github.com/mdempsky/go@v0.0.0-20151201204031-5dd372bd1e70/src/crypto/cipher/gcm.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package cipher
     6  
     7  import (
     8  	"crypto/subtle"
     9  	"errors"
    10  )
    11  
    12  // AEAD is a cipher mode providing authenticated encryption with associated
    13  // data.
    14  type AEAD interface {
    15  	// NonceSize returns the size of the nonce that must be passed to Seal
    16  	// and Open.
    17  	NonceSize() int
    18  
    19  	// Overhead returns the maximum difference between the lengths of a
    20  	// plaintext and ciphertext.
    21  	Overhead() int
    22  
    23  	// Seal encrypts and authenticates plaintext, authenticates the
    24  	// additional data and appends the result to dst, returning the updated
    25  	// slice. The nonce must be NonceSize() bytes long and unique for all
    26  	// time, for a given key.
    27  	//
    28  	// The plaintext and dst may alias exactly or not at all.
    29  	Seal(dst, nonce, plaintext, data []byte) []byte
    30  
    31  	// Open decrypts and authenticates ciphertext, authenticates the
    32  	// additional data and, if successful, appends the resulting plaintext
    33  	// to dst, returning the updated slice. The nonce must be NonceSize()
    34  	// bytes long and both it and the additional data must match the
    35  	// value passed to Seal.
    36  	//
    37  	// The ciphertext and dst may alias exactly or not at all.
    38  	Open(dst, nonce, ciphertext, data []byte) ([]byte, error)
    39  }
    40  
    41  // gcmAble is an interface implemented by ciphers that have a specific optimized
    42  // implementation of GCM, like crypto/aes. NewGCM will check for this interface
    43  // and return the specific AEAD if found.
    44  type gcmAble interface {
    45  	NewGCM(int) (AEAD, error)
    46  }
    47  
    48  // gcmFieldElement represents a value in GF(2¹²⁸). In order to reflect the GCM
    49  // standard and make getUint64 suitable for marshaling these values, the bits
    50  // are stored backwards. For example:
    51  //   the coefficient of x⁰ can be obtained by v.low >> 63.
    52  //   the coefficient of x⁶³ can be obtained by v.low & 1.
    53  //   the coefficient of x⁶⁴ can be obtained by v.high >> 63.
    54  //   the coefficient of x¹²⁷ can be obtained by v.high & 1.
    55  type gcmFieldElement struct {
    56  	low, high uint64
    57  }
    58  
    59  // gcm represents a Galois Counter Mode with a specific key. See
    60  // http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
    61  type gcm struct {
    62  	cipher    Block
    63  	nonceSize int
    64  	// productTable contains the first sixteen powers of the key, H.
    65  	// However, they are in bit reversed order. See NewGCMWithNonceSize.
    66  	productTable [16]gcmFieldElement
    67  }
    68  
    69  // NewGCM returns the given 128-bit, block cipher wrapped in Galois Counter Mode
    70  // with the standard nonce length.
    71  func NewGCM(cipher Block) (AEAD, error) {
    72  	return NewGCMWithNonceSize(cipher, gcmStandardNonceSize)
    73  }
    74  
    75  // NewGCMWithNonceSize returns the given 128-bit, block cipher wrapped in Galois
    76  // Counter Mode, which accepts nonces of the given length.
    77  //
    78  // Only use this function if you require compatibility with an existing
    79  // cryptosystem that uses non-standard nonce lengths. All other users should use
    80  // NewGCM, which is faster and more resistant to misuse.
    81  func NewGCMWithNonceSize(cipher Block, size int) (AEAD, error) {
    82  	if cipher, ok := cipher.(gcmAble); ok {
    83  		return cipher.NewGCM(size)
    84  	}
    85  
    86  	if cipher.BlockSize() != gcmBlockSize {
    87  		return nil, errors.New("cipher: NewGCM requires 128-bit block cipher")
    88  	}
    89  
    90  	var key [gcmBlockSize]byte
    91  	cipher.Encrypt(key[:], key[:])
    92  
    93  	g := &gcm{cipher: cipher, nonceSize: size}
    94  
    95  	// We precompute 16 multiples of |key|. However, when we do lookups
    96  	// into this table we'll be using bits from a field element and
    97  	// therefore the bits will be in the reverse order. So normally one
    98  	// would expect, say, 4*key to be in index 4 of the table but due to
    99  	// this bit ordering it will actually be in index 0010 (base 2) = 2.
   100  	x := gcmFieldElement{
   101  		getUint64(key[:8]),
   102  		getUint64(key[8:]),
   103  	}
   104  	g.productTable[reverseBits(1)] = x
   105  
   106  	for i := 2; i < 16; i += 2 {
   107  		g.productTable[reverseBits(i)] = gcmDouble(&g.productTable[reverseBits(i/2)])
   108  		g.productTable[reverseBits(i+1)] = gcmAdd(&g.productTable[reverseBits(i)], &x)
   109  	}
   110  
   111  	return g, nil
   112  }
   113  
   114  const (
   115  	gcmBlockSize         = 16
   116  	gcmTagSize           = 16
   117  	gcmStandardNonceSize = 12
   118  )
   119  
   120  func (g *gcm) NonceSize() int {
   121  	return g.nonceSize
   122  }
   123  
   124  func (*gcm) Overhead() int {
   125  	return gcmTagSize
   126  }
   127  
   128  func (g *gcm) Seal(dst, nonce, plaintext, data []byte) []byte {
   129  	if len(nonce) != g.nonceSize {
   130  		panic("cipher: incorrect nonce length given to GCM")
   131  	}
   132  	ret, out := sliceForAppend(dst, len(plaintext)+gcmTagSize)
   133  
   134  	var counter, tagMask [gcmBlockSize]byte
   135  	g.deriveCounter(&counter, nonce)
   136  
   137  	g.cipher.Encrypt(tagMask[:], counter[:])
   138  	gcmInc32(&counter)
   139  
   140  	g.counterCrypt(out, plaintext, &counter)
   141  	g.auth(out[len(plaintext):], out[:len(plaintext)], data, &tagMask)
   142  
   143  	return ret
   144  }
   145  
   146  var errOpen = errors.New("cipher: message authentication failed")
   147  
   148  func (g *gcm) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) {
   149  	if len(nonce) != g.nonceSize {
   150  		panic("cipher: incorrect nonce length given to GCM")
   151  	}
   152  
   153  	if len(ciphertext) < gcmTagSize {
   154  		return nil, errOpen
   155  	}
   156  	tag := ciphertext[len(ciphertext)-gcmTagSize:]
   157  	ciphertext = ciphertext[:len(ciphertext)-gcmTagSize]
   158  
   159  	var counter, tagMask [gcmBlockSize]byte
   160  	g.deriveCounter(&counter, nonce)
   161  
   162  	g.cipher.Encrypt(tagMask[:], counter[:])
   163  	gcmInc32(&counter)
   164  
   165  	var expectedTag [gcmTagSize]byte
   166  	g.auth(expectedTag[:], ciphertext, data, &tagMask)
   167  
   168  	if subtle.ConstantTimeCompare(expectedTag[:], tag) != 1 {
   169  		return nil, errOpen
   170  	}
   171  
   172  	ret, out := sliceForAppend(dst, len(ciphertext))
   173  	g.counterCrypt(out, ciphertext, &counter)
   174  
   175  	return ret, nil
   176  }
   177  
   178  // reverseBits reverses the order of the bits of 4-bit number in i.
   179  func reverseBits(i int) int {
   180  	i = ((i << 2) & 0xc) | ((i >> 2) & 0x3)
   181  	i = ((i << 1) & 0xa) | ((i >> 1) & 0x5)
   182  	return i
   183  }
   184  
   185  // gcmAdd adds two elements of GF(2¹²⁸) and returns the sum.
   186  func gcmAdd(x, y *gcmFieldElement) gcmFieldElement {
   187  	// Addition in a characteristic 2 field is just XOR.
   188  	return gcmFieldElement{x.low ^ y.low, x.high ^ y.high}
   189  }
   190  
   191  // gcmDouble returns the result of doubling an element of GF(2¹²⁸).
   192  func gcmDouble(x *gcmFieldElement) (double gcmFieldElement) {
   193  	msbSet := x.high&1 == 1
   194  
   195  	// Because of the bit-ordering, doubling is actually a right shift.
   196  	double.high = x.high >> 1
   197  	double.high |= x.low << 63
   198  	double.low = x.low >> 1
   199  
   200  	// If the most-significant bit was set before shifting then it,
   201  	// conceptually, becomes a term of x^128. This is greater than the
   202  	// irreducible polynomial so the result has to be reduced. The
   203  	// irreducible polynomial is 1+x+x^2+x^7+x^128. We can subtract that to
   204  	// eliminate the term at x^128 which also means subtracting the other
   205  	// four terms. In characteristic 2 fields, subtraction == addition ==
   206  	// XOR.
   207  	if msbSet {
   208  		double.low ^= 0xe100000000000000
   209  	}
   210  
   211  	return
   212  }
   213  
   214  var gcmReductionTable = []uint16{
   215  	0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
   216  	0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0,
   217  }
   218  
   219  // mul sets y to y*H, where H is the GCM key, fixed during NewGCMWithNonceSize.
   220  func (g *gcm) mul(y *gcmFieldElement) {
   221  	var z gcmFieldElement
   222  
   223  	for i := 0; i < 2; i++ {
   224  		word := y.high
   225  		if i == 1 {
   226  			word = y.low
   227  		}
   228  
   229  		// Multiplication works by multiplying z by 16 and adding in
   230  		// one of the precomputed multiples of H.
   231  		for j := 0; j < 64; j += 4 {
   232  			msw := z.high & 0xf
   233  			z.high >>= 4
   234  			z.high |= z.low << 60
   235  			z.low >>= 4
   236  			z.low ^= uint64(gcmReductionTable[msw]) << 48
   237  
   238  			// the values in |table| are ordered for
   239  			// little-endian bit positions. See the comment
   240  			// in NewGCMWithNonceSize.
   241  			t := &g.productTable[word&0xf]
   242  
   243  			z.low ^= t.low
   244  			z.high ^= t.high
   245  			word >>= 4
   246  		}
   247  	}
   248  
   249  	*y = z
   250  }
   251  
   252  // updateBlocks extends y with more polynomial terms from blocks, based on
   253  // Horner's rule. There must be a multiple of gcmBlockSize bytes in blocks.
   254  func (g *gcm) updateBlocks(y *gcmFieldElement, blocks []byte) {
   255  	for len(blocks) > 0 {
   256  		y.low ^= getUint64(blocks)
   257  		y.high ^= getUint64(blocks[8:])
   258  		g.mul(y)
   259  		blocks = blocks[gcmBlockSize:]
   260  	}
   261  }
   262  
   263  // update extends y with more polynomial terms from data. If data is not a
   264  // multiple of gcmBlockSize bytes long then the remainder is zero padded.
   265  func (g *gcm) update(y *gcmFieldElement, data []byte) {
   266  	fullBlocks := (len(data) >> 4) << 4
   267  	g.updateBlocks(y, data[:fullBlocks])
   268  
   269  	if len(data) != fullBlocks {
   270  		var partialBlock [gcmBlockSize]byte
   271  		copy(partialBlock[:], data[fullBlocks:])
   272  		g.updateBlocks(y, partialBlock[:])
   273  	}
   274  }
   275  
   276  // gcmInc32 treats the final four bytes of counterBlock as a big-endian value
   277  // and increments it.
   278  func gcmInc32(counterBlock *[16]byte) {
   279  	for i := gcmBlockSize - 1; i >= gcmBlockSize-4; i-- {
   280  		counterBlock[i]++
   281  		if counterBlock[i] != 0 {
   282  			break
   283  		}
   284  	}
   285  }
   286  
   287  // sliceForAppend takes a slice and a requested number of bytes. It returns a
   288  // slice with the contents of the given slice followed by that many bytes and a
   289  // second slice that aliases into it and contains only the extra bytes. If the
   290  // original slice has sufficient capacity then no allocation is performed.
   291  func sliceForAppend(in []byte, n int) (head, tail []byte) {
   292  	if total := len(in) + n; cap(in) >= total {
   293  		head = in[:total]
   294  	} else {
   295  		head = make([]byte, total)
   296  		copy(head, in)
   297  	}
   298  	tail = head[len(in):]
   299  	return
   300  }
   301  
   302  // counterCrypt crypts in to out using g.cipher in counter mode.
   303  func (g *gcm) counterCrypt(out, in []byte, counter *[gcmBlockSize]byte) {
   304  	var mask [gcmBlockSize]byte
   305  
   306  	for len(in) >= gcmBlockSize {
   307  		g.cipher.Encrypt(mask[:], counter[:])
   308  		gcmInc32(counter)
   309  
   310  		xorWords(out, in, mask[:])
   311  		out = out[gcmBlockSize:]
   312  		in = in[gcmBlockSize:]
   313  	}
   314  
   315  	if len(in) > 0 {
   316  		g.cipher.Encrypt(mask[:], counter[:])
   317  		gcmInc32(counter)
   318  		xorBytes(out, in, mask[:])
   319  	}
   320  }
   321  
   322  // deriveCounter computes the initial GCM counter state from the given nonce.
   323  // See NIST SP 800-38D, section 7.1. This assumes that counter is filled with
   324  // zeros on entry.
   325  func (g *gcm) deriveCounter(counter *[gcmBlockSize]byte, nonce []byte) {
   326  	// GCM has two modes of operation with respect to the initial counter
   327  	// state: a "fast path" for 96-bit (12-byte) nonces, and a "slow path"
   328  	// for nonces of other lengths. For a 96-bit nonce, the nonce, along
   329  	// with a four-byte big-endian counter starting at one, is used
   330  	// directly as the starting counter. For other nonce sizes, the counter
   331  	// is computed by passing it through the GHASH function.
   332  	if len(nonce) == gcmStandardNonceSize {
   333  		copy(counter[:], nonce)
   334  		counter[gcmBlockSize-1] = 1
   335  	} else {
   336  		var y gcmFieldElement
   337  		g.update(&y, nonce)
   338  		y.high ^= uint64(len(nonce)) * 8
   339  		g.mul(&y)
   340  		putUint64(counter[:8], y.low)
   341  		putUint64(counter[8:], y.high)
   342  	}
   343  }
   344  
   345  // auth calculates GHASH(ciphertext, additionalData), masks the result with
   346  // tagMask and writes the result to out.
   347  func (g *gcm) auth(out, ciphertext, additionalData []byte, tagMask *[gcmTagSize]byte) {
   348  	var y gcmFieldElement
   349  	g.update(&y, additionalData)
   350  	g.update(&y, ciphertext)
   351  
   352  	y.low ^= uint64(len(additionalData)) * 8
   353  	y.high ^= uint64(len(ciphertext)) * 8
   354  
   355  	g.mul(&y)
   356  
   357  	putUint64(out, y.low)
   358  	putUint64(out[8:], y.high)
   359  
   360  	xorWords(out, out, tagMask[:])
   361  }
   362  
   363  func getUint64(data []byte) uint64 {
   364  	r := uint64(data[0])<<56 |
   365  		uint64(data[1])<<48 |
   366  		uint64(data[2])<<40 |
   367  		uint64(data[3])<<32 |
   368  		uint64(data[4])<<24 |
   369  		uint64(data[5])<<16 |
   370  		uint64(data[6])<<8 |
   371  		uint64(data[7])
   372  	return r
   373  }
   374  
   375  func putUint64(out []byte, v uint64) {
   376  	out[0] = byte(v >> 56)
   377  	out[1] = byte(v >> 48)
   378  	out[2] = byte(v >> 40)
   379  	out[3] = byte(v >> 32)
   380  	out[4] = byte(v >> 24)
   381  	out[5] = byte(v >> 16)
   382  	out[6] = byte(v >> 8)
   383  	out[7] = byte(v)
   384  }