github.com/mdempsky/go@v0.0.0-20151201204031-5dd372bd1e70/src/math/big/decimal.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This file implements multi-precision decimal numbers. 6 // The implementation is for float to decimal conversion only; 7 // not general purpose use. 8 // The only operations are precise conversion from binary to 9 // decimal and rounding. 10 // 11 // The key observation and some code (shr) is borrowed from 12 // strconv/decimal.go: conversion of binary fractional values can be done 13 // precisely in multi-precision decimal because 2 divides 10 (required for 14 // >> of mantissa); but conversion of decimal floating-point values cannot 15 // be done precisely in binary representation. 16 // 17 // In contrast to strconv/decimal.go, only right shift is implemented in 18 // decimal format - left shift can be done precisely in binary format. 19 20 package big 21 22 // A decimal represents an unsigned floating-point number in decimal representation. 23 // The value of a non-zero decimal d is d.mant * 10**d.exp with 0.5 <= d.mant < 1, 24 // with the most-significant mantissa digit at index 0. For the zero decimal, the 25 // mantissa length and exponent are 0. 26 // The zero value for decimal represents a ready-to-use 0.0. 27 type decimal struct { 28 mant []byte // mantissa ASCII digits, big-endian 29 exp int // exponent 30 } 31 32 // at returns the i'th mantissa digit, starting with the most significant digit at 0. 33 func (d *decimal) at(i int) byte { 34 if 0 <= i && i < len(d.mant) { 35 return d.mant[i] 36 } 37 return '0' 38 } 39 40 // Maximum shift amount that can be done in one pass without overflow. 41 // A Word has _W bits and (1<<maxShift - 1)*10 + 9 must fit into Word. 42 const maxShift = _W - 4 43 44 // TODO(gri) Since we know the desired decimal precision when converting 45 // a floating-point number, we may be able to limit the number of decimal 46 // digits that need to be computed by init by providing an additional 47 // precision argument and keeping track of when a number was truncated early 48 // (equivalent of "sticky bit" in binary rounding). 49 50 // TODO(gri) Along the same lines, enforce some limit to shift magnitudes 51 // to avoid "infinitely" long running conversions (until we run out of space). 52 53 // Init initializes x to the decimal representation of m << shift (for 54 // shift >= 0), or m >> -shift (for shift < 0). 55 func (x *decimal) init(m nat, shift int) { 56 // special case 0 57 if len(m) == 0 { 58 x.mant = x.mant[:0] 59 x.exp = 0 60 return 61 } 62 63 // Optimization: If we need to shift right, first remove any trailing 64 // zero bits from m to reduce shift amount that needs to be done in 65 // decimal format (since that is likely slower). 66 if shift < 0 { 67 ntz := m.trailingZeroBits() 68 s := uint(-shift) 69 if s >= ntz { 70 s = ntz // shift at most ntz bits 71 } 72 m = nat(nil).shr(m, s) 73 shift += int(s) 74 } 75 76 // Do any shift left in binary representation. 77 if shift > 0 { 78 m = nat(nil).shl(m, uint(shift)) 79 shift = 0 80 } 81 82 // Convert mantissa into decimal representation. 83 s := m.utoa(10) 84 n := len(s) 85 x.exp = n 86 // Trim trailing zeros; instead the exponent is tracking 87 // the decimal point independent of the number of digits. 88 for n > 0 && s[n-1] == '0' { 89 n-- 90 } 91 x.mant = append(x.mant[:0], s[:n]...) 92 93 // Do any (remaining) shift right in decimal representation. 94 if shift < 0 { 95 for shift < -maxShift { 96 shr(x, maxShift) 97 shift += maxShift 98 } 99 shr(x, uint(-shift)) 100 } 101 } 102 103 // shr implements x >> s, for s <= maxShift. 104 func shr(x *decimal, s uint) { 105 // Division by 1<<s using shift-and-subtract algorithm. 106 107 // pick up enough leading digits to cover first shift 108 r := 0 // read index 109 var n Word 110 for n>>s == 0 && r < len(x.mant) { 111 ch := Word(x.mant[r]) 112 r++ 113 n = n*10 + ch - '0' 114 } 115 if n == 0 { 116 // x == 0; shouldn't get here, but handle anyway 117 x.mant = x.mant[:0] 118 return 119 } 120 for n>>s == 0 { 121 r++ 122 n *= 10 123 } 124 x.exp += 1 - r 125 126 // read a digit, write a digit 127 w := 0 // write index 128 for r < len(x.mant) { 129 ch := Word(x.mant[r]) 130 r++ 131 d := n >> s 132 n -= d << s 133 x.mant[w] = byte(d + '0') 134 w++ 135 n = n*10 + ch - '0' 136 } 137 138 // write extra digits that still fit 139 for n > 0 && w < len(x.mant) { 140 d := n >> s 141 n -= d << s 142 x.mant[w] = byte(d + '0') 143 w++ 144 n = n * 10 145 } 146 x.mant = x.mant[:w] // the number may be shorter (e.g. 1024 >> 10) 147 148 // append additional digits that didn't fit 149 for n > 0 { 150 d := n >> s 151 n -= d << s 152 x.mant = append(x.mant, byte(d+'0')) 153 n = n * 10 154 } 155 156 trim(x) 157 } 158 159 func (x *decimal) String() string { 160 if len(x.mant) == 0 { 161 return "0" 162 } 163 164 var buf []byte 165 switch { 166 case x.exp <= 0: 167 // 0.00ddd 168 buf = append(buf, "0."...) 169 buf = appendZeros(buf, -x.exp) 170 buf = append(buf, x.mant...) 171 172 case /* 0 < */ x.exp < len(x.mant): 173 // dd.ddd 174 buf = append(buf, x.mant[:x.exp]...) 175 buf = append(buf, '.') 176 buf = append(buf, x.mant[x.exp:]...) 177 178 default: // len(x.mant) <= x.exp 179 // ddd00 180 buf = append(buf, x.mant...) 181 buf = appendZeros(buf, x.exp-len(x.mant)) 182 } 183 184 return string(buf) 185 } 186 187 // appendZeros appends n 0 digits to buf and returns buf. 188 func appendZeros(buf []byte, n int) []byte { 189 for ; n > 0; n-- { 190 buf = append(buf, '0') 191 } 192 return buf 193 } 194 195 // shouldRoundUp reports if x should be rounded up 196 // if shortened to n digits. n must be a valid index 197 // for x.mant. 198 func shouldRoundUp(x *decimal, n int) bool { 199 if x.mant[n] == '5' && n+1 == len(x.mant) { 200 // exactly halfway - round to even 201 return n > 0 && (x.mant[n-1]-'0')&1 != 0 202 } 203 // not halfway - digit tells all (x.mant has no trailing zeros) 204 return x.mant[n] >= '5' 205 } 206 207 // round sets x to (at most) n mantissa digits by rounding it 208 // to the nearest even value with n (or fever) mantissa digits. 209 // If n < 0, x remains unchanged. 210 func (x *decimal) round(n int) { 211 if n < 0 || n >= len(x.mant) { 212 return // nothing to do 213 } 214 215 if shouldRoundUp(x, n) { 216 x.roundUp(n) 217 } else { 218 x.roundDown(n) 219 } 220 } 221 222 func (x *decimal) roundUp(n int) { 223 if n < 0 || n >= len(x.mant) { 224 return // nothing to do 225 } 226 // 0 <= n < len(x.mant) 227 228 // find first digit < '9' 229 for n > 0 && x.mant[n-1] >= '9' { 230 n-- 231 } 232 233 if n == 0 { 234 // all digits are '9's => round up to '1' and update exponent 235 x.mant[0] = '1' // ok since len(x.mant) > n 236 x.mant = x.mant[:1] 237 x.exp++ 238 return 239 } 240 241 // n > 0 && x.mant[n-1] < '9' 242 x.mant[n-1]++ 243 x.mant = x.mant[:n] 244 // x already trimmed 245 } 246 247 func (x *decimal) roundDown(n int) { 248 if n < 0 || n >= len(x.mant) { 249 return // nothing to do 250 } 251 x.mant = x.mant[:n] 252 trim(x) 253 } 254 255 // trim cuts off any trailing zeros from x's mantissa; 256 // they are meaningless for the value of x. 257 func trim(x *decimal) { 258 i := len(x.mant) 259 for i > 0 && x.mant[i-1] == '0' { 260 i-- 261 } 262 x.mant = x.mant[:i] 263 if i == 0 { 264 x.exp = 0 265 } 266 }