github.com/mattn/go@v0.0.0-20171011075504-07f7db3ea99f/src/math/big/int.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements signed multi-precision integers.
     6  
     7  package big
     8  
     9  import (
    10  	"fmt"
    11  	"io"
    12  	"math/rand"
    13  	"strings"
    14  )
    15  
    16  // An Int represents a signed multi-precision integer.
    17  // The zero value for an Int represents the value 0.
    18  type Int struct {
    19  	neg bool // sign
    20  	abs nat  // absolute value of the integer
    21  }
    22  
    23  var intOne = &Int{false, natOne}
    24  
    25  // Sign returns:
    26  //
    27  //	-1 if x <  0
    28  //	 0 if x == 0
    29  //	+1 if x >  0
    30  //
    31  func (x *Int) Sign() int {
    32  	if len(x.abs) == 0 {
    33  		return 0
    34  	}
    35  	if x.neg {
    36  		return -1
    37  	}
    38  	return 1
    39  }
    40  
    41  // SetInt64 sets z to x and returns z.
    42  func (z *Int) SetInt64(x int64) *Int {
    43  	neg := false
    44  	if x < 0 {
    45  		neg = true
    46  		x = -x
    47  	}
    48  	z.abs = z.abs.setUint64(uint64(x))
    49  	z.neg = neg
    50  	return z
    51  }
    52  
    53  // SetUint64 sets z to x and returns z.
    54  func (z *Int) SetUint64(x uint64) *Int {
    55  	z.abs = z.abs.setUint64(x)
    56  	z.neg = false
    57  	return z
    58  }
    59  
    60  // NewInt allocates and returns a new Int set to x.
    61  func NewInt(x int64) *Int {
    62  	return new(Int).SetInt64(x)
    63  }
    64  
    65  // Set sets z to x and returns z.
    66  func (z *Int) Set(x *Int) *Int {
    67  	if z != x {
    68  		z.abs = z.abs.set(x.abs)
    69  		z.neg = x.neg
    70  	}
    71  	return z
    72  }
    73  
    74  // Bits provides raw (unchecked but fast) access to x by returning its
    75  // absolute value as a little-endian Word slice. The result and x share
    76  // the same underlying array.
    77  // Bits is intended to support implementation of missing low-level Int
    78  // functionality outside this package; it should be avoided otherwise.
    79  func (x *Int) Bits() []Word {
    80  	return x.abs
    81  }
    82  
    83  // SetBits provides raw (unchecked but fast) access to z by setting its
    84  // value to abs, interpreted as a little-endian Word slice, and returning
    85  // z. The result and abs share the same underlying array.
    86  // SetBits is intended to support implementation of missing low-level Int
    87  // functionality outside this package; it should be avoided otherwise.
    88  func (z *Int) SetBits(abs []Word) *Int {
    89  	z.abs = nat(abs).norm()
    90  	z.neg = false
    91  	return z
    92  }
    93  
    94  // Abs sets z to |x| (the absolute value of x) and returns z.
    95  func (z *Int) Abs(x *Int) *Int {
    96  	z.Set(x)
    97  	z.neg = false
    98  	return z
    99  }
   100  
   101  // Neg sets z to -x and returns z.
   102  func (z *Int) Neg(x *Int) *Int {
   103  	z.Set(x)
   104  	z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign
   105  	return z
   106  }
   107  
   108  // Add sets z to the sum x+y and returns z.
   109  func (z *Int) Add(x, y *Int) *Int {
   110  	neg := x.neg
   111  	if x.neg == y.neg {
   112  		// x + y == x + y
   113  		// (-x) + (-y) == -(x + y)
   114  		z.abs = z.abs.add(x.abs, y.abs)
   115  	} else {
   116  		// x + (-y) == x - y == -(y - x)
   117  		// (-x) + y == y - x == -(x - y)
   118  		if x.abs.cmp(y.abs) >= 0 {
   119  			z.abs = z.abs.sub(x.abs, y.abs)
   120  		} else {
   121  			neg = !neg
   122  			z.abs = z.abs.sub(y.abs, x.abs)
   123  		}
   124  	}
   125  	z.neg = len(z.abs) > 0 && neg // 0 has no sign
   126  	return z
   127  }
   128  
   129  // Sub sets z to the difference x-y and returns z.
   130  func (z *Int) Sub(x, y *Int) *Int {
   131  	neg := x.neg
   132  	if x.neg != y.neg {
   133  		// x - (-y) == x + y
   134  		// (-x) - y == -(x + y)
   135  		z.abs = z.abs.add(x.abs, y.abs)
   136  	} else {
   137  		// x - y == x - y == -(y - x)
   138  		// (-x) - (-y) == y - x == -(x - y)
   139  		if x.abs.cmp(y.abs) >= 0 {
   140  			z.abs = z.abs.sub(x.abs, y.abs)
   141  		} else {
   142  			neg = !neg
   143  			z.abs = z.abs.sub(y.abs, x.abs)
   144  		}
   145  	}
   146  	z.neg = len(z.abs) > 0 && neg // 0 has no sign
   147  	return z
   148  }
   149  
   150  // Mul sets z to the product x*y and returns z.
   151  func (z *Int) Mul(x, y *Int) *Int {
   152  	// x * y == x * y
   153  	// x * (-y) == -(x * y)
   154  	// (-x) * y == -(x * y)
   155  	// (-x) * (-y) == x * y
   156  	if x == y {
   157  		z.abs = z.abs.sqr(x.abs)
   158  		z.neg = false
   159  		return z
   160  	}
   161  	z.abs = z.abs.mul(x.abs, y.abs)
   162  	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
   163  	return z
   164  }
   165  
   166  // MulRange sets z to the product of all integers
   167  // in the range [a, b] inclusively and returns z.
   168  // If a > b (empty range), the result is 1.
   169  func (z *Int) MulRange(a, b int64) *Int {
   170  	switch {
   171  	case a > b:
   172  		return z.SetInt64(1) // empty range
   173  	case a <= 0 && b >= 0:
   174  		return z.SetInt64(0) // range includes 0
   175  	}
   176  	// a <= b && (b < 0 || a > 0)
   177  
   178  	neg := false
   179  	if a < 0 {
   180  		neg = (b-a)&1 == 0
   181  		a, b = -b, -a
   182  	}
   183  
   184  	z.abs = z.abs.mulRange(uint64(a), uint64(b))
   185  	z.neg = neg
   186  	return z
   187  }
   188  
   189  // Binomial sets z to the binomial coefficient of (n, k) and returns z.
   190  func (z *Int) Binomial(n, k int64) *Int {
   191  	// reduce the number of multiplications by reducing k
   192  	if n/2 < k && k <= n {
   193  		k = n - k // Binomial(n, k) == Binomial(n, n-k)
   194  	}
   195  	var a, b Int
   196  	a.MulRange(n-k+1, n)
   197  	b.MulRange(1, k)
   198  	return z.Quo(&a, &b)
   199  }
   200  
   201  // Quo sets z to the quotient x/y for y != 0 and returns z.
   202  // If y == 0, a division-by-zero run-time panic occurs.
   203  // Quo implements truncated division (like Go); see QuoRem for more details.
   204  func (z *Int) Quo(x, y *Int) *Int {
   205  	z.abs, _ = z.abs.div(nil, x.abs, y.abs)
   206  	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
   207  	return z
   208  }
   209  
   210  // Rem sets z to the remainder x%y for y != 0 and returns z.
   211  // If y == 0, a division-by-zero run-time panic occurs.
   212  // Rem implements truncated modulus (like Go); see QuoRem for more details.
   213  func (z *Int) Rem(x, y *Int) *Int {
   214  	_, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
   215  	z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
   216  	return z
   217  }
   218  
   219  // QuoRem sets z to the quotient x/y and r to the remainder x%y
   220  // and returns the pair (z, r) for y != 0.
   221  // If y == 0, a division-by-zero run-time panic occurs.
   222  //
   223  // QuoRem implements T-division and modulus (like Go):
   224  //
   225  //	q = x/y      with the result truncated to zero
   226  //	r = x - y*q
   227  //
   228  // (See Daan Leijen, ``Division and Modulus for Computer Scientists''.)
   229  // See DivMod for Euclidean division and modulus (unlike Go).
   230  //
   231  func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
   232  	z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
   233  	z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
   234  	return z, r
   235  }
   236  
   237  // Div sets z to the quotient x/y for y != 0 and returns z.
   238  // If y == 0, a division-by-zero run-time panic occurs.
   239  // Div implements Euclidean division (unlike Go); see DivMod for more details.
   240  func (z *Int) Div(x, y *Int) *Int {
   241  	y_neg := y.neg // z may be an alias for y
   242  	var r Int
   243  	z.QuoRem(x, y, &r)
   244  	if r.neg {
   245  		if y_neg {
   246  			z.Add(z, intOne)
   247  		} else {
   248  			z.Sub(z, intOne)
   249  		}
   250  	}
   251  	return z
   252  }
   253  
   254  // Mod sets z to the modulus x%y for y != 0 and returns z.
   255  // If y == 0, a division-by-zero run-time panic occurs.
   256  // Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
   257  func (z *Int) Mod(x, y *Int) *Int {
   258  	y0 := y // save y
   259  	if z == y || alias(z.abs, y.abs) {
   260  		y0 = new(Int).Set(y)
   261  	}
   262  	var q Int
   263  	q.QuoRem(x, y, z)
   264  	if z.neg {
   265  		if y0.neg {
   266  			z.Sub(z, y0)
   267  		} else {
   268  			z.Add(z, y0)
   269  		}
   270  	}
   271  	return z
   272  }
   273  
   274  // DivMod sets z to the quotient x div y and m to the modulus x mod y
   275  // and returns the pair (z, m) for y != 0.
   276  // If y == 0, a division-by-zero run-time panic occurs.
   277  //
   278  // DivMod implements Euclidean division and modulus (unlike Go):
   279  //
   280  //	q = x div y  such that
   281  //	m = x - y*q  with 0 <= m < |y|
   282  //
   283  // (See Raymond T. Boute, ``The Euclidean definition of the functions
   284  // div and mod''. ACM Transactions on Programming Languages and
   285  // Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
   286  // ACM press.)
   287  // See QuoRem for T-division and modulus (like Go).
   288  //
   289  func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
   290  	y0 := y // save y
   291  	if z == y || alias(z.abs, y.abs) {
   292  		y0 = new(Int).Set(y)
   293  	}
   294  	z.QuoRem(x, y, m)
   295  	if m.neg {
   296  		if y0.neg {
   297  			z.Add(z, intOne)
   298  			m.Sub(m, y0)
   299  		} else {
   300  			z.Sub(z, intOne)
   301  			m.Add(m, y0)
   302  		}
   303  	}
   304  	return z, m
   305  }
   306  
   307  // Cmp compares x and y and returns:
   308  //
   309  //   -1 if x <  y
   310  //    0 if x == y
   311  //   +1 if x >  y
   312  //
   313  func (x *Int) Cmp(y *Int) (r int) {
   314  	// x cmp y == x cmp y
   315  	// x cmp (-y) == x
   316  	// (-x) cmp y == y
   317  	// (-x) cmp (-y) == -(x cmp y)
   318  	switch {
   319  	case x.neg == y.neg:
   320  		r = x.abs.cmp(y.abs)
   321  		if x.neg {
   322  			r = -r
   323  		}
   324  	case x.neg:
   325  		r = -1
   326  	default:
   327  		r = 1
   328  	}
   329  	return
   330  }
   331  
   332  // low32 returns the least significant 32 bits of x.
   333  func low32(x nat) uint32 {
   334  	if len(x) == 0 {
   335  		return 0
   336  	}
   337  	return uint32(x[0])
   338  }
   339  
   340  // low64 returns the least significant 64 bits of x.
   341  func low64(x nat) uint64 {
   342  	if len(x) == 0 {
   343  		return 0
   344  	}
   345  	v := uint64(x[0])
   346  	if _W == 32 && len(x) > 1 {
   347  		return uint64(x[1])<<32 | v
   348  	}
   349  	return v
   350  }
   351  
   352  // Int64 returns the int64 representation of x.
   353  // If x cannot be represented in an int64, the result is undefined.
   354  func (x *Int) Int64() int64 {
   355  	v := int64(low64(x.abs))
   356  	if x.neg {
   357  		v = -v
   358  	}
   359  	return v
   360  }
   361  
   362  // Uint64 returns the uint64 representation of x.
   363  // If x cannot be represented in a uint64, the result is undefined.
   364  func (x *Int) Uint64() uint64 {
   365  	return low64(x.abs)
   366  }
   367  
   368  // IsInt64 reports whether x can be represented as an int64.
   369  func (x *Int) IsInt64() bool {
   370  	if len(x.abs) <= 64/_W {
   371  		w := int64(low64(x.abs))
   372  		return w >= 0 || x.neg && w == -w
   373  	}
   374  	return false
   375  }
   376  
   377  // IsUint64 reports whether x can be represented as a uint64.
   378  func (x *Int) IsUint64() bool {
   379  	return !x.neg && len(x.abs) <= 64/_W
   380  }
   381  
   382  // SetString sets z to the value of s, interpreted in the given base,
   383  // and returns z and a boolean indicating success. The entire string
   384  // (not just a prefix) must be valid for success. If SetString fails,
   385  // the value of z is undefined but the returned value is nil.
   386  //
   387  // The base argument must be 0 or a value between 2 and MaxBase. If the base
   388  // is 0, the string prefix determines the actual conversion base. A prefix of
   389  // ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
   390  // ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
   391  //
   392  // For bases <= 36, lower and upper case letters are considered the same:
   393  // The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35.
   394  // For bases > 36, the upper case letters 'A' to 'Z' represent the digit
   395  // values 36 to 61.
   396  //
   397  func (z *Int) SetString(s string, base int) (*Int, bool) {
   398  	return z.setFromScanner(strings.NewReader(s), base)
   399  }
   400  
   401  // setFromScanner implements SetString given an io.BytesScanner.
   402  // For documentation see comments of SetString.
   403  func (z *Int) setFromScanner(r io.ByteScanner, base int) (*Int, bool) {
   404  	if _, _, err := z.scan(r, base); err != nil {
   405  		return nil, false
   406  	}
   407  	// entire content must have been consumed
   408  	if _, err := r.ReadByte(); err != io.EOF {
   409  		return nil, false
   410  	}
   411  	return z, true // err == io.EOF => scan consumed all content of r
   412  }
   413  
   414  // SetBytes interprets buf as the bytes of a big-endian unsigned
   415  // integer, sets z to that value, and returns z.
   416  func (z *Int) SetBytes(buf []byte) *Int {
   417  	z.abs = z.abs.setBytes(buf)
   418  	z.neg = false
   419  	return z
   420  }
   421  
   422  // Bytes returns the absolute value of x as a big-endian byte slice.
   423  func (x *Int) Bytes() []byte {
   424  	buf := make([]byte, len(x.abs)*_S)
   425  	return buf[x.abs.bytes(buf):]
   426  }
   427  
   428  // BitLen returns the length of the absolute value of x in bits.
   429  // The bit length of 0 is 0.
   430  func (x *Int) BitLen() int {
   431  	return x.abs.bitLen()
   432  }
   433  
   434  // Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
   435  // If y <= 0, the result is 1 mod |m|; if m == nil or m == 0, z = x**y.
   436  //
   437  // Modular exponentation of inputs of a particular size is not a
   438  // cryptographically constant-time operation.
   439  func (z *Int) Exp(x, y, m *Int) *Int {
   440  	// See Knuth, volume 2, section 4.6.3.
   441  	var yWords nat
   442  	if !y.neg {
   443  		yWords = y.abs
   444  	}
   445  	// y >= 0
   446  
   447  	var mWords nat
   448  	if m != nil {
   449  		mWords = m.abs // m.abs may be nil for m == 0
   450  	}
   451  
   452  	z.abs = z.abs.expNN(x.abs, yWords, mWords)
   453  	z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign
   454  	if z.neg && len(mWords) > 0 {
   455  		// make modulus result positive
   456  		z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m|
   457  		z.neg = false
   458  	}
   459  
   460  	return z
   461  }
   462  
   463  // GCD sets z to the greatest common divisor of a and b, which both must
   464  // be > 0, and returns z.
   465  // If x or y are not nil, GCD sets their value such that z = a*x + b*y.
   466  // If either a or b is <= 0, GCD sets z = x = y = 0.
   467  func (z *Int) GCD(x, y, a, b *Int) *Int {
   468  	if a.Sign() <= 0 || b.Sign() <= 0 {
   469  		z.SetInt64(0)
   470  		if x != nil {
   471  			x.SetInt64(0)
   472  		}
   473  		if y != nil {
   474  			y.SetInt64(0)
   475  		}
   476  		return z
   477  	}
   478  	if x == nil && y == nil {
   479  		return z.binaryGCD(a, b)
   480  	}
   481  
   482  	A := new(Int).Set(a)
   483  	B := new(Int).Set(b)
   484  
   485  	X := new(Int)
   486  	lastX := new(Int).SetInt64(1)
   487  
   488  	q := new(Int)
   489  	temp := new(Int)
   490  
   491  	r := new(Int)
   492  	for len(B.abs) > 0 {
   493  		q, r = q.QuoRem(A, B, r)
   494  
   495  		A, B, r = B, r, A
   496  
   497  		temp.Set(X)
   498  		X.Mul(X, q)
   499  		X.Sub(lastX, X)
   500  		lastX.Set(temp)
   501  	}
   502  
   503  	if x != nil {
   504  		*x = *lastX
   505  	}
   506  
   507  	if y != nil {
   508  		// y = (z - a*x)/b
   509  		y.Mul(a, lastX)
   510  		y.Sub(A, y)
   511  		y.Div(y, b)
   512  	}
   513  
   514  	*z = *A
   515  	return z
   516  }
   517  
   518  // binaryGCD sets z to the greatest common divisor of a and b, which both must
   519  // be > 0, and returns z.
   520  // See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm B.
   521  func (z *Int) binaryGCD(a, b *Int) *Int {
   522  	u := z
   523  	v := new(Int)
   524  
   525  	// use one Euclidean iteration to ensure that u and v are approx. the same size
   526  	switch {
   527  	case len(a.abs) > len(b.abs):
   528  		// must set v before u since u may be alias for a or b (was issue #11284)
   529  		v.Rem(a, b)
   530  		u.Set(b)
   531  	case len(a.abs) < len(b.abs):
   532  		v.Rem(b, a)
   533  		u.Set(a)
   534  	default:
   535  		v.Set(b)
   536  		u.Set(a)
   537  	}
   538  	// a, b must not be used anymore (may be aliases with u)
   539  
   540  	// v might be 0 now
   541  	if len(v.abs) == 0 {
   542  		return u
   543  	}
   544  	// u > 0 && v > 0
   545  
   546  	// determine largest k such that u = u' << k, v = v' << k
   547  	k := u.abs.trailingZeroBits()
   548  	if vk := v.abs.trailingZeroBits(); vk < k {
   549  		k = vk
   550  	}
   551  	u.Rsh(u, k)
   552  	v.Rsh(v, k)
   553  
   554  	// determine t (we know that u > 0)
   555  	t := new(Int)
   556  	if u.abs[0]&1 != 0 {
   557  		// u is odd
   558  		t.Neg(v)
   559  	} else {
   560  		t.Set(u)
   561  	}
   562  
   563  	for len(t.abs) > 0 {
   564  		// reduce t
   565  		t.Rsh(t, t.abs.trailingZeroBits())
   566  		if t.neg {
   567  			v, t = t, v
   568  			v.neg = len(v.abs) > 0 && !v.neg // 0 has no sign
   569  		} else {
   570  			u, t = t, u
   571  		}
   572  		t.Sub(u, v)
   573  	}
   574  
   575  	return z.Lsh(u, k)
   576  }
   577  
   578  // Rand sets z to a pseudo-random number in [0, n) and returns z.
   579  func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
   580  	z.neg = false
   581  	if n.neg || len(n.abs) == 0 {
   582  		z.abs = nil
   583  		return z
   584  	}
   585  	z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
   586  	return z
   587  }
   588  
   589  // ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ
   590  // and returns z. If g and n are not relatively prime, the result is undefined.
   591  func (z *Int) ModInverse(g, n *Int) *Int {
   592  	if g.neg {
   593  		// GCD expects parameters a and b to be > 0.
   594  		var g2 Int
   595  		g = g2.Mod(g, n)
   596  	}
   597  	var d Int
   598  	d.GCD(z, nil, g, n)
   599  	// x and y are such that g*x + n*y = d. Since g and n are
   600  	// relatively prime, d = 1. Taking that modulo n results in
   601  	// g*x = 1, therefore x is the inverse element.
   602  	if z.neg {
   603  		z.Add(z, n)
   604  	}
   605  	return z
   606  }
   607  
   608  // Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
   609  // The y argument must be an odd integer.
   610  func Jacobi(x, y *Int) int {
   611  	if len(y.abs) == 0 || y.abs[0]&1 == 0 {
   612  		panic(fmt.Sprintf("big: invalid 2nd argument to Int.Jacobi: need odd integer but got %s", y))
   613  	}
   614  
   615  	// We use the formulation described in chapter 2, section 2.4,
   616  	// "The Yacas Book of Algorithms":
   617  	// http://yacas.sourceforge.net/Algo.book.pdf
   618  
   619  	var a, b, c Int
   620  	a.Set(x)
   621  	b.Set(y)
   622  	j := 1
   623  
   624  	if b.neg {
   625  		if a.neg {
   626  			j = -1
   627  		}
   628  		b.neg = false
   629  	}
   630  
   631  	for {
   632  		if b.Cmp(intOne) == 0 {
   633  			return j
   634  		}
   635  		if len(a.abs) == 0 {
   636  			return 0
   637  		}
   638  		a.Mod(&a, &b)
   639  		if len(a.abs) == 0 {
   640  			return 0
   641  		}
   642  		// a > 0
   643  
   644  		// handle factors of 2 in 'a'
   645  		s := a.abs.trailingZeroBits()
   646  		if s&1 != 0 {
   647  			bmod8 := b.abs[0] & 7
   648  			if bmod8 == 3 || bmod8 == 5 {
   649  				j = -j
   650  			}
   651  		}
   652  		c.Rsh(&a, s) // a = 2^s*c
   653  
   654  		// swap numerator and denominator
   655  		if b.abs[0]&3 == 3 && c.abs[0]&3 == 3 {
   656  			j = -j
   657  		}
   658  		a.Set(&b)
   659  		b.Set(&c)
   660  	}
   661  }
   662  
   663  // modSqrt3Mod4 uses the identity
   664  //      (a^((p+1)/4))^2  mod p
   665  //   == u^(p+1)          mod p
   666  //   == u^2              mod p
   667  // to calculate the square root of any quadratic residue mod p quickly for 3
   668  // mod 4 primes.
   669  func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int {
   670  	z.Set(p)         // z = p
   671  	z.Add(z, intOne) // z = p + 1
   672  	z.Rsh(z, 2)      // z = (p + 1) / 4
   673  	z.Exp(x, z, p)   // z = x^z mod p
   674  	return z
   675  }
   676  
   677  // modSqrtTonelliShanks uses the Tonelli-Shanks algorithm to find the square
   678  // root of a quadratic residue modulo any prime.
   679  func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int {
   680  	// Break p-1 into s*2^e such that s is odd.
   681  	var s Int
   682  	s.Sub(p, intOne)
   683  	e := s.abs.trailingZeroBits()
   684  	s.Rsh(&s, e)
   685  
   686  	// find some non-square n
   687  	var n Int
   688  	n.SetInt64(2)
   689  	for Jacobi(&n, p) != -1 {
   690  		n.Add(&n, intOne)
   691  	}
   692  
   693  	// Core of the Tonelli-Shanks algorithm. Follows the description in
   694  	// section 6 of "Square roots from 1; 24, 51, 10 to Dan Shanks" by Ezra
   695  	// Brown:
   696  	// https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
   697  	var y, b, g, t Int
   698  	y.Add(&s, intOne)
   699  	y.Rsh(&y, 1)
   700  	y.Exp(x, &y, p)  // y = x^((s+1)/2)
   701  	b.Exp(x, &s, p)  // b = x^s
   702  	g.Exp(&n, &s, p) // g = n^s
   703  	r := e
   704  	for {
   705  		// find the least m such that ord_p(b) = 2^m
   706  		var m uint
   707  		t.Set(&b)
   708  		for t.Cmp(intOne) != 0 {
   709  			t.Mul(&t, &t).Mod(&t, p)
   710  			m++
   711  		}
   712  
   713  		if m == 0 {
   714  			return z.Set(&y)
   715  		}
   716  
   717  		t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p)
   718  		// t = g^(2^(r-m-1)) mod p
   719  		g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p
   720  		y.Mul(&y, &t).Mod(&y, p)
   721  		b.Mul(&b, &g).Mod(&b, p)
   722  		r = m
   723  	}
   724  }
   725  
   726  // ModSqrt sets z to a square root of x mod p if such a square root exists, and
   727  // returns z. The modulus p must be an odd prime. If x is not a square mod p,
   728  // ModSqrt leaves z unchanged and returns nil. This function panics if p is
   729  // not an odd integer.
   730  func (z *Int) ModSqrt(x, p *Int) *Int {
   731  	switch Jacobi(x, p) {
   732  	case -1:
   733  		return nil // x is not a square mod p
   734  	case 0:
   735  		return z.SetInt64(0) // sqrt(0) mod p = 0
   736  	case 1:
   737  		break
   738  	}
   739  	if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p
   740  		x = new(Int).Mod(x, p)
   741  	}
   742  
   743  	// Check whether p is 3 mod 4, and if so, use the faster algorithm.
   744  	if len(p.abs) > 0 && p.abs[0]%4 == 3 {
   745  		return z.modSqrt3Mod4Prime(x, p)
   746  	}
   747  	// Otherwise, use Tonelli-Shanks.
   748  	return z.modSqrtTonelliShanks(x, p)
   749  }
   750  
   751  // Lsh sets z = x << n and returns z.
   752  func (z *Int) Lsh(x *Int, n uint) *Int {
   753  	z.abs = z.abs.shl(x.abs, n)
   754  	z.neg = x.neg
   755  	return z
   756  }
   757  
   758  // Rsh sets z = x >> n and returns z.
   759  func (z *Int) Rsh(x *Int, n uint) *Int {
   760  	if x.neg {
   761  		// (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
   762  		t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
   763  		t = t.shr(t, n)
   764  		z.abs = t.add(t, natOne)
   765  		z.neg = true // z cannot be zero if x is negative
   766  		return z
   767  	}
   768  
   769  	z.abs = z.abs.shr(x.abs, n)
   770  	z.neg = false
   771  	return z
   772  }
   773  
   774  // Bit returns the value of the i'th bit of x. That is, it
   775  // returns (x>>i)&1. The bit index i must be >= 0.
   776  func (x *Int) Bit(i int) uint {
   777  	if i == 0 {
   778  		// optimization for common case: odd/even test of x
   779  		if len(x.abs) > 0 {
   780  			return uint(x.abs[0] & 1) // bit 0 is same for -x
   781  		}
   782  		return 0
   783  	}
   784  	if i < 0 {
   785  		panic("negative bit index")
   786  	}
   787  	if x.neg {
   788  		t := nat(nil).sub(x.abs, natOne)
   789  		return t.bit(uint(i)) ^ 1
   790  	}
   791  
   792  	return x.abs.bit(uint(i))
   793  }
   794  
   795  // SetBit sets z to x, with x's i'th bit set to b (0 or 1).
   796  // That is, if b is 1 SetBit sets z = x | (1 << i);
   797  // if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
   798  // SetBit will panic.
   799  func (z *Int) SetBit(x *Int, i int, b uint) *Int {
   800  	if i < 0 {
   801  		panic("negative bit index")
   802  	}
   803  	if x.neg {
   804  		t := z.abs.sub(x.abs, natOne)
   805  		t = t.setBit(t, uint(i), b^1)
   806  		z.abs = t.add(t, natOne)
   807  		z.neg = len(z.abs) > 0
   808  		return z
   809  	}
   810  	z.abs = z.abs.setBit(x.abs, uint(i), b)
   811  	z.neg = false
   812  	return z
   813  }
   814  
   815  // And sets z = x & y and returns z.
   816  func (z *Int) And(x, y *Int) *Int {
   817  	if x.neg == y.neg {
   818  		if x.neg {
   819  			// (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
   820  			x1 := nat(nil).sub(x.abs, natOne)
   821  			y1 := nat(nil).sub(y.abs, natOne)
   822  			z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
   823  			z.neg = true // z cannot be zero if x and y are negative
   824  			return z
   825  		}
   826  
   827  		// x & y == x & y
   828  		z.abs = z.abs.and(x.abs, y.abs)
   829  		z.neg = false
   830  		return z
   831  	}
   832  
   833  	// x.neg != y.neg
   834  	if x.neg {
   835  		x, y = y, x // & is symmetric
   836  	}
   837  
   838  	// x & (-y) == x & ^(y-1) == x &^ (y-1)
   839  	y1 := nat(nil).sub(y.abs, natOne)
   840  	z.abs = z.abs.andNot(x.abs, y1)
   841  	z.neg = false
   842  	return z
   843  }
   844  
   845  // AndNot sets z = x &^ y and returns z.
   846  func (z *Int) AndNot(x, y *Int) *Int {
   847  	if x.neg == y.neg {
   848  		if x.neg {
   849  			// (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
   850  			x1 := nat(nil).sub(x.abs, natOne)
   851  			y1 := nat(nil).sub(y.abs, natOne)
   852  			z.abs = z.abs.andNot(y1, x1)
   853  			z.neg = false
   854  			return z
   855  		}
   856  
   857  		// x &^ y == x &^ y
   858  		z.abs = z.abs.andNot(x.abs, y.abs)
   859  		z.neg = false
   860  		return z
   861  	}
   862  
   863  	if x.neg {
   864  		// (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
   865  		x1 := nat(nil).sub(x.abs, natOne)
   866  		z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
   867  		z.neg = true // z cannot be zero if x is negative and y is positive
   868  		return z
   869  	}
   870  
   871  	// x &^ (-y) == x &^ ^(y-1) == x & (y-1)
   872  	y1 := nat(nil).sub(y.abs, natOne)
   873  	z.abs = z.abs.and(x.abs, y1)
   874  	z.neg = false
   875  	return z
   876  }
   877  
   878  // Or sets z = x | y and returns z.
   879  func (z *Int) Or(x, y *Int) *Int {
   880  	if x.neg == y.neg {
   881  		if x.neg {
   882  			// (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
   883  			x1 := nat(nil).sub(x.abs, natOne)
   884  			y1 := nat(nil).sub(y.abs, natOne)
   885  			z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
   886  			z.neg = true // z cannot be zero if x and y are negative
   887  			return z
   888  		}
   889  
   890  		// x | y == x | y
   891  		z.abs = z.abs.or(x.abs, y.abs)
   892  		z.neg = false
   893  		return z
   894  	}
   895  
   896  	// x.neg != y.neg
   897  	if x.neg {
   898  		x, y = y, x // | is symmetric
   899  	}
   900  
   901  	// x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
   902  	y1 := nat(nil).sub(y.abs, natOne)
   903  	z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
   904  	z.neg = true // z cannot be zero if one of x or y is negative
   905  	return z
   906  }
   907  
   908  // Xor sets z = x ^ y and returns z.
   909  func (z *Int) Xor(x, y *Int) *Int {
   910  	if x.neg == y.neg {
   911  		if x.neg {
   912  			// (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
   913  			x1 := nat(nil).sub(x.abs, natOne)
   914  			y1 := nat(nil).sub(y.abs, natOne)
   915  			z.abs = z.abs.xor(x1, y1)
   916  			z.neg = false
   917  			return z
   918  		}
   919  
   920  		// x ^ y == x ^ y
   921  		z.abs = z.abs.xor(x.abs, y.abs)
   922  		z.neg = false
   923  		return z
   924  	}
   925  
   926  	// x.neg != y.neg
   927  	if x.neg {
   928  		x, y = y, x // ^ is symmetric
   929  	}
   930  
   931  	// x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
   932  	y1 := nat(nil).sub(y.abs, natOne)
   933  	z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
   934  	z.neg = true // z cannot be zero if only one of x or y is negative
   935  	return z
   936  }
   937  
   938  // Not sets z = ^x and returns z.
   939  func (z *Int) Not(x *Int) *Int {
   940  	if x.neg {
   941  		// ^(-x) == ^(^(x-1)) == x-1
   942  		z.abs = z.abs.sub(x.abs, natOne)
   943  		z.neg = false
   944  		return z
   945  	}
   946  
   947  	// ^x == -x-1 == -(x+1)
   948  	z.abs = z.abs.add(x.abs, natOne)
   949  	z.neg = true // z cannot be zero if x is positive
   950  	return z
   951  }
   952  
   953  // Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z.
   954  // It panics if x is negative.
   955  func (z *Int) Sqrt(x *Int) *Int {
   956  	if x.neg {
   957  		panic("square root of negative number")
   958  	}
   959  	z.neg = false
   960  	z.abs = z.abs.sqrt(x.abs)
   961  	return z
   962  }