github.com/mdempsky/go@v0.0.0-20151201204031-5dd372bd1e70/src/crypto/tls/conn.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // TLS low level connection and record layer
     6  
     7  package tls
     8  
     9  import (
    10  	"bytes"
    11  	"crypto/cipher"
    12  	"crypto/subtle"
    13  	"crypto/x509"
    14  	"errors"
    15  	"fmt"
    16  	"io"
    17  	"net"
    18  	"sync"
    19  	"time"
    20  )
    21  
    22  // A Conn represents a secured connection.
    23  // It implements the net.Conn interface.
    24  type Conn struct {
    25  	// constant
    26  	conn     net.Conn
    27  	isClient bool
    28  
    29  	// constant after handshake; protected by handshakeMutex
    30  	handshakeMutex    sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
    31  	handshakeErr      error      // error resulting from handshake
    32  	vers              uint16     // TLS version
    33  	haveVers          bool       // version has been negotiated
    34  	config            *Config    // configuration passed to constructor
    35  	handshakeComplete bool
    36  	didResume         bool // whether this connection was a session resumption
    37  	cipherSuite       uint16
    38  	ocspResponse      []byte   // stapled OCSP response
    39  	scts              [][]byte // signed certificate timestamps from server
    40  	peerCertificates  []*x509.Certificate
    41  	// verifiedChains contains the certificate chains that we built, as
    42  	// opposed to the ones presented by the server.
    43  	verifiedChains [][]*x509.Certificate
    44  	// serverName contains the server name indicated by the client, if any.
    45  	serverName string
    46  	// firstFinished contains the first Finished hash sent during the
    47  	// handshake. This is the "tls-unique" channel binding value.
    48  	firstFinished [12]byte
    49  
    50  	clientProtocol         string
    51  	clientProtocolFallback bool
    52  
    53  	// input/output
    54  	in, out  halfConn     // in.Mutex < out.Mutex
    55  	rawInput *block       // raw input, right off the wire
    56  	input    *block       // application data waiting to be read
    57  	hand     bytes.Buffer // handshake data waiting to be read
    58  
    59  	tmp [16]byte
    60  }
    61  
    62  // Access to net.Conn methods.
    63  // Cannot just embed net.Conn because that would
    64  // export the struct field too.
    65  
    66  // LocalAddr returns the local network address.
    67  func (c *Conn) LocalAddr() net.Addr {
    68  	return c.conn.LocalAddr()
    69  }
    70  
    71  // RemoteAddr returns the remote network address.
    72  func (c *Conn) RemoteAddr() net.Addr {
    73  	return c.conn.RemoteAddr()
    74  }
    75  
    76  // SetDeadline sets the read and write deadlines associated with the connection.
    77  // A zero value for t means Read and Write will not time out.
    78  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
    79  func (c *Conn) SetDeadline(t time.Time) error {
    80  	return c.conn.SetDeadline(t)
    81  }
    82  
    83  // SetReadDeadline sets the read deadline on the underlying connection.
    84  // A zero value for t means Read will not time out.
    85  func (c *Conn) SetReadDeadline(t time.Time) error {
    86  	return c.conn.SetReadDeadline(t)
    87  }
    88  
    89  // SetWriteDeadline sets the write deadline on the underlying connection.
    90  // A zero value for t means Write will not time out.
    91  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
    92  func (c *Conn) SetWriteDeadline(t time.Time) error {
    93  	return c.conn.SetWriteDeadline(t)
    94  }
    95  
    96  // A halfConn represents one direction of the record layer
    97  // connection, either sending or receiving.
    98  type halfConn struct {
    99  	sync.Mutex
   100  
   101  	err            error       // first permanent error
   102  	version        uint16      // protocol version
   103  	cipher         interface{} // cipher algorithm
   104  	mac            macFunction
   105  	seq            [8]byte  // 64-bit sequence number
   106  	bfree          *block   // list of free blocks
   107  	additionalData [13]byte // to avoid allocs; interface method args escape
   108  
   109  	nextCipher interface{} // next encryption state
   110  	nextMac    macFunction // next MAC algorithm
   111  
   112  	// used to save allocating a new buffer for each MAC.
   113  	inDigestBuf, outDigestBuf []byte
   114  }
   115  
   116  func (hc *halfConn) setErrorLocked(err error) error {
   117  	hc.err = err
   118  	return err
   119  }
   120  
   121  func (hc *halfConn) error() error {
   122  	hc.Lock()
   123  	err := hc.err
   124  	hc.Unlock()
   125  	return err
   126  }
   127  
   128  // prepareCipherSpec sets the encryption and MAC states
   129  // that a subsequent changeCipherSpec will use.
   130  func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
   131  	hc.version = version
   132  	hc.nextCipher = cipher
   133  	hc.nextMac = mac
   134  }
   135  
   136  // changeCipherSpec changes the encryption and MAC states
   137  // to the ones previously passed to prepareCipherSpec.
   138  func (hc *halfConn) changeCipherSpec() error {
   139  	if hc.nextCipher == nil {
   140  		return alertInternalError
   141  	}
   142  	hc.cipher = hc.nextCipher
   143  	hc.mac = hc.nextMac
   144  	hc.nextCipher = nil
   145  	hc.nextMac = nil
   146  	for i := range hc.seq {
   147  		hc.seq[i] = 0
   148  	}
   149  	return nil
   150  }
   151  
   152  // incSeq increments the sequence number.
   153  func (hc *halfConn) incSeq() {
   154  	for i := 7; i >= 0; i-- {
   155  		hc.seq[i]++
   156  		if hc.seq[i] != 0 {
   157  			return
   158  		}
   159  	}
   160  
   161  	// Not allowed to let sequence number wrap.
   162  	// Instead, must renegotiate before it does.
   163  	// Not likely enough to bother.
   164  	panic("TLS: sequence number wraparound")
   165  }
   166  
   167  // resetSeq resets the sequence number to zero.
   168  func (hc *halfConn) resetSeq() {
   169  	for i := range hc.seq {
   170  		hc.seq[i] = 0
   171  	}
   172  }
   173  
   174  // removePadding returns an unpadded slice, in constant time, which is a prefix
   175  // of the input. It also returns a byte which is equal to 255 if the padding
   176  // was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
   177  func removePadding(payload []byte) ([]byte, byte) {
   178  	if len(payload) < 1 {
   179  		return payload, 0
   180  	}
   181  
   182  	paddingLen := payload[len(payload)-1]
   183  	t := uint(len(payload)-1) - uint(paddingLen)
   184  	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
   185  	good := byte(int32(^t) >> 31)
   186  
   187  	toCheck := 255 // the maximum possible padding length
   188  	// The length of the padded data is public, so we can use an if here
   189  	if toCheck+1 > len(payload) {
   190  		toCheck = len(payload) - 1
   191  	}
   192  
   193  	for i := 0; i < toCheck; i++ {
   194  		t := uint(paddingLen) - uint(i)
   195  		// if i <= paddingLen then the MSB of t is zero
   196  		mask := byte(int32(^t) >> 31)
   197  		b := payload[len(payload)-1-i]
   198  		good &^= mask&paddingLen ^ mask&b
   199  	}
   200  
   201  	// We AND together the bits of good and replicate the result across
   202  	// all the bits.
   203  	good &= good << 4
   204  	good &= good << 2
   205  	good &= good << 1
   206  	good = uint8(int8(good) >> 7)
   207  
   208  	toRemove := good&paddingLen + 1
   209  	return payload[:len(payload)-int(toRemove)], good
   210  }
   211  
   212  // removePaddingSSL30 is a replacement for removePadding in the case that the
   213  // protocol version is SSLv3. In this version, the contents of the padding
   214  // are random and cannot be checked.
   215  func removePaddingSSL30(payload []byte) ([]byte, byte) {
   216  	if len(payload) < 1 {
   217  		return payload, 0
   218  	}
   219  
   220  	paddingLen := int(payload[len(payload)-1]) + 1
   221  	if paddingLen > len(payload) {
   222  		return payload, 0
   223  	}
   224  
   225  	return payload[:len(payload)-paddingLen], 255
   226  }
   227  
   228  func roundUp(a, b int) int {
   229  	return a + (b-a%b)%b
   230  }
   231  
   232  // cbcMode is an interface for block ciphers using cipher block chaining.
   233  type cbcMode interface {
   234  	cipher.BlockMode
   235  	SetIV([]byte)
   236  }
   237  
   238  // decrypt checks and strips the mac and decrypts the data in b. Returns a
   239  // success boolean, the number of bytes to skip from the start of the record in
   240  // order to get the application payload, and an optional alert value.
   241  func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
   242  	// pull out payload
   243  	payload := b.data[recordHeaderLen:]
   244  
   245  	macSize := 0
   246  	if hc.mac != nil {
   247  		macSize = hc.mac.Size()
   248  	}
   249  
   250  	paddingGood := byte(255)
   251  	explicitIVLen := 0
   252  
   253  	// decrypt
   254  	if hc.cipher != nil {
   255  		switch c := hc.cipher.(type) {
   256  		case cipher.Stream:
   257  			c.XORKeyStream(payload, payload)
   258  		case cipher.AEAD:
   259  			explicitIVLen = 8
   260  			if len(payload) < explicitIVLen {
   261  				return false, 0, alertBadRecordMAC
   262  			}
   263  			nonce := payload[:8]
   264  			payload = payload[8:]
   265  
   266  			copy(hc.additionalData[:], hc.seq[:])
   267  			copy(hc.additionalData[8:], b.data[:3])
   268  			n := len(payload) - c.Overhead()
   269  			hc.additionalData[11] = byte(n >> 8)
   270  			hc.additionalData[12] = byte(n)
   271  			var err error
   272  			payload, err = c.Open(payload[:0], nonce, payload, hc.additionalData[:])
   273  			if err != nil {
   274  				return false, 0, alertBadRecordMAC
   275  			}
   276  			b.resize(recordHeaderLen + explicitIVLen + len(payload))
   277  		case cbcMode:
   278  			blockSize := c.BlockSize()
   279  			if hc.version >= VersionTLS11 {
   280  				explicitIVLen = blockSize
   281  			}
   282  
   283  			if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
   284  				return false, 0, alertBadRecordMAC
   285  			}
   286  
   287  			if explicitIVLen > 0 {
   288  				c.SetIV(payload[:explicitIVLen])
   289  				payload = payload[explicitIVLen:]
   290  			}
   291  			c.CryptBlocks(payload, payload)
   292  			if hc.version == VersionSSL30 {
   293  				payload, paddingGood = removePaddingSSL30(payload)
   294  			} else {
   295  				payload, paddingGood = removePadding(payload)
   296  			}
   297  			b.resize(recordHeaderLen + explicitIVLen + len(payload))
   298  
   299  			// note that we still have a timing side-channel in the
   300  			// MAC check, below. An attacker can align the record
   301  			// so that a correct padding will cause one less hash
   302  			// block to be calculated. Then they can iteratively
   303  			// decrypt a record by breaking each byte. See
   304  			// "Password Interception in a SSL/TLS Channel", Brice
   305  			// Canvel et al.
   306  			//
   307  			// However, our behavior matches OpenSSL, so we leak
   308  			// only as much as they do.
   309  		default:
   310  			panic("unknown cipher type")
   311  		}
   312  	}
   313  
   314  	// check, strip mac
   315  	if hc.mac != nil {
   316  		if len(payload) < macSize {
   317  			return false, 0, alertBadRecordMAC
   318  		}
   319  
   320  		// strip mac off payload, b.data
   321  		n := len(payload) - macSize
   322  		b.data[3] = byte(n >> 8)
   323  		b.data[4] = byte(n)
   324  		b.resize(recordHeaderLen + explicitIVLen + n)
   325  		remoteMAC := payload[n:]
   326  		localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n])
   327  
   328  		if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
   329  			return false, 0, alertBadRecordMAC
   330  		}
   331  		hc.inDigestBuf = localMAC
   332  	}
   333  	hc.incSeq()
   334  
   335  	return true, recordHeaderLen + explicitIVLen, 0
   336  }
   337  
   338  // padToBlockSize calculates the needed padding block, if any, for a payload.
   339  // On exit, prefix aliases payload and extends to the end of the last full
   340  // block of payload. finalBlock is a fresh slice which contains the contents of
   341  // any suffix of payload as well as the needed padding to make finalBlock a
   342  // full block.
   343  func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) {
   344  	overrun := len(payload) % blockSize
   345  	paddingLen := blockSize - overrun
   346  	prefix = payload[:len(payload)-overrun]
   347  	finalBlock = make([]byte, blockSize)
   348  	copy(finalBlock, payload[len(payload)-overrun:])
   349  	for i := overrun; i < blockSize; i++ {
   350  		finalBlock[i] = byte(paddingLen - 1)
   351  	}
   352  	return
   353  }
   354  
   355  // encrypt encrypts and macs the data in b.
   356  func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
   357  	// mac
   358  	if hc.mac != nil {
   359  		mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:])
   360  
   361  		n := len(b.data)
   362  		b.resize(n + len(mac))
   363  		copy(b.data[n:], mac)
   364  		hc.outDigestBuf = mac
   365  	}
   366  
   367  	payload := b.data[recordHeaderLen:]
   368  
   369  	// encrypt
   370  	if hc.cipher != nil {
   371  		switch c := hc.cipher.(type) {
   372  		case cipher.Stream:
   373  			c.XORKeyStream(payload, payload)
   374  		case cipher.AEAD:
   375  			payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
   376  			b.resize(len(b.data) + c.Overhead())
   377  			nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
   378  			payload := b.data[recordHeaderLen+explicitIVLen:]
   379  			payload = payload[:payloadLen]
   380  
   381  			copy(hc.additionalData[:], hc.seq[:])
   382  			copy(hc.additionalData[8:], b.data[:3])
   383  			hc.additionalData[11] = byte(payloadLen >> 8)
   384  			hc.additionalData[12] = byte(payloadLen)
   385  
   386  			c.Seal(payload[:0], nonce, payload, hc.additionalData[:])
   387  		case cbcMode:
   388  			blockSize := c.BlockSize()
   389  			if explicitIVLen > 0 {
   390  				c.SetIV(payload[:explicitIVLen])
   391  				payload = payload[explicitIVLen:]
   392  			}
   393  			prefix, finalBlock := padToBlockSize(payload, blockSize)
   394  			b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
   395  			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
   396  			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
   397  		default:
   398  			panic("unknown cipher type")
   399  		}
   400  	}
   401  
   402  	// update length to include MAC and any block padding needed.
   403  	n := len(b.data) - recordHeaderLen
   404  	b.data[3] = byte(n >> 8)
   405  	b.data[4] = byte(n)
   406  	hc.incSeq()
   407  
   408  	return true, 0
   409  }
   410  
   411  // A block is a simple data buffer.
   412  type block struct {
   413  	data []byte
   414  	off  int // index for Read
   415  	link *block
   416  }
   417  
   418  // resize resizes block to be n bytes, growing if necessary.
   419  func (b *block) resize(n int) {
   420  	if n > cap(b.data) {
   421  		b.reserve(n)
   422  	}
   423  	b.data = b.data[0:n]
   424  }
   425  
   426  // reserve makes sure that block contains a capacity of at least n bytes.
   427  func (b *block) reserve(n int) {
   428  	if cap(b.data) >= n {
   429  		return
   430  	}
   431  	m := cap(b.data)
   432  	if m == 0 {
   433  		m = 1024
   434  	}
   435  	for m < n {
   436  		m *= 2
   437  	}
   438  	data := make([]byte, len(b.data), m)
   439  	copy(data, b.data)
   440  	b.data = data
   441  }
   442  
   443  // readFromUntil reads from r into b until b contains at least n bytes
   444  // or else returns an error.
   445  func (b *block) readFromUntil(r io.Reader, n int) error {
   446  	// quick case
   447  	if len(b.data) >= n {
   448  		return nil
   449  	}
   450  
   451  	// read until have enough.
   452  	b.reserve(n)
   453  	for {
   454  		m, err := r.Read(b.data[len(b.data):cap(b.data)])
   455  		b.data = b.data[0 : len(b.data)+m]
   456  		if len(b.data) >= n {
   457  			// TODO(bradfitz,agl): slightly suspicious
   458  			// that we're throwing away r.Read's err here.
   459  			break
   460  		}
   461  		if err != nil {
   462  			return err
   463  		}
   464  	}
   465  	return nil
   466  }
   467  
   468  func (b *block) Read(p []byte) (n int, err error) {
   469  	n = copy(p, b.data[b.off:])
   470  	b.off += n
   471  	return
   472  }
   473  
   474  // newBlock allocates a new block, from hc's free list if possible.
   475  func (hc *halfConn) newBlock() *block {
   476  	b := hc.bfree
   477  	if b == nil {
   478  		return new(block)
   479  	}
   480  	hc.bfree = b.link
   481  	b.link = nil
   482  	b.resize(0)
   483  	return b
   484  }
   485  
   486  // freeBlock returns a block to hc's free list.
   487  // The protocol is such that each side only has a block or two on
   488  // its free list at a time, so there's no need to worry about
   489  // trimming the list, etc.
   490  func (hc *halfConn) freeBlock(b *block) {
   491  	b.link = hc.bfree
   492  	hc.bfree = b
   493  }
   494  
   495  // splitBlock splits a block after the first n bytes,
   496  // returning a block with those n bytes and a
   497  // block with the remainder.  the latter may be nil.
   498  func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
   499  	if len(b.data) <= n {
   500  		return b, nil
   501  	}
   502  	bb := hc.newBlock()
   503  	bb.resize(len(b.data) - n)
   504  	copy(bb.data, b.data[n:])
   505  	b.data = b.data[0:n]
   506  	return b, bb
   507  }
   508  
   509  // RecordHeaderError results when a TLS record header is invalid.
   510  type RecordHeaderError struct {
   511  	// Msg contains a human readable string that describes the error.
   512  	Msg string
   513  	// RecordHeader contains the five bytes of TLS record header that
   514  	// triggered the error.
   515  	RecordHeader [5]byte
   516  }
   517  
   518  func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
   519  
   520  func (c *Conn) newRecordHeaderError(msg string) (err RecordHeaderError) {
   521  	err.Msg = msg
   522  	copy(err.RecordHeader[:], c.rawInput.data)
   523  	return err
   524  }
   525  
   526  // readRecord reads the next TLS record from the connection
   527  // and updates the record layer state.
   528  // c.in.Mutex <= L; c.input == nil.
   529  func (c *Conn) readRecord(want recordType) error {
   530  	// Caller must be in sync with connection:
   531  	// handshake data if handshake not yet completed,
   532  	// else application data.  (We don't support renegotiation.)
   533  	switch want {
   534  	default:
   535  		c.sendAlert(alertInternalError)
   536  		return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
   537  	case recordTypeHandshake, recordTypeChangeCipherSpec:
   538  		if c.handshakeComplete {
   539  			c.sendAlert(alertInternalError)
   540  			return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested after handshake complete"))
   541  		}
   542  	case recordTypeApplicationData:
   543  		if !c.handshakeComplete {
   544  			c.sendAlert(alertInternalError)
   545  			return c.in.setErrorLocked(errors.New("tls: application data record requested before handshake complete"))
   546  		}
   547  	}
   548  
   549  Again:
   550  	if c.rawInput == nil {
   551  		c.rawInput = c.in.newBlock()
   552  	}
   553  	b := c.rawInput
   554  
   555  	// Read header, payload.
   556  	if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
   557  		// RFC suggests that EOF without an alertCloseNotify is
   558  		// an error, but popular web sites seem to do this,
   559  		// so we can't make it an error.
   560  		// if err == io.EOF {
   561  		// 	err = io.ErrUnexpectedEOF
   562  		// }
   563  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   564  			c.in.setErrorLocked(err)
   565  		}
   566  		return err
   567  	}
   568  	typ := recordType(b.data[0])
   569  
   570  	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
   571  	// start with a uint16 length where the MSB is set and the first record
   572  	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
   573  	// an SSLv2 client.
   574  	if want == recordTypeHandshake && typ == 0x80 {
   575  		c.sendAlert(alertProtocolVersion)
   576  		return c.in.setErrorLocked(c.newRecordHeaderError("unsupported SSLv2 handshake received"))
   577  	}
   578  
   579  	vers := uint16(b.data[1])<<8 | uint16(b.data[2])
   580  	n := int(b.data[3])<<8 | int(b.data[4])
   581  	if c.haveVers && vers != c.vers {
   582  		c.sendAlert(alertProtocolVersion)
   583  		msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers)
   584  		return c.in.setErrorLocked(c.newRecordHeaderError(msg))
   585  	}
   586  	if n > maxCiphertext {
   587  		c.sendAlert(alertRecordOverflow)
   588  		msg := fmt.Sprintf("oversized record received with length %d", n)
   589  		return c.in.setErrorLocked(c.newRecordHeaderError(msg))
   590  	}
   591  	if !c.haveVers {
   592  		// First message, be extra suspicious: this might not be a TLS
   593  		// client. Bail out before reading a full 'body', if possible.
   594  		// The current max version is 3.3 so if the version is >= 16.0,
   595  		// it's probably not real.
   596  		if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 {
   597  			c.sendAlert(alertUnexpectedMessage)
   598  			return c.in.setErrorLocked(c.newRecordHeaderError("first record does not look like a TLS handshake"))
   599  		}
   600  	}
   601  	if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
   602  		if err == io.EOF {
   603  			err = io.ErrUnexpectedEOF
   604  		}
   605  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   606  			c.in.setErrorLocked(err)
   607  		}
   608  		return err
   609  	}
   610  
   611  	// Process message.
   612  	b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
   613  	ok, off, err := c.in.decrypt(b)
   614  	if !ok {
   615  		c.in.setErrorLocked(c.sendAlert(err))
   616  	}
   617  	b.off = off
   618  	data := b.data[b.off:]
   619  	if len(data) > maxPlaintext {
   620  		err := c.sendAlert(alertRecordOverflow)
   621  		c.in.freeBlock(b)
   622  		return c.in.setErrorLocked(err)
   623  	}
   624  
   625  	switch typ {
   626  	default:
   627  		c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   628  
   629  	case recordTypeAlert:
   630  		if len(data) != 2 {
   631  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   632  			break
   633  		}
   634  		if alert(data[1]) == alertCloseNotify {
   635  			c.in.setErrorLocked(io.EOF)
   636  			break
   637  		}
   638  		switch data[0] {
   639  		case alertLevelWarning:
   640  			// drop on the floor
   641  			c.in.freeBlock(b)
   642  			goto Again
   643  		case alertLevelError:
   644  			c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   645  		default:
   646  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   647  		}
   648  
   649  	case recordTypeChangeCipherSpec:
   650  		if typ != want || len(data) != 1 || data[0] != 1 {
   651  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   652  			break
   653  		}
   654  		err := c.in.changeCipherSpec()
   655  		if err != nil {
   656  			c.in.setErrorLocked(c.sendAlert(err.(alert)))
   657  		}
   658  
   659  	case recordTypeApplicationData:
   660  		if typ != want {
   661  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   662  			break
   663  		}
   664  		c.input = b
   665  		b = nil
   666  
   667  	case recordTypeHandshake:
   668  		// TODO(rsc): Should at least pick off connection close.
   669  		if typ != want {
   670  			return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
   671  		}
   672  		c.hand.Write(data)
   673  	}
   674  
   675  	if b != nil {
   676  		c.in.freeBlock(b)
   677  	}
   678  	return c.in.err
   679  }
   680  
   681  // sendAlert sends a TLS alert message.
   682  // c.out.Mutex <= L.
   683  func (c *Conn) sendAlertLocked(err alert) error {
   684  	switch err {
   685  	case alertNoRenegotiation, alertCloseNotify:
   686  		c.tmp[0] = alertLevelWarning
   687  	default:
   688  		c.tmp[0] = alertLevelError
   689  	}
   690  	c.tmp[1] = byte(err)
   691  	c.writeRecord(recordTypeAlert, c.tmp[0:2])
   692  	// closeNotify is a special case in that it isn't an error:
   693  	if err != alertCloseNotify {
   694  		return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
   695  	}
   696  	return nil
   697  }
   698  
   699  // sendAlert sends a TLS alert message.
   700  // L < c.out.Mutex.
   701  func (c *Conn) sendAlert(err alert) error {
   702  	c.out.Lock()
   703  	defer c.out.Unlock()
   704  	return c.sendAlertLocked(err)
   705  }
   706  
   707  // writeRecord writes a TLS record with the given type and payload
   708  // to the connection and updates the record layer state.
   709  // c.out.Mutex <= L.
   710  func (c *Conn) writeRecord(typ recordType, data []byte) (n int, err error) {
   711  	b := c.out.newBlock()
   712  	for len(data) > 0 {
   713  		m := len(data)
   714  		if m > maxPlaintext {
   715  			m = maxPlaintext
   716  		}
   717  		explicitIVLen := 0
   718  		explicitIVIsSeq := false
   719  
   720  		var cbc cbcMode
   721  		if c.out.version >= VersionTLS11 {
   722  			var ok bool
   723  			if cbc, ok = c.out.cipher.(cbcMode); ok {
   724  				explicitIVLen = cbc.BlockSize()
   725  			}
   726  		}
   727  		if explicitIVLen == 0 {
   728  			if _, ok := c.out.cipher.(cipher.AEAD); ok {
   729  				explicitIVLen = 8
   730  				// The AES-GCM construction in TLS has an
   731  				// explicit nonce so that the nonce can be
   732  				// random. However, the nonce is only 8 bytes
   733  				// which is too small for a secure, random
   734  				// nonce. Therefore we use the sequence number
   735  				// as the nonce.
   736  				explicitIVIsSeq = true
   737  			}
   738  		}
   739  		b.resize(recordHeaderLen + explicitIVLen + m)
   740  		b.data[0] = byte(typ)
   741  		vers := c.vers
   742  		if vers == 0 {
   743  			// Some TLS servers fail if the record version is
   744  			// greater than TLS 1.0 for the initial ClientHello.
   745  			vers = VersionTLS10
   746  		}
   747  		b.data[1] = byte(vers >> 8)
   748  		b.data[2] = byte(vers)
   749  		b.data[3] = byte(m >> 8)
   750  		b.data[4] = byte(m)
   751  		if explicitIVLen > 0 {
   752  			explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
   753  			if explicitIVIsSeq {
   754  				copy(explicitIV, c.out.seq[:])
   755  			} else {
   756  				if _, err = io.ReadFull(c.config.rand(), explicitIV); err != nil {
   757  					break
   758  				}
   759  			}
   760  		}
   761  		copy(b.data[recordHeaderLen+explicitIVLen:], data)
   762  		c.out.encrypt(b, explicitIVLen)
   763  		_, err = c.conn.Write(b.data)
   764  		if err != nil {
   765  			break
   766  		}
   767  		n += m
   768  		data = data[m:]
   769  	}
   770  	c.out.freeBlock(b)
   771  
   772  	if typ == recordTypeChangeCipherSpec {
   773  		err = c.out.changeCipherSpec()
   774  		if err != nil {
   775  			// Cannot call sendAlert directly,
   776  			// because we already hold c.out.Mutex.
   777  			c.tmp[0] = alertLevelError
   778  			c.tmp[1] = byte(err.(alert))
   779  			c.writeRecord(recordTypeAlert, c.tmp[0:2])
   780  			return n, c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
   781  		}
   782  	}
   783  	return
   784  }
   785  
   786  // readHandshake reads the next handshake message from
   787  // the record layer.
   788  // c.in.Mutex < L; c.out.Mutex < L.
   789  func (c *Conn) readHandshake() (interface{}, error) {
   790  	for c.hand.Len() < 4 {
   791  		if err := c.in.err; err != nil {
   792  			return nil, err
   793  		}
   794  		if err := c.readRecord(recordTypeHandshake); err != nil {
   795  			return nil, err
   796  		}
   797  	}
   798  
   799  	data := c.hand.Bytes()
   800  	n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
   801  	if n > maxHandshake {
   802  		return nil, c.in.setErrorLocked(c.sendAlert(alertInternalError))
   803  	}
   804  	for c.hand.Len() < 4+n {
   805  		if err := c.in.err; err != nil {
   806  			return nil, err
   807  		}
   808  		if err := c.readRecord(recordTypeHandshake); err != nil {
   809  			return nil, err
   810  		}
   811  	}
   812  	data = c.hand.Next(4 + n)
   813  	var m handshakeMessage
   814  	switch data[0] {
   815  	case typeClientHello:
   816  		m = new(clientHelloMsg)
   817  	case typeServerHello:
   818  		m = new(serverHelloMsg)
   819  	case typeNewSessionTicket:
   820  		m = new(newSessionTicketMsg)
   821  	case typeCertificate:
   822  		m = new(certificateMsg)
   823  	case typeCertificateRequest:
   824  		m = &certificateRequestMsg{
   825  			hasSignatureAndHash: c.vers >= VersionTLS12,
   826  		}
   827  	case typeCertificateStatus:
   828  		m = new(certificateStatusMsg)
   829  	case typeServerKeyExchange:
   830  		m = new(serverKeyExchangeMsg)
   831  	case typeServerHelloDone:
   832  		m = new(serverHelloDoneMsg)
   833  	case typeClientKeyExchange:
   834  		m = new(clientKeyExchangeMsg)
   835  	case typeCertificateVerify:
   836  		m = &certificateVerifyMsg{
   837  			hasSignatureAndHash: c.vers >= VersionTLS12,
   838  		}
   839  	case typeNextProtocol:
   840  		m = new(nextProtoMsg)
   841  	case typeFinished:
   842  		m = new(finishedMsg)
   843  	default:
   844  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   845  	}
   846  
   847  	// The handshake message unmarshallers
   848  	// expect to be able to keep references to data,
   849  	// so pass in a fresh copy that won't be overwritten.
   850  	data = append([]byte(nil), data...)
   851  
   852  	if !m.unmarshal(data) {
   853  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   854  	}
   855  	return m, nil
   856  }
   857  
   858  // Write writes data to the connection.
   859  func (c *Conn) Write(b []byte) (int, error) {
   860  	if err := c.Handshake(); err != nil {
   861  		return 0, err
   862  	}
   863  
   864  	c.out.Lock()
   865  	defer c.out.Unlock()
   866  
   867  	if err := c.out.err; err != nil {
   868  		return 0, err
   869  	}
   870  
   871  	if !c.handshakeComplete {
   872  		return 0, alertInternalError
   873  	}
   874  
   875  	// SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
   876  	// attack when using block mode ciphers due to predictable IVs.
   877  	// This can be prevented by splitting each Application Data
   878  	// record into two records, effectively randomizing the IV.
   879  	//
   880  	// http://www.openssl.org/~bodo/tls-cbc.txt
   881  	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
   882  	// http://www.imperialviolet.org/2012/01/15/beastfollowup.html
   883  
   884  	var m int
   885  	if len(b) > 1 && c.vers <= VersionTLS10 {
   886  		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
   887  			n, err := c.writeRecord(recordTypeApplicationData, b[:1])
   888  			if err != nil {
   889  				return n, c.out.setErrorLocked(err)
   890  			}
   891  			m, b = 1, b[1:]
   892  		}
   893  	}
   894  
   895  	n, err := c.writeRecord(recordTypeApplicationData, b)
   896  	return n + m, c.out.setErrorLocked(err)
   897  }
   898  
   899  // Read can be made to time out and return a net.Error with Timeout() == true
   900  // after a fixed time limit; see SetDeadline and SetReadDeadline.
   901  func (c *Conn) Read(b []byte) (n int, err error) {
   902  	if err = c.Handshake(); err != nil {
   903  		return
   904  	}
   905  	if len(b) == 0 {
   906  		// Put this after Handshake, in case people were calling
   907  		// Read(nil) for the side effect of the Handshake.
   908  		return
   909  	}
   910  
   911  	c.in.Lock()
   912  	defer c.in.Unlock()
   913  
   914  	// Some OpenSSL servers send empty records in order to randomize the
   915  	// CBC IV. So this loop ignores a limited number of empty records.
   916  	const maxConsecutiveEmptyRecords = 100
   917  	for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
   918  		for c.input == nil && c.in.err == nil {
   919  			if err := c.readRecord(recordTypeApplicationData); err != nil {
   920  				// Soft error, like EAGAIN
   921  				return 0, err
   922  			}
   923  		}
   924  		if err := c.in.err; err != nil {
   925  			return 0, err
   926  		}
   927  
   928  		n, err = c.input.Read(b)
   929  		if c.input.off >= len(c.input.data) {
   930  			c.in.freeBlock(c.input)
   931  			c.input = nil
   932  		}
   933  
   934  		// If a close-notify alert is waiting, read it so that
   935  		// we can return (n, EOF) instead of (n, nil), to signal
   936  		// to the HTTP response reading goroutine that the
   937  		// connection is now closed. This eliminates a race
   938  		// where the HTTP response reading goroutine would
   939  		// otherwise not observe the EOF until its next read,
   940  		// by which time a client goroutine might have already
   941  		// tried to reuse the HTTP connection for a new
   942  		// request.
   943  		// See https://codereview.appspot.com/76400046
   944  		// and https://golang.org/issue/3514
   945  		if ri := c.rawInput; ri != nil &&
   946  			n != 0 && err == nil &&
   947  			c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
   948  			if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
   949  				err = recErr // will be io.EOF on closeNotify
   950  			}
   951  		}
   952  
   953  		if n != 0 || err != nil {
   954  			return n, err
   955  		}
   956  	}
   957  
   958  	return 0, io.ErrNoProgress
   959  }
   960  
   961  // Close closes the connection.
   962  func (c *Conn) Close() error {
   963  	var alertErr error
   964  
   965  	c.handshakeMutex.Lock()
   966  	defer c.handshakeMutex.Unlock()
   967  	if c.handshakeComplete {
   968  		alertErr = c.sendAlert(alertCloseNotify)
   969  	}
   970  
   971  	if err := c.conn.Close(); err != nil {
   972  		return err
   973  	}
   974  	return alertErr
   975  }
   976  
   977  // Handshake runs the client or server handshake
   978  // protocol if it has not yet been run.
   979  // Most uses of this package need not call Handshake
   980  // explicitly: the first Read or Write will call it automatically.
   981  func (c *Conn) Handshake() error {
   982  	c.handshakeMutex.Lock()
   983  	defer c.handshakeMutex.Unlock()
   984  	if err := c.handshakeErr; err != nil {
   985  		return err
   986  	}
   987  	if c.handshakeComplete {
   988  		return nil
   989  	}
   990  
   991  	if c.isClient {
   992  		c.handshakeErr = c.clientHandshake()
   993  	} else {
   994  		c.handshakeErr = c.serverHandshake()
   995  	}
   996  	return c.handshakeErr
   997  }
   998  
   999  // ConnectionState returns basic TLS details about the connection.
  1000  func (c *Conn) ConnectionState() ConnectionState {
  1001  	c.handshakeMutex.Lock()
  1002  	defer c.handshakeMutex.Unlock()
  1003  
  1004  	var state ConnectionState
  1005  	state.HandshakeComplete = c.handshakeComplete
  1006  	if c.handshakeComplete {
  1007  		state.Version = c.vers
  1008  		state.NegotiatedProtocol = c.clientProtocol
  1009  		state.DidResume = c.didResume
  1010  		state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
  1011  		state.CipherSuite = c.cipherSuite
  1012  		state.PeerCertificates = c.peerCertificates
  1013  		state.VerifiedChains = c.verifiedChains
  1014  		state.ServerName = c.serverName
  1015  		state.SignedCertificateTimestamps = c.scts
  1016  		state.OCSPResponse = c.ocspResponse
  1017  		if !c.didResume {
  1018  			state.TLSUnique = c.firstFinished[:]
  1019  		}
  1020  	}
  1021  
  1022  	return state
  1023  }
  1024  
  1025  // OCSPResponse returns the stapled OCSP response from the TLS server, if
  1026  // any. (Only valid for client connections.)
  1027  func (c *Conn) OCSPResponse() []byte {
  1028  	c.handshakeMutex.Lock()
  1029  	defer c.handshakeMutex.Unlock()
  1030  
  1031  	return c.ocspResponse
  1032  }
  1033  
  1034  // VerifyHostname checks that the peer certificate chain is valid for
  1035  // connecting to host.  If so, it returns nil; if not, it returns an error
  1036  // describing the problem.
  1037  func (c *Conn) VerifyHostname(host string) error {
  1038  	c.handshakeMutex.Lock()
  1039  	defer c.handshakeMutex.Unlock()
  1040  	if !c.isClient {
  1041  		return errors.New("tls: VerifyHostname called on TLS server connection")
  1042  	}
  1043  	if !c.handshakeComplete {
  1044  		return errors.New("tls: handshake has not yet been performed")
  1045  	}
  1046  	if len(c.verifiedChains) == 0 {
  1047  		return errors.New("tls: handshake did not verify certificate chain")
  1048  	}
  1049  	return c.peerCertificates[0].VerifyHostname(host)
  1050  }