github.com/mattn/go@v0.0.0-20171011075504-07f7db3ea99f/src/image/jpeg/scan.go (about) 1 // Copyright 2012 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package jpeg 6 7 import ( 8 "image" 9 ) 10 11 // makeImg allocates and initializes the destination image. 12 func (d *decoder) makeImg(mxx, myy int) { 13 if d.nComp == 1 { 14 m := image.NewGray(image.Rect(0, 0, 8*mxx, 8*myy)) 15 d.img1 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.Gray) 16 return 17 } 18 19 h0 := d.comp[0].h 20 v0 := d.comp[0].v 21 hRatio := h0 / d.comp[1].h 22 vRatio := v0 / d.comp[1].v 23 var subsampleRatio image.YCbCrSubsampleRatio 24 switch hRatio<<4 | vRatio { 25 case 0x11: 26 subsampleRatio = image.YCbCrSubsampleRatio444 27 case 0x12: 28 subsampleRatio = image.YCbCrSubsampleRatio440 29 case 0x21: 30 subsampleRatio = image.YCbCrSubsampleRatio422 31 case 0x22: 32 subsampleRatio = image.YCbCrSubsampleRatio420 33 case 0x41: 34 subsampleRatio = image.YCbCrSubsampleRatio411 35 case 0x42: 36 subsampleRatio = image.YCbCrSubsampleRatio410 37 default: 38 panic("unreachable") 39 } 40 m := image.NewYCbCr(image.Rect(0, 0, 8*h0*mxx, 8*v0*myy), subsampleRatio) 41 d.img3 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.YCbCr) 42 43 if d.nComp == 4 { 44 h3, v3 := d.comp[3].h, d.comp[3].v 45 d.blackPix = make([]byte, 8*h3*mxx*8*v3*myy) 46 d.blackStride = 8 * h3 * mxx 47 } 48 } 49 50 // Specified in section B.2.3. 51 func (d *decoder) processSOS(n int) error { 52 if d.nComp == 0 { 53 return FormatError("missing SOF marker") 54 } 55 if n < 6 || 4+2*d.nComp < n || n%2 != 0 { 56 return FormatError("SOS has wrong length") 57 } 58 if err := d.readFull(d.tmp[:n]); err != nil { 59 return err 60 } 61 nComp := int(d.tmp[0]) 62 if n != 4+2*nComp { 63 return FormatError("SOS length inconsistent with number of components") 64 } 65 var scan [maxComponents]struct { 66 compIndex uint8 67 td uint8 // DC table selector. 68 ta uint8 // AC table selector. 69 } 70 totalHV := 0 71 for i := 0; i < nComp; i++ { 72 cs := d.tmp[1+2*i] // Component selector. 73 compIndex := -1 74 for j, comp := range d.comp[:d.nComp] { 75 if cs == comp.c { 76 compIndex = j 77 } 78 } 79 if compIndex < 0 { 80 return FormatError("unknown component selector") 81 } 82 scan[i].compIndex = uint8(compIndex) 83 // Section B.2.3 states that "the value of Cs_j shall be different from 84 // the values of Cs_1 through Cs_(j-1)". Since we have previously 85 // verified that a frame's component identifiers (C_i values in section 86 // B.2.2) are unique, it suffices to check that the implicit indexes 87 // into d.comp are unique. 88 for j := 0; j < i; j++ { 89 if scan[i].compIndex == scan[j].compIndex { 90 return FormatError("repeated component selector") 91 } 92 } 93 totalHV += d.comp[compIndex].h * d.comp[compIndex].v 94 95 // The baseline t <= 1 restriction is specified in table B.3. 96 scan[i].td = d.tmp[2+2*i] >> 4 97 if t := scan[i].td; t > maxTh || (d.baseline && t > 1) { 98 return FormatError("bad Td value") 99 } 100 scan[i].ta = d.tmp[2+2*i] & 0x0f 101 if t := scan[i].ta; t > maxTh || (d.baseline && t > 1) { 102 return FormatError("bad Ta value") 103 } 104 } 105 // Section B.2.3 states that if there is more than one component then the 106 // total H*V values in a scan must be <= 10. 107 if d.nComp > 1 && totalHV > 10 { 108 return FormatError("total sampling factors too large") 109 } 110 111 // zigStart and zigEnd are the spectral selection bounds. 112 // ah and al are the successive approximation high and low values. 113 // The spec calls these values Ss, Se, Ah and Al. 114 // 115 // For progressive JPEGs, these are the two more-or-less independent 116 // aspects of progression. Spectral selection progression is when not 117 // all of a block's 64 DCT coefficients are transmitted in one pass. 118 // For example, three passes could transmit coefficient 0 (the DC 119 // component), coefficients 1-5, and coefficients 6-63, in zig-zag 120 // order. Successive approximation is when not all of the bits of a 121 // band of coefficients are transmitted in one pass. For example, 122 // three passes could transmit the 6 most significant bits, followed 123 // by the second-least significant bit, followed by the least 124 // significant bit. 125 // 126 // For sequential JPEGs, these parameters are hard-coded to 0/63/0/0, as 127 // per table B.3. 128 zigStart, zigEnd, ah, al := int32(0), int32(blockSize-1), uint32(0), uint32(0) 129 if d.progressive { 130 zigStart = int32(d.tmp[1+2*nComp]) 131 zigEnd = int32(d.tmp[2+2*nComp]) 132 ah = uint32(d.tmp[3+2*nComp] >> 4) 133 al = uint32(d.tmp[3+2*nComp] & 0x0f) 134 if (zigStart == 0 && zigEnd != 0) || zigStart > zigEnd || blockSize <= zigEnd { 135 return FormatError("bad spectral selection bounds") 136 } 137 if zigStart != 0 && nComp != 1 { 138 return FormatError("progressive AC coefficients for more than one component") 139 } 140 if ah != 0 && ah != al+1 { 141 return FormatError("bad successive approximation values") 142 } 143 } 144 145 // mxx and myy are the number of MCUs (Minimum Coded Units) in the image. 146 h0, v0 := d.comp[0].h, d.comp[0].v // The h and v values from the Y components. 147 mxx := (d.width + 8*h0 - 1) / (8 * h0) 148 myy := (d.height + 8*v0 - 1) / (8 * v0) 149 if d.img1 == nil && d.img3 == nil { 150 d.makeImg(mxx, myy) 151 } 152 if d.progressive { 153 for i := 0; i < nComp; i++ { 154 compIndex := scan[i].compIndex 155 if d.progCoeffs[compIndex] == nil { 156 d.progCoeffs[compIndex] = make([]block, mxx*myy*d.comp[compIndex].h*d.comp[compIndex].v) 157 } 158 } 159 } 160 161 d.bits = bits{} 162 mcu, expectedRST := 0, uint8(rst0Marker) 163 var ( 164 // b is the decoded coefficients, in natural (not zig-zag) order. 165 b block 166 dc [maxComponents]int32 167 // bx and by are the location of the current block, in units of 8x8 168 // blocks: the third block in the first row has (bx, by) = (2, 0). 169 bx, by int 170 blockCount int 171 ) 172 for my := 0; my < myy; my++ { 173 for mx := 0; mx < mxx; mx++ { 174 for i := 0; i < nComp; i++ { 175 compIndex := scan[i].compIndex 176 hi := d.comp[compIndex].h 177 vi := d.comp[compIndex].v 178 for j := 0; j < hi*vi; j++ { 179 // The blocks are traversed one MCU at a time. For 4:2:0 chroma 180 // subsampling, there are four Y 8x8 blocks in every 16x16 MCU. 181 // 182 // For a sequential 32x16 pixel image, the Y blocks visiting order is: 183 // 0 1 4 5 184 // 2 3 6 7 185 // 186 // For progressive images, the interleaved scans (those with nComp > 1) 187 // are traversed as above, but non-interleaved scans are traversed left 188 // to right, top to bottom: 189 // 0 1 2 3 190 // 4 5 6 7 191 // Only DC scans (zigStart == 0) can be interleaved. AC scans must have 192 // only one component. 193 // 194 // To further complicate matters, for non-interleaved scans, there is no 195 // data for any blocks that are inside the image at the MCU level but 196 // outside the image at the pixel level. For example, a 24x16 pixel 4:2:0 197 // progressive image consists of two 16x16 MCUs. The interleaved scans 198 // will process 8 Y blocks: 199 // 0 1 4 5 200 // 2 3 6 7 201 // The non-interleaved scans will process only 6 Y blocks: 202 // 0 1 2 203 // 3 4 5 204 if nComp != 1 { 205 bx = hi*mx + j%hi 206 by = vi*my + j/hi 207 } else { 208 q := mxx * hi 209 bx = blockCount % q 210 by = blockCount / q 211 blockCount++ 212 if bx*8 >= d.width || by*8 >= d.height { 213 continue 214 } 215 } 216 217 // Load the previous partially decoded coefficients, if applicable. 218 if d.progressive { 219 b = d.progCoeffs[compIndex][by*mxx*hi+bx] 220 } else { 221 b = block{} 222 } 223 224 if ah != 0 { 225 if err := d.refine(&b, &d.huff[acTable][scan[i].ta], zigStart, zigEnd, 1<<al); err != nil { 226 return err 227 } 228 } else { 229 zig := zigStart 230 if zig == 0 { 231 zig++ 232 // Decode the DC coefficient, as specified in section F.2.2.1. 233 value, err := d.decodeHuffman(&d.huff[dcTable][scan[i].td]) 234 if err != nil { 235 return err 236 } 237 if value > 16 { 238 return UnsupportedError("excessive DC component") 239 } 240 dcDelta, err := d.receiveExtend(value) 241 if err != nil { 242 return err 243 } 244 dc[compIndex] += dcDelta 245 b[0] = dc[compIndex] << al 246 } 247 248 if zig <= zigEnd && d.eobRun > 0 { 249 d.eobRun-- 250 } else { 251 // Decode the AC coefficients, as specified in section F.2.2.2. 252 huff := &d.huff[acTable][scan[i].ta] 253 for ; zig <= zigEnd; zig++ { 254 value, err := d.decodeHuffman(huff) 255 if err != nil { 256 return err 257 } 258 val0 := value >> 4 259 val1 := value & 0x0f 260 if val1 != 0 { 261 zig += int32(val0) 262 if zig > zigEnd { 263 break 264 } 265 ac, err := d.receiveExtend(val1) 266 if err != nil { 267 return err 268 } 269 b[unzig[zig]] = ac << al 270 } else { 271 if val0 != 0x0f { 272 d.eobRun = uint16(1 << val0) 273 if val0 != 0 { 274 bits, err := d.decodeBits(int32(val0)) 275 if err != nil { 276 return err 277 } 278 d.eobRun |= uint16(bits) 279 } 280 d.eobRun-- 281 break 282 } 283 zig += 0x0f 284 } 285 } 286 } 287 } 288 289 if d.progressive { 290 // Save the coefficients. 291 d.progCoeffs[compIndex][by*mxx*hi+bx] = b 292 // At this point, we could call reconstructBlock to dequantize and perform the 293 // inverse DCT, to save early stages of a progressive image to the *image.YCbCr 294 // buffers (the whole point of progressive encoding), but in Go, the jpeg.Decode 295 // function does not return until the entire image is decoded, so we "continue" 296 // here to avoid wasted computation. Instead, reconstructBlock is called on each 297 // accumulated block by the reconstructProgressiveImage method after all of the 298 // SOS markers are processed. 299 continue 300 } 301 if err := d.reconstructBlock(&b, bx, by, int(compIndex)); err != nil { 302 return err 303 } 304 } // for j 305 } // for i 306 mcu++ 307 if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy { 308 // A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input, 309 // but this one assumes well-formed input, and hence the restart marker follows immediately. 310 if err := d.readFull(d.tmp[:2]); err != nil { 311 return err 312 } 313 if d.tmp[0] != 0xff || d.tmp[1] != expectedRST { 314 return FormatError("bad RST marker") 315 } 316 expectedRST++ 317 if expectedRST == rst7Marker+1 { 318 expectedRST = rst0Marker 319 } 320 // Reset the Huffman decoder. 321 d.bits = bits{} 322 // Reset the DC components, as per section F.2.1.3.1. 323 dc = [maxComponents]int32{} 324 // Reset the progressive decoder state, as per section G.1.2.2. 325 d.eobRun = 0 326 } 327 } // for mx 328 } // for my 329 330 return nil 331 } 332 333 // refine decodes a successive approximation refinement block, as specified in 334 // section G.1.2. 335 func (d *decoder) refine(b *block, h *huffman, zigStart, zigEnd, delta int32) error { 336 // Refining a DC component is trivial. 337 if zigStart == 0 { 338 if zigEnd != 0 { 339 panic("unreachable") 340 } 341 bit, err := d.decodeBit() 342 if err != nil { 343 return err 344 } 345 if bit { 346 b[0] |= delta 347 } 348 return nil 349 } 350 351 // Refining AC components is more complicated; see sections G.1.2.2 and G.1.2.3. 352 zig := zigStart 353 if d.eobRun == 0 { 354 loop: 355 for ; zig <= zigEnd; zig++ { 356 z := int32(0) 357 value, err := d.decodeHuffman(h) 358 if err != nil { 359 return err 360 } 361 val0 := value >> 4 362 val1 := value & 0x0f 363 364 switch val1 { 365 case 0: 366 if val0 != 0x0f { 367 d.eobRun = uint16(1 << val0) 368 if val0 != 0 { 369 bits, err := d.decodeBits(int32(val0)) 370 if err != nil { 371 return err 372 } 373 d.eobRun |= uint16(bits) 374 } 375 break loop 376 } 377 case 1: 378 z = delta 379 bit, err := d.decodeBit() 380 if err != nil { 381 return err 382 } 383 if !bit { 384 z = -z 385 } 386 default: 387 return FormatError("unexpected Huffman code") 388 } 389 390 zig, err = d.refineNonZeroes(b, zig, zigEnd, int32(val0), delta) 391 if err != nil { 392 return err 393 } 394 if zig > zigEnd { 395 return FormatError("too many coefficients") 396 } 397 if z != 0 { 398 b[unzig[zig]] = z 399 } 400 } 401 } 402 if d.eobRun > 0 { 403 d.eobRun-- 404 if _, err := d.refineNonZeroes(b, zig, zigEnd, -1, delta); err != nil { 405 return err 406 } 407 } 408 return nil 409 } 410 411 // refineNonZeroes refines non-zero entries of b in zig-zag order. If nz >= 0, 412 // the first nz zero entries are skipped over. 413 func (d *decoder) refineNonZeroes(b *block, zig, zigEnd, nz, delta int32) (int32, error) { 414 for ; zig <= zigEnd; zig++ { 415 u := unzig[zig] 416 if b[u] == 0 { 417 if nz == 0 { 418 break 419 } 420 nz-- 421 continue 422 } 423 bit, err := d.decodeBit() 424 if err != nil { 425 return 0, err 426 } 427 if !bit { 428 continue 429 } 430 if b[u] >= 0 { 431 b[u] += delta 432 } else { 433 b[u] -= delta 434 } 435 } 436 return zig, nil 437 } 438 439 func (d *decoder) reconstructProgressiveImage() error { 440 // The h0, mxx, by and bx variables have the same meaning as in the 441 // processSOS method. 442 h0 := d.comp[0].h 443 mxx := (d.width + 8*h0 - 1) / (8 * h0) 444 for i := 0; i < d.nComp; i++ { 445 if d.progCoeffs[i] == nil { 446 continue 447 } 448 v := 8 * d.comp[0].v / d.comp[i].v 449 h := 8 * d.comp[0].h / d.comp[i].h 450 stride := mxx * d.comp[i].h 451 for by := 0; by*v < d.height; by++ { 452 for bx := 0; bx*h < d.width; bx++ { 453 if err := d.reconstructBlock(&d.progCoeffs[i][by*stride+bx], bx, by, i); err != nil { 454 return err 455 } 456 } 457 } 458 } 459 return nil 460 } 461 462 // reconstructBlock dequantizes, performs the inverse DCT and stores the block 463 // to the image. 464 func (d *decoder) reconstructBlock(b *block, bx, by, compIndex int) error { 465 qt := &d.quant[d.comp[compIndex].tq] 466 for zig := 0; zig < blockSize; zig++ { 467 b[unzig[zig]] *= qt[zig] 468 } 469 idct(b) 470 dst, stride := []byte(nil), 0 471 if d.nComp == 1 { 472 dst, stride = d.img1.Pix[8*(by*d.img1.Stride+bx):], d.img1.Stride 473 } else { 474 switch compIndex { 475 case 0: 476 dst, stride = d.img3.Y[8*(by*d.img3.YStride+bx):], d.img3.YStride 477 case 1: 478 dst, stride = d.img3.Cb[8*(by*d.img3.CStride+bx):], d.img3.CStride 479 case 2: 480 dst, stride = d.img3.Cr[8*(by*d.img3.CStride+bx):], d.img3.CStride 481 case 3: 482 dst, stride = d.blackPix[8*(by*d.blackStride+bx):], d.blackStride 483 default: 484 return UnsupportedError("too many components") 485 } 486 } 487 // Level shift by +128, clip to [0, 255], and write to dst. 488 for y := 0; y < 8; y++ { 489 y8 := y * 8 490 yStride := y * stride 491 for x := 0; x < 8; x++ { 492 c := b[y8+x] 493 if c < -128 { 494 c = 0 495 } else if c > 127 { 496 c = 255 497 } else { 498 c += 128 499 } 500 dst[yStride+x] = uint8(c) 501 } 502 } 503 return nil 504 }