserted by the linker.
  1828  
  1829  	// If this function doesn't fit in the current text section, then create a new one.
  1830  
  1831  	// Only break at outermost syms.
  1832  
  1833  	if ctxt.Arch.InFamily(sys.PPC64) && s.Outer == nil && Iself && ctxt.LinkMode == LinkExternal && va-sect.Vaddr+funcsize+maxSizeTrampolinesPPC64(s, isTramp) > 0x1c00000 {
  1834  
  1835  		// Set the length for the previous text section
  1836  		sect.Length = va - sect.Vaddr
  1837  
  1838  		// Create new section, set the starting Vaddr
  1839  		sect = addsection(ctxt.Arch, &Segtext, ".text", 05)
  1840  		sect.Vaddr = va
  1841  		s.Sect = sect
  1842  
  1843  		// Create a symbol for the start of the secondary text sections
  1844  		ctxt.Syms.Lookup(fmt.Sprintf("runtime.text.%d", n), 0).Sect = sect
  1845  		n++
  1846  	}
  1847  	va += funcsize
  1848  
  1849  	return sect, n, va
  1850  }
  1851  
  1852  // assign addresses
  1853  func (ctxt *Link) address() {
  1854  	va := uint64(*FlagTextAddr)
  1855  	Segtext.Rwx = 05
  1856  	Segtext.Vaddr = va
  1857  	Segtext.Fileoff = uint64(HEADR)
  1858  	for _, s := range Segtext.Sections {
  1859  		va = uint64(Rnd(int64(va), int64(s.Align)))
  1860  		s.Vaddr = va
  1861  		va += s.Length
  1862  	}
  1863  
  1864  	Segtext.Length = va - uint64(*FlagTextAddr)
  1865  	Segtext.Filelen = Segtext.Length
  1866  	if Headtype == objabi.Hnacl {
  1867  		va += 32 // room for the "halt sled"
  1868  	}
  1869  
  1870  	if len(Segrodata.Sections) > 0 {
  1871  		// align to page boundary so as not to mix
  1872  		// rodata and executable text.
  1873  		//
  1874  		// Note: gold or GNU ld will reduce the size of the executable
  1875  		// file by arranging for the relro segment to end at a page
  1876  		// boundary, and overlap the end of the text segment with the
  1877  		// start of the relro segment in the file.  The PT_LOAD segments
  1878  		// will be such that the last page of the text segment will be
  1879  		// mapped twice, once r-x and once starting out rw- and, after
  1880  		// relocation processing, changed to r--.
  1881  		//
  1882  		// Ideally the last page of the text segment would not be
  1883  		// writable even for this short period.
  1884  		va = uint64(Rnd(int64(va), int64(*FlagRound)))
  1885  
  1886  		Segrodata.Rwx = 04
  1887  		Segrodata.Vaddr = va
  1888  		Segrodata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff
  1889  		Segrodata.Filelen = 0
  1890  		for _, s := range Segrodata.Sections {
  1891  			va = uint64(Rnd(int64(va), int64(s.Align)))
  1892  			s.Vaddr = va
  1893  			va += s.Length
  1894  		}
  1895  
  1896  		Segrodata.Length = va - Segrodata.Vaddr
  1897  		Segrodata.Filelen = Segrodata.Length
  1898  	}
  1899  	if len(Segrelrodata.Sections) > 0 {
  1900  		// align to page boundary so as not to mix
  1901  		// rodata, rel-ro data, and executable text.
  1902  		va = uint64(Rnd(int64(va), int64(*FlagRound)))
  1903  
  1904  		Segrelrodata.Rwx = 06
  1905  		Segrelrodata.Vaddr = va
  1906  		Segrelrodata.Fileoff = va - Segrodata.Vaddr + Segrodata.Fileoff
  1907  		Segrelrodata.Filelen = 0
  1908  		for _, s := range Segrelrodata.Sections {
  1909  			va = uint64(Rnd(int64(va), int64(s.Align)))
  1910  			s.Vaddr = va
  1911  			va += s.Length
  1912  		}
  1913  
  1914  		Segrelrodata.Length = va - Segrelrodata.Vaddr
  1915  		Segrelrodata.Filelen = Segrelrodata.Length
  1916  	}
  1917  
  1918  	va = uint64(Rnd(int64(va), int64(*FlagRound)))
  1919  	Segdata.Rwx = 06
  1920  	Segdata.Vaddr = va
  1921  	Segdata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff
  1922  	Segdata.Filelen = 0
  1923  	if Headtype == objabi.Hwindows {
  1924  		Segdata.Fileoff = Segtext.Fileoff + uint64(Rnd(int64(Segtext.Length), PEFILEALIGN))
  1925  	}
  1926  	if Headtype == objabi.Hplan9 {
  1927  		Segdata.Fileoff = Segtext.Fileoff + Segtext.Filelen
  1928  	}
  1929  	var data *sym.Section
  1930  	var noptr *sym.Section
  1931  	var bss *sym.Section
  1932  	var noptrbss *sym.Section
  1933  	for i, s := range Segdata.Sections {
  1934  		if Iself && s.Name == ".tbss" {
  1935  			continue
  1936  		}
  1937  		vlen := int64(s.Length)
  1938  		if i+1 < len(Segdata.Sections) && !(Iself && Segdata.Sections[i+1].Name == ".tbss") {
  1939  			vlen = int64(Segdata.Sections[i+1].Vaddr - s.Vaddr)
  1940  		}
  1941  		s.Vaddr = va
  1942  		va += uint64(vlen)
  1943  		Segdata.Length = va - Segdata.Vaddr
  1944  		if s.Name == ".data" {
  1945  			data = s
  1946  		}
  1947  		if s.Name == ".noptrdata" {
  1948  			noptr = s
  1949  		}
  1950  		if s.Name == ".bss" {
  1951  			bss = s
  1952  		}
  1953  		if s.Name == ".noptrbss" {
  1954  			noptrbss = s
  1955  		}
  1956  	}
  1957  
  1958  	Segdata.Filelen = bss.Vaddr - Segdata.Vaddr
  1959  
  1960  	va = uint64(Rnd(int64(va), int64(*FlagRound)))
  1961  	Segdwarf.Rwx = 06
  1962  	Segdwarf.Vaddr = va
  1963  	Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(*FlagRound)))
  1964  	Segdwarf.Filelen = 0
  1965  	if Headtype == objabi.Hwindows {
  1966  		Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(PEFILEALIGN)))
  1967  	}
  1968  	for i, s := range Segdwarf.Sections {
  1969  		vlen := int64(s.Length)
  1970  		if i+1 < len(Segdwarf.Sections) {
  1971  			vlen = int64(Segdwarf.Sections[i+1].Vaddr - s.Vaddr)
  1972  		}
  1973  		s.Vaddr = va
  1974  		va += uint64(vlen)
  1975  		if Headtype == objabi.Hwindows {
  1976  			va = uint64(Rnd(int64(va), PEFILEALIGN))
  1977  		}
  1978  		Segdwarf.Length = va - Segdwarf.Vaddr
  1979  	}
  1980  
  1981  	Segdwarf.Filelen = va - Segdwarf.Vaddr
  1982  
  1983  	var (
  1984  		text     = Segtext.Sections[0]
  1985  		rodata   = ctxt.Syms.Lookup("runtime.rodata", 0).Sect
  1986  		itablink = ctxt.Syms.Lookup("runtime.itablink", 0).Sect
  1987  		symtab   = ctxt.Syms.Lookup("runtime.symtab", 0).Sect
  1988  		pclntab  = ctxt.Syms.Lookup("runtime.pclntab", 0).Sect
  1989  		types    = ctxt.Syms.Lookup("runtime.types", 0).Sect
  1990  	)
  1991  	lasttext := text
  1992  	// Could be multiple .text sections
  1993  	for _, sect := range Segtext.Sections {
  1994  		if sect.Name == ".text" {
  1995  			lasttext = sect
  1996  		}
  1997  	}
  1998  
  1999  	for _, s := range datap {
  2000  		if s.Sect != nil {
  2001  			s.Value += int64(s.Sect.Vaddr)
  2002  		}
  2003  		for sub := s.Sub; sub != nil; sub = sub.Sub {
  2004  			sub.Value += s.Value
  2005  		}
  2006  	}
  2007  
  2008  	for _, s := range dwarfp {
  2009  		if s.Sect != nil {
  2010  			s.Value += int64(s.Sect.Vaddr)
  2011  		}
  2012  		for sub := s.Sub; sub != nil; sub = sub.Sub {
  2013  			sub.Value += s.Value
  2014  		}
  2015  	}
  2016  
  2017  	if ctxt.BuildMode == BuildModeShared {
  2018  		s := ctxt.Syms.Lookup("go.link.abihashbytes", 0)
  2019  		sectSym := ctxt.Syms.Lookup(".note.go.abihash", 0)
  2020  		s.Sect = sectSym.Sect
  2021  		s.Value = int64(sectSym.Sect.Vaddr + 16)
  2022  	}
  2023  
  2024  	ctxt.xdefine("runtime.text", sym.STEXT, int64(text.Vaddr))
  2025  	ctxt.xdefine("runtime.etext", sym.STEXT, int64(lasttext.Vaddr+lasttext.Length))
  2026  
  2027  	// If there are multiple text sections, create runtime.text.n for
  2028  	// their section Vaddr, using n for index
  2029  	n := 1
  2030  	for _, sect := range Segtext.Sections[1:] {
  2031  		if sect.Name == ".text" {
  2032  			symname := fmt.Sprintf("runtime.text.%d", n)
  2033  			ctxt.xdefine(symname, sym.STEXT, int64(sect.Vaddr))
  2034  			n++
  2035  		} else {
  2036  			break
  2037  		}
  2038  	}
  2039  
  2040  	ctxt.xdefine("runtime.rodata", sym.SRODATA, int64(rodata.Vaddr))
  2041  	ctxt.xdefine("runtime.erodata", sym.SRODATA, int64(rodata.Vaddr+rodata.Length))
  2042  	ctxt.xdefine("runtime.types", sym.SRODATA, int64(types.Vaddr))
  2043  	ctxt.xdefine("runtime.etypes", sym.SRODATA, int64(types.Vaddr+types.Length))
  2044  	ctxt.xdefine("runtime.itablink", sym.SRODATA, int64(itablink.Vaddr))
  2045  	ctxt.xdefine("runtime.eitablink", sym.SRODATA, int64(itablink.Vaddr+itablink.Length))
  2046  
  2047  	s := ctxt.Syms.Lookup("runtime.gcdata", 0)
  2048  	s.Attr |= sym.AttrLocal
  2049  	ctxt.xdefine("runtime.egcdata", sym.SRODATA, Symaddr(s)+s.Size)
  2050  	ctxt.Syms.Lookup("runtime.egcdata", 0).Sect = s.Sect
  2051  
  2052  	s = ctxt.Syms.Lookup("runtime.gcbss", 0)
  2053  	s.Attr |= sym.AttrLocal
  2054  	ctxt.xdefine("runtime.egcbss", sym.SRODATA, Symaddr(s)+s.Size)
  2055  	ctxt.Syms.Lookup("runtime.egcbss", 0).Sect = s.Sect
  2056  
  2057  	ctxt.xdefine("runtime.symtab", sym.SRODATA, int64(symtab.Vaddr))
  2058  	ctxt.xdefine("runtime.esymtab", sym.SRODATA, int64(symtab.Vaddr+symtab.Length))
  2059  	ctxt.xdefine("runtime.pclntab", sym.SRODATA, int64(pclntab.Vaddr))
  2060  	ctxt.xdefine("runtime.epclntab", sym.SRODATA, int64(pclntab.Vaddr+pclntab.Length))
  2061  	ctxt.xdefine("runtime.noptrdata", sym.SNOPTRDATA, int64(noptr.Vaddr))
  2062  	ctxt.xdefine("runtime.enoptrdata", sym.SNOPTRDATA, int64(noptr.Vaddr+noptr.Length))
  2063  	ctxt.xdefine("runtime.bss", sym.SBSS, int64(bss.Vaddr))
  2064  	ctxt.xdefine("runtime.ebss", sym.SBSS, int64(bss.Vaddr+bss.Length))
  2065  	ctxt.xdefine("runtime.data", sym.SDATA, int64(data.Vaddr))
  2066  	ctxt.xdefine("runtime.edata", sym.SDATA, int64(data.Vaddr+data.Length))
  2067  	ctxt.xdefine("runtime.noptrbss", sym.SNOPTRBSS, int64(noptrbss.Vaddr))
  2068  	ctxt.xdefine("runtime.enoptrbss", sym.SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length))
  2069  	ctxt.xdefine("runtime.end", sym.SBSS, int64(Segdata.Vaddr+Segdata.Length))
  2070  }
  2071  
  2072  // add a trampoline with symbol s (to be laid down after the current function)
  2073  func (ctxt *Link) AddTramp(s *sym.Symbol) {
  2074  	s.Type = sym.STEXT
  2075  	s.Attr |= sym.AttrReachable
  2076  	s.Attr |= sym.AttrOnList
  2077  	ctxt.tramps = append(ctxt.tramps, s)
  2078  	if *FlagDebugTramp > 0 && ctxt.Debugvlog > 0 {
  2079  		ctxt.Logf("trampoline %s inserted\n", s)
  2080  	}
  2081  }