github.com/mdempsky/go@v0.0.0-20151201204031-5dd372bd1e70/src/image/jpeg/scan.go (about) 1 // Copyright 2012 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package jpeg 6 7 import ( 8 "image" 9 ) 10 11 // makeImg allocates and initializes the destination image. 12 func (d *decoder) makeImg(mxx, myy int) { 13 if d.nComp == 1 { 14 m := image.NewGray(image.Rect(0, 0, 8*mxx, 8*myy)) 15 d.img1 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.Gray) 16 return 17 } 18 19 h0 := d.comp[0].h 20 v0 := d.comp[0].v 21 hRatio := h0 / d.comp[1].h 22 vRatio := v0 / d.comp[1].v 23 var subsampleRatio image.YCbCrSubsampleRatio 24 switch hRatio<<4 | vRatio { 25 case 0x11: 26 subsampleRatio = image.YCbCrSubsampleRatio444 27 case 0x12: 28 subsampleRatio = image.YCbCrSubsampleRatio440 29 case 0x21: 30 subsampleRatio = image.YCbCrSubsampleRatio422 31 case 0x22: 32 subsampleRatio = image.YCbCrSubsampleRatio420 33 case 0x41: 34 subsampleRatio = image.YCbCrSubsampleRatio411 35 case 0x42: 36 subsampleRatio = image.YCbCrSubsampleRatio410 37 default: 38 panic("unreachable") 39 } 40 m := image.NewYCbCr(image.Rect(0, 0, 8*h0*mxx, 8*v0*myy), subsampleRatio) 41 d.img3 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.YCbCr) 42 43 if d.nComp == 4 { 44 h3, v3 := d.comp[3].h, d.comp[3].v 45 d.blackPix = make([]byte, 8*h3*mxx*8*v3*myy) 46 d.blackStride = 8 * h3 * mxx 47 } 48 } 49 50 // Specified in section B.2.3. 51 func (d *decoder) processSOS(n int) error { 52 if d.nComp == 0 { 53 return FormatError("missing SOF marker") 54 } 55 if n < 6 || 4+2*d.nComp < n || n%2 != 0 { 56 return FormatError("SOS has wrong length") 57 } 58 if err := d.readFull(d.tmp[:n]); err != nil { 59 return err 60 } 61 nComp := int(d.tmp[0]) 62 if n != 4+2*nComp { 63 return FormatError("SOS length inconsistent with number of components") 64 } 65 var scan [maxComponents]struct { 66 compIndex uint8 67 td uint8 // DC table selector. 68 ta uint8 // AC table selector. 69 } 70 totalHV := 0 71 for i := 0; i < nComp; i++ { 72 cs := d.tmp[1+2*i] // Component selector. 73 compIndex := -1 74 for j, comp := range d.comp[:d.nComp] { 75 if cs == comp.c { 76 compIndex = j 77 } 78 } 79 if compIndex < 0 { 80 return FormatError("unknown component selector") 81 } 82 scan[i].compIndex = uint8(compIndex) 83 // Section B.2.3 states that "the value of Cs_j shall be different from 84 // the values of Cs_1 through Cs_(j-1)". Since we have previously 85 // verified that a frame's component identifiers (C_i values in section 86 // B.2.2) are unique, it suffices to check that the implicit indexes 87 // into d.comp are unique. 88 for j := 0; j < i; j++ { 89 if scan[i].compIndex == scan[j].compIndex { 90 return FormatError("repeated component selector") 91 } 92 } 93 totalHV += d.comp[compIndex].h * d.comp[compIndex].v 94 95 scan[i].td = d.tmp[2+2*i] >> 4 96 if scan[i].td > maxTh { 97 return FormatError("bad Td value") 98 } 99 scan[i].ta = d.tmp[2+2*i] & 0x0f 100 if scan[i].ta > maxTh { 101 return FormatError("bad Ta value") 102 } 103 } 104 // Section B.2.3 states that if there is more than one component then the 105 // total H*V values in a scan must be <= 10. 106 if d.nComp > 1 && totalHV > 10 { 107 return FormatError("total sampling factors too large") 108 } 109 110 // zigStart and zigEnd are the spectral selection bounds. 111 // ah and al are the successive approximation high and low values. 112 // The spec calls these values Ss, Se, Ah and Al. 113 // 114 // For progressive JPEGs, these are the two more-or-less independent 115 // aspects of progression. Spectral selection progression is when not 116 // all of a block's 64 DCT coefficients are transmitted in one pass. 117 // For example, three passes could transmit coefficient 0 (the DC 118 // component), coefficients 1-5, and coefficients 6-63, in zig-zag 119 // order. Successive approximation is when not all of the bits of a 120 // band of coefficients are transmitted in one pass. For example, 121 // three passes could transmit the 6 most significant bits, followed 122 // by the second-least significant bit, followed by the least 123 // significant bit. 124 // 125 // For baseline JPEGs, these parameters are hard-coded to 0/63/0/0. 126 zigStart, zigEnd, ah, al := int32(0), int32(blockSize-1), uint32(0), uint32(0) 127 if d.progressive { 128 zigStart = int32(d.tmp[1+2*nComp]) 129 zigEnd = int32(d.tmp[2+2*nComp]) 130 ah = uint32(d.tmp[3+2*nComp] >> 4) 131 al = uint32(d.tmp[3+2*nComp] & 0x0f) 132 if (zigStart == 0 && zigEnd != 0) || zigStart > zigEnd || blockSize <= zigEnd { 133 return FormatError("bad spectral selection bounds") 134 } 135 if zigStart != 0 && nComp != 1 { 136 return FormatError("progressive AC coefficients for more than one component") 137 } 138 if ah != 0 && ah != al+1 { 139 return FormatError("bad successive approximation values") 140 } 141 } 142 143 // mxx and myy are the number of MCUs (Minimum Coded Units) in the image. 144 h0, v0 := d.comp[0].h, d.comp[0].v // The h and v values from the Y components. 145 mxx := (d.width + 8*h0 - 1) / (8 * h0) 146 myy := (d.height + 8*v0 - 1) / (8 * v0) 147 if d.img1 == nil && d.img3 == nil { 148 d.makeImg(mxx, myy) 149 } 150 if d.progressive { 151 for i := 0; i < nComp; i++ { 152 compIndex := scan[i].compIndex 153 if d.progCoeffs[compIndex] == nil { 154 d.progCoeffs[compIndex] = make([]block, mxx*myy*d.comp[compIndex].h*d.comp[compIndex].v) 155 } 156 } 157 } 158 159 d.bits = bits{} 160 mcu, expectedRST := 0, uint8(rst0Marker) 161 var ( 162 // b is the decoded coefficients, in natural (not zig-zag) order. 163 b block 164 dc [maxComponents]int32 165 // bx and by are the location of the current block, in units of 8x8 166 // blocks: the third block in the first row has (bx, by) = (2, 0). 167 bx, by int 168 blockCount int 169 ) 170 for my := 0; my < myy; my++ { 171 for mx := 0; mx < mxx; mx++ { 172 for i := 0; i < nComp; i++ { 173 compIndex := scan[i].compIndex 174 hi := d.comp[compIndex].h 175 vi := d.comp[compIndex].v 176 qt := &d.quant[d.comp[compIndex].tq] 177 for j := 0; j < hi*vi; j++ { 178 // The blocks are traversed one MCU at a time. For 4:2:0 chroma 179 // subsampling, there are four Y 8x8 blocks in every 16x16 MCU. 180 // 181 // For a baseline 32x16 pixel image, the Y blocks visiting order is: 182 // 0 1 4 5 183 // 2 3 6 7 184 // 185 // For progressive images, the interleaved scans (those with nComp > 1) 186 // are traversed as above, but non-interleaved scans are traversed left 187 // to right, top to bottom: 188 // 0 1 2 3 189 // 4 5 6 7 190 // Only DC scans (zigStart == 0) can be interleaved. AC scans must have 191 // only one component. 192 // 193 // To further complicate matters, for non-interleaved scans, there is no 194 // data for any blocks that are inside the image at the MCU level but 195 // outside the image at the pixel level. For example, a 24x16 pixel 4:2:0 196 // progressive image consists of two 16x16 MCUs. The interleaved scans 197 // will process 8 Y blocks: 198 // 0 1 4 5 199 // 2 3 6 7 200 // The non-interleaved scans will process only 6 Y blocks: 201 // 0 1 2 202 // 3 4 5 203 if nComp != 1 { 204 bx = hi*mx + j%hi 205 by = vi*my + j/hi 206 } else { 207 q := mxx * hi 208 bx = blockCount % q 209 by = blockCount / q 210 blockCount++ 211 if bx*8 >= d.width || by*8 >= d.height { 212 continue 213 } 214 } 215 216 // Load the previous partially decoded coefficients, if applicable. 217 if d.progressive { 218 b = d.progCoeffs[compIndex][by*mxx*hi+bx] 219 } else { 220 b = block{} 221 } 222 223 if ah != 0 { 224 if err := d.refine(&b, &d.huff[acTable][scan[i].ta], zigStart, zigEnd, 1<<al); err != nil { 225 return err 226 } 227 } else { 228 zig := zigStart 229 if zig == 0 { 230 zig++ 231 // Decode the DC coefficient, as specified in section F.2.2.1. 232 value, err := d.decodeHuffman(&d.huff[dcTable][scan[i].td]) 233 if err != nil { 234 return err 235 } 236 if value > 16 { 237 return UnsupportedError("excessive DC component") 238 } 239 dcDelta, err := d.receiveExtend(value) 240 if err != nil { 241 return err 242 } 243 dc[compIndex] += dcDelta 244 b[0] = dc[compIndex] << al 245 } 246 247 if zig <= zigEnd && d.eobRun > 0 { 248 d.eobRun-- 249 } else { 250 // Decode the AC coefficients, as specified in section F.2.2.2. 251 huff := &d.huff[acTable][scan[i].ta] 252 for ; zig <= zigEnd; zig++ { 253 value, err := d.decodeHuffman(huff) 254 if err != nil { 255 return err 256 } 257 val0 := value >> 4 258 val1 := value & 0x0f 259 if val1 != 0 { 260 zig += int32(val0) 261 if zig > zigEnd { 262 break 263 } 264 ac, err := d.receiveExtend(val1) 265 if err != nil { 266 return err 267 } 268 b[unzig[zig]] = ac << al 269 } else { 270 if val0 != 0x0f { 271 d.eobRun = uint16(1 << val0) 272 if val0 != 0 { 273 bits, err := d.decodeBits(int32(val0)) 274 if err != nil { 275 return err 276 } 277 d.eobRun |= uint16(bits) 278 } 279 d.eobRun-- 280 break 281 } 282 zig += 0x0f 283 } 284 } 285 } 286 } 287 288 if d.progressive { 289 if zigEnd != blockSize-1 || al != 0 { 290 // We haven't completely decoded this 8x8 block. Save the coefficients. 291 d.progCoeffs[compIndex][by*mxx*hi+bx] = b 292 // At this point, we could execute the rest of the loop body to dequantize and 293 // perform the inverse DCT, to save early stages of a progressive image to the 294 // *image.YCbCr buffers (the whole point of progressive encoding), but in Go, 295 // the jpeg.Decode function does not return until the entire image is decoded, 296 // so we "continue" here to avoid wasted computation. 297 continue 298 } 299 } 300 301 // Dequantize, perform the inverse DCT and store the block to the image. 302 for zig := 0; zig < blockSize; zig++ { 303 b[unzig[zig]] *= qt[zig] 304 } 305 idct(&b) 306 dst, stride := []byte(nil), 0 307 if d.nComp == 1 { 308 dst, stride = d.img1.Pix[8*(by*d.img1.Stride+bx):], d.img1.Stride 309 } else { 310 switch compIndex { 311 case 0: 312 dst, stride = d.img3.Y[8*(by*d.img3.YStride+bx):], d.img3.YStride 313 case 1: 314 dst, stride = d.img3.Cb[8*(by*d.img3.CStride+bx):], d.img3.CStride 315 case 2: 316 dst, stride = d.img3.Cr[8*(by*d.img3.CStride+bx):], d.img3.CStride 317 case 3: 318 dst, stride = d.blackPix[8*(by*d.blackStride+bx):], d.blackStride 319 default: 320 return UnsupportedError("too many components") 321 } 322 } 323 // Level shift by +128, clip to [0, 255], and write to dst. 324 for y := 0; y < 8; y++ { 325 y8 := y * 8 326 yStride := y * stride 327 for x := 0; x < 8; x++ { 328 c := b[y8+x] 329 if c < -128 { 330 c = 0 331 } else if c > 127 { 332 c = 255 333 } else { 334 c += 128 335 } 336 dst[yStride+x] = uint8(c) 337 } 338 } 339 } // for j 340 } // for i 341 mcu++ 342 if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy { 343 // A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input, 344 // but this one assumes well-formed input, and hence the restart marker follows immediately. 345 if err := d.readFull(d.tmp[:2]); err != nil { 346 return err 347 } 348 if d.tmp[0] != 0xff || d.tmp[1] != expectedRST { 349 return FormatError("bad RST marker") 350 } 351 expectedRST++ 352 if expectedRST == rst7Marker+1 { 353 expectedRST = rst0Marker 354 } 355 // Reset the Huffman decoder. 356 d.bits = bits{} 357 // Reset the DC components, as per section F.2.1.3.1. 358 dc = [maxComponents]int32{} 359 // Reset the progressive decoder state, as per section G.1.2.2. 360 d.eobRun = 0 361 } 362 } // for mx 363 } // for my 364 365 return nil 366 } 367 368 // refine decodes a successive approximation refinement block, as specified in 369 // section G.1.2. 370 func (d *decoder) refine(b *block, h *huffman, zigStart, zigEnd, delta int32) error { 371 // Refining a DC component is trivial. 372 if zigStart == 0 { 373 if zigEnd != 0 { 374 panic("unreachable") 375 } 376 bit, err := d.decodeBit() 377 if err != nil { 378 return err 379 } 380 if bit { 381 b[0] |= delta 382 } 383 return nil 384 } 385 386 // Refining AC components is more complicated; see sections G.1.2.2 and G.1.2.3. 387 zig := zigStart 388 if d.eobRun == 0 { 389 loop: 390 for ; zig <= zigEnd; zig++ { 391 z := int32(0) 392 value, err := d.decodeHuffman(h) 393 if err != nil { 394 return err 395 } 396 val0 := value >> 4 397 val1 := value & 0x0f 398 399 switch val1 { 400 case 0: 401 if val0 != 0x0f { 402 d.eobRun = uint16(1 << val0) 403 if val0 != 0 { 404 bits, err := d.decodeBits(int32(val0)) 405 if err != nil { 406 return err 407 } 408 d.eobRun |= uint16(bits) 409 } 410 break loop 411 } 412 case 1: 413 z = delta 414 bit, err := d.decodeBit() 415 if err != nil { 416 return err 417 } 418 if !bit { 419 z = -z 420 } 421 default: 422 return FormatError("unexpected Huffman code") 423 } 424 425 zig, err = d.refineNonZeroes(b, zig, zigEnd, int32(val0), delta) 426 if err != nil { 427 return err 428 } 429 if zig > zigEnd { 430 return FormatError("too many coefficients") 431 } 432 if z != 0 { 433 b[unzig[zig]] = z 434 } 435 } 436 } 437 if d.eobRun > 0 { 438 d.eobRun-- 439 if _, err := d.refineNonZeroes(b, zig, zigEnd, -1, delta); err != nil { 440 return err 441 } 442 } 443 return nil 444 } 445 446 // refineNonZeroes refines non-zero entries of b in zig-zag order. If nz >= 0, 447 // the first nz zero entries are skipped over. 448 func (d *decoder) refineNonZeroes(b *block, zig, zigEnd, nz, delta int32) (int32, error) { 449 for ; zig <= zigEnd; zig++ { 450 u := unzig[zig] 451 if b[u] == 0 { 452 if nz == 0 { 453 break 454 } 455 nz-- 456 continue 457 } 458 bit, err := d.decodeBit() 459 if err != nil { 460 return 0, err 461 } 462 if !bit { 463 continue 464 } 465 if b[u] >= 0 { 466 b[u] += delta 467 } else { 468 b[u] -= delta 469 } 470 } 471 return zig, nil 472 }