github.com/mdempsky/go@v0.0.0-20151201204031-5dd372bd1e70/src/cmd/internal/obj/pcln.go (about)

     1  // Copyright 2013 The Go Authors.  All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package obj
     6  
     7  import (
     8  	"fmt"
     9  	"log"
    10  )
    11  
    12  func addvarint(ctxt *Link, d *Pcdata, val uint32) {
    13  	var v uint32
    14  	for v = val; v >= 0x80; v >>= 7 {
    15  		d.P = append(d.P, uint8(v|0x80))
    16  	}
    17  	d.P = append(d.P, uint8(v))
    18  }
    19  
    20  // funcpctab writes to dst a pc-value table mapping the code in func to the values
    21  // returned by valfunc parameterized by arg. The invocation of valfunc to update the
    22  // current value is, for each p,
    23  //
    24  //	val = valfunc(func, val, p, 0, arg);
    25  //	record val as value at p->pc;
    26  //	val = valfunc(func, val, p, 1, arg);
    27  //
    28  // where func is the function, val is the current value, p is the instruction being
    29  // considered, and arg can be used to further parameterize valfunc.
    30  func funcpctab(ctxt *Link, dst *Pcdata, func_ *LSym, desc string, valfunc func(*Link, *LSym, int32, *Prog, int32, interface{}) int32, arg interface{}) {
    31  	// To debug a specific function, uncomment second line and change name.
    32  	dbg := 0
    33  
    34  	//dbg = strcmp(func->name, "main.main") == 0;
    35  	//dbg = strcmp(desc, "pctofile") == 0;
    36  
    37  	ctxt.Debugpcln += int32(dbg)
    38  
    39  	dst.P = dst.P[:0]
    40  
    41  	if ctxt.Debugpcln != 0 {
    42  		fmt.Fprintf(ctxt.Bso, "funcpctab %s [valfunc=%s]\n", func_.Name, desc)
    43  	}
    44  
    45  	val := int32(-1)
    46  	oldval := val
    47  	if func_.Text == nil {
    48  		ctxt.Debugpcln -= int32(dbg)
    49  		return
    50  	}
    51  
    52  	pc := func_.Text.Pc
    53  
    54  	if ctxt.Debugpcln != 0 {
    55  		fmt.Fprintf(ctxt.Bso, "%6x %6d %v\n", uint64(pc), val, func_.Text)
    56  	}
    57  
    58  	started := int32(0)
    59  	var delta uint32
    60  	for p := func_.Text; p != nil; p = p.Link {
    61  		// Update val. If it's not changing, keep going.
    62  		val = valfunc(ctxt, func_, val, p, 0, arg)
    63  
    64  		if val == oldval && started != 0 {
    65  			val = valfunc(ctxt, func_, val, p, 1, arg)
    66  			if ctxt.Debugpcln != 0 {
    67  				fmt.Fprintf(ctxt.Bso, "%6x %6s %v\n", uint64(int64(p.Pc)), "", p)
    68  			}
    69  			continue
    70  		}
    71  
    72  		// If the pc of the next instruction is the same as the
    73  		// pc of this instruction, this instruction is not a real
    74  		// instruction. Keep going, so that we only emit a delta
    75  		// for a true instruction boundary in the program.
    76  		if p.Link != nil && p.Link.Pc == p.Pc {
    77  			val = valfunc(ctxt, func_, val, p, 1, arg)
    78  			if ctxt.Debugpcln != 0 {
    79  				fmt.Fprintf(ctxt.Bso, "%6x %6s %v\n", uint64(int64(p.Pc)), "", p)
    80  			}
    81  			continue
    82  		}
    83  
    84  		// The table is a sequence of (value, pc) pairs, where each
    85  		// pair states that the given value is in effect from the current position
    86  		// up to the given pc, which becomes the new current position.
    87  		// To generate the table as we scan over the program instructions,
    88  		// we emit a "(value" when pc == func->value, and then
    89  		// each time we observe a change in value we emit ", pc) (value".
    90  		// When the scan is over, we emit the closing ", pc)".
    91  		//
    92  		// The table is delta-encoded. The value deltas are signed and
    93  		// transmitted in zig-zag form, where a complement bit is placed in bit 0,
    94  		// and the pc deltas are unsigned. Both kinds of deltas are sent
    95  		// as variable-length little-endian base-128 integers,
    96  		// where the 0x80 bit indicates that the integer continues.
    97  
    98  		if ctxt.Debugpcln != 0 {
    99  			fmt.Fprintf(ctxt.Bso, "%6x %6d %v\n", uint64(int64(p.Pc)), val, p)
   100  		}
   101  
   102  		if started != 0 {
   103  			addvarint(ctxt, dst, uint32((p.Pc-pc)/int64(ctxt.Arch.Minlc)))
   104  			pc = p.Pc
   105  		}
   106  
   107  		delta = uint32(val) - uint32(oldval)
   108  		if delta>>31 != 0 {
   109  			delta = 1 | ^(delta << 1)
   110  		} else {
   111  			delta <<= 1
   112  		}
   113  		addvarint(ctxt, dst, delta)
   114  		oldval = val
   115  		started = 1
   116  		val = valfunc(ctxt, func_, val, p, 1, arg)
   117  	}
   118  
   119  	if started != 0 {
   120  		if ctxt.Debugpcln != 0 {
   121  			fmt.Fprintf(ctxt.Bso, "%6x done\n", uint64(int64(func_.Text.Pc)+func_.Size))
   122  		}
   123  		addvarint(ctxt, dst, uint32((func_.Value+func_.Size-pc)/int64(ctxt.Arch.Minlc)))
   124  		addvarint(ctxt, dst, 0) // terminator
   125  	}
   126  
   127  	if ctxt.Debugpcln != 0 {
   128  		fmt.Fprintf(ctxt.Bso, "wrote %d bytes to %p\n", len(dst.P), dst)
   129  		for i := 0; i < len(dst.P); i++ {
   130  			fmt.Fprintf(ctxt.Bso, " %02x", dst.P[i])
   131  		}
   132  		fmt.Fprintf(ctxt.Bso, "\n")
   133  	}
   134  
   135  	ctxt.Debugpcln -= int32(dbg)
   136  }
   137  
   138  // pctofileline computes either the file number (arg == 0)
   139  // or the line number (arg == 1) to use at p.
   140  // Because p->lineno applies to p, phase == 0 (before p)
   141  // takes care of the update.
   142  func pctofileline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
   143  	if p.As == ATEXT || p.As == ANOP || p.As == AUSEFIELD || p.Lineno == 0 || phase == 1 {
   144  		return oldval
   145  	}
   146  	var l int32
   147  	var f *LSym
   148  	linkgetline(ctxt, p.Lineno, &f, &l)
   149  	if f == nil {
   150  		//	print("getline failed for %s %v\n", ctxt->cursym->name, p);
   151  		return oldval
   152  	}
   153  
   154  	if arg == nil {
   155  		return l
   156  	}
   157  	pcln := arg.(*Pcln)
   158  
   159  	if f == pcln.Lastfile {
   160  		return int32(pcln.Lastindex)
   161  	}
   162  
   163  	var i int32
   164  	for i = 0; i < int32(len(pcln.File)); i++ {
   165  		file := pcln.File[i]
   166  		if file == f {
   167  			pcln.Lastfile = f
   168  			pcln.Lastindex = int(i)
   169  			return int32(i)
   170  		}
   171  	}
   172  	pcln.File = append(pcln.File, f)
   173  	pcln.Lastfile = f
   174  	pcln.Lastindex = int(i)
   175  	return i
   176  }
   177  
   178  // pctospadj computes the sp adjustment in effect.
   179  // It is oldval plus any adjustment made by p itself.
   180  // The adjustment by p takes effect only after p, so we
   181  // apply the change during phase == 1.
   182  func pctospadj(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
   183  	if oldval == -1 { // starting
   184  		oldval = 0
   185  	}
   186  	if phase == 0 {
   187  		return oldval
   188  	}
   189  	if oldval+p.Spadj < -10000 || oldval+p.Spadj > 1100000000 {
   190  		ctxt.Diag("overflow in spadj: %d + %d = %d", oldval, p.Spadj, oldval+p.Spadj)
   191  		log.Fatalf("bad code")
   192  	}
   193  
   194  	return oldval + p.Spadj
   195  }
   196  
   197  // pctopcdata computes the pcdata value in effect at p.
   198  // A PCDATA instruction sets the value in effect at future
   199  // non-PCDATA instructions.
   200  // Since PCDATA instructions have no width in the final code,
   201  // it does not matter which phase we use for the update.
   202  func pctopcdata(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
   203  	if phase == 0 || p.As != APCDATA || p.From.Offset != int64(arg.(uint32)) {
   204  		return oldval
   205  	}
   206  	if int64(int32(p.To.Offset)) != p.To.Offset {
   207  		ctxt.Diag("overflow in PCDATA instruction: %v", p)
   208  		log.Fatalf("bad code")
   209  	}
   210  
   211  	return int32(p.To.Offset)
   212  }
   213  
   214  func linkpcln(ctxt *Link, cursym *LSym) {
   215  	ctxt.Cursym = cursym
   216  
   217  	pcln := new(Pcln)
   218  	cursym.Pcln = pcln
   219  
   220  	npcdata := 0
   221  	nfuncdata := 0
   222  	for p := cursym.Text; p != nil; p = p.Link {
   223  		if p.As == APCDATA && p.From.Offset >= int64(npcdata) {
   224  			npcdata = int(p.From.Offset + 1)
   225  		}
   226  		if p.As == AFUNCDATA && p.From.Offset >= int64(nfuncdata) {
   227  			nfuncdata = int(p.From.Offset + 1)
   228  		}
   229  	}
   230  
   231  	pcln.Pcdata = make([]Pcdata, npcdata)
   232  	pcln.Pcdata = pcln.Pcdata[:npcdata]
   233  	pcln.Funcdata = make([]*LSym, nfuncdata)
   234  	pcln.Funcdataoff = make([]int64, nfuncdata)
   235  	pcln.Funcdataoff = pcln.Funcdataoff[:nfuncdata]
   236  
   237  	funcpctab(ctxt, &pcln.Pcsp, cursym, "pctospadj", pctospadj, nil)
   238  	funcpctab(ctxt, &pcln.Pcfile, cursym, "pctofile", pctofileline, pcln)
   239  	funcpctab(ctxt, &pcln.Pcline, cursym, "pctoline", pctofileline, nil)
   240  
   241  	// tabulate which pc and func data we have.
   242  	havepc := make([]uint32, (npcdata+31)/32)
   243  	havefunc := make([]uint32, (nfuncdata+31)/32)
   244  	for p := cursym.Text; p != nil; p = p.Link {
   245  		if p.As == AFUNCDATA {
   246  			if (havefunc[p.From.Offset/32]>>uint64(p.From.Offset%32))&1 != 0 {
   247  				ctxt.Diag("multiple definitions for FUNCDATA $%d", p.From.Offset)
   248  			}
   249  			havefunc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32)
   250  		}
   251  
   252  		if p.As == APCDATA {
   253  			havepc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32)
   254  		}
   255  	}
   256  
   257  	// pcdata.
   258  	for i := 0; i < npcdata; i++ {
   259  		if (havepc[i/32]>>uint(i%32))&1 == 0 {
   260  			continue
   261  		}
   262  		funcpctab(ctxt, &pcln.Pcdata[i], cursym, "pctopcdata", pctopcdata, interface{}(uint32(i)))
   263  	}
   264  
   265  	// funcdata
   266  	if nfuncdata > 0 {
   267  		var i int
   268  		for p := cursym.Text; p != nil; p = p.Link {
   269  			if p.As == AFUNCDATA {
   270  				i = int(p.From.Offset)
   271  				pcln.Funcdataoff[i] = p.To.Offset
   272  				if p.To.Type != TYPE_CONST {
   273  					// TODO: Dedup.
   274  					//funcdata_bytes += p->to.sym->size;
   275  					pcln.Funcdata[i] = p.To.Sym
   276  				}
   277  			}
   278  		}
   279  	}
   280  }
   281  
   282  // iteration over encoded pcdata tables.
   283  
   284  func getvarint(pp *[]byte) uint32 {
   285  	v := uint32(0)
   286  	p := *pp
   287  	for shift := 0; ; shift += 7 {
   288  		v |= uint32(p[0]&0x7F) << uint(shift)
   289  		tmp7 := p
   290  		p = p[1:]
   291  		if tmp7[0]&0x80 == 0 {
   292  			break
   293  		}
   294  	}
   295  
   296  	*pp = p
   297  	return v
   298  }
   299  
   300  func pciternext(it *Pciter) {
   301  	it.pc = it.nextpc
   302  	if it.done != 0 {
   303  		return
   304  	}
   305  	if -cap(it.p) >= -cap(it.d.P[len(it.d.P):]) {
   306  		it.done = 1
   307  		return
   308  	}
   309  
   310  	// value delta
   311  	v := getvarint(&it.p)
   312  
   313  	if v == 0 && it.start == 0 {
   314  		it.done = 1
   315  		return
   316  	}
   317  
   318  	it.start = 0
   319  	dv := int32(v>>1) ^ (int32(v<<31) >> 31)
   320  	it.value += dv
   321  
   322  	// pc delta
   323  	v = getvarint(&it.p)
   324  
   325  	it.nextpc = it.pc + v*it.pcscale
   326  }
   327  
   328  func pciterinit(ctxt *Link, it *Pciter, d *Pcdata) {
   329  	it.d = *d
   330  	it.p = it.d.P
   331  	it.pc = 0
   332  	it.nextpc = 0
   333  	it.value = -1
   334  	it.start = 1
   335  	it.done = 0
   336  	it.pcscale = uint32(ctxt.Arch.Minlc)
   337  	pciternext(it)
   338  }