github.com/mdempsky/go@v0.0.0-20151201204031-5dd372bd1e70/src/regexp/backtrack.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // backtrack is a regular expression search with submatch
     6  // tracking for small regular expressions and texts. It allocates
     7  // a bit vector with (length of input) * (length of prog) bits,
     8  // to make sure it never explores the same (character position, instruction)
     9  // state multiple times. This limits the search to run in time linear in
    10  // the length of the test.
    11  //
    12  // backtrack is a fast replacement for the NFA code on small
    13  // regexps when onepass cannot be used.
    14  
    15  package regexp
    16  
    17  import "regexp/syntax"
    18  
    19  // A job is an entry on the backtracker's job stack. It holds
    20  // the instruction pc and the position in the input.
    21  type job struct {
    22  	pc  uint32
    23  	arg int
    24  	pos int
    25  }
    26  
    27  const (
    28  	visitedBits        = 32
    29  	maxBacktrackProg   = 500        // len(prog.Inst) <= max
    30  	maxBacktrackVector = 256 * 1024 // bit vector size <= max (bits)
    31  )
    32  
    33  // bitState holds state for the backtracker.
    34  type bitState struct {
    35  	prog *syntax.Prog
    36  
    37  	end     int
    38  	cap     []int
    39  	input   input
    40  	jobs    []job
    41  	visited []uint32
    42  }
    43  
    44  var notBacktrack *bitState = nil
    45  
    46  // maxBitStateLen returns the maximum length of a string to search with
    47  // the backtracker using prog.
    48  func maxBitStateLen(prog *syntax.Prog) int {
    49  	if !shouldBacktrack(prog) {
    50  		return 0
    51  	}
    52  	return maxBacktrackVector / len(prog.Inst)
    53  }
    54  
    55  // newBitState returns a new bitState for the given prog,
    56  // or notBacktrack if the size of the prog exceeds the maximum size that
    57  // the backtracker will be run for.
    58  func newBitState(prog *syntax.Prog) *bitState {
    59  	if !shouldBacktrack(prog) {
    60  		return notBacktrack
    61  	}
    62  	return &bitState{
    63  		prog: prog,
    64  	}
    65  }
    66  
    67  // shouldBacktrack reports whether the program is too
    68  // long for the backtracker to run.
    69  func shouldBacktrack(prog *syntax.Prog) bool {
    70  	return len(prog.Inst) <= maxBacktrackProg
    71  }
    72  
    73  // reset resets the state of the backtracker.
    74  // end is the end position in the input.
    75  // ncap is the number of captures.
    76  func (b *bitState) reset(end int, ncap int) {
    77  	b.end = end
    78  
    79  	if cap(b.jobs) == 0 {
    80  		b.jobs = make([]job, 0, 256)
    81  	} else {
    82  		b.jobs = b.jobs[:0]
    83  	}
    84  
    85  	visitedSize := (len(b.prog.Inst)*(end+1) + visitedBits - 1) / visitedBits
    86  	if cap(b.visited) < visitedSize {
    87  		b.visited = make([]uint32, visitedSize, maxBacktrackVector/visitedBits)
    88  	} else {
    89  		b.visited = b.visited[:visitedSize]
    90  		for i := range b.visited {
    91  			b.visited[i] = 0
    92  		}
    93  	}
    94  
    95  	if cap(b.cap) < ncap {
    96  		b.cap = make([]int, ncap)
    97  	} else {
    98  		b.cap = b.cap[:ncap]
    99  	}
   100  	for i := range b.cap {
   101  		b.cap[i] = -1
   102  	}
   103  }
   104  
   105  // shouldVisit reports whether the combination of (pc, pos) has not
   106  // been visited yet.
   107  func (b *bitState) shouldVisit(pc uint32, pos int) bool {
   108  	n := uint(int(pc)*(b.end+1) + pos)
   109  	if b.visited[n/visitedBits]&(1<<(n&(visitedBits-1))) != 0 {
   110  		return false
   111  	}
   112  	b.visited[n/visitedBits] |= 1 << (n & (visitedBits - 1))
   113  	return true
   114  }
   115  
   116  // push pushes (pc, pos, arg) onto the job stack if it should be
   117  // visited.
   118  func (b *bitState) push(pc uint32, pos int, arg int) {
   119  	if b.prog.Inst[pc].Op == syntax.InstFail {
   120  		return
   121  	}
   122  
   123  	// Only check shouldVisit when arg == 0.
   124  	// When arg > 0, we are continuing a previous visit.
   125  	if arg == 0 && !b.shouldVisit(pc, pos) {
   126  		return
   127  	}
   128  
   129  	b.jobs = append(b.jobs, job{pc: pc, arg: arg, pos: pos})
   130  }
   131  
   132  // tryBacktrack runs a backtracking search starting at pos.
   133  func (m *machine) tryBacktrack(b *bitState, i input, pc uint32, pos int) bool {
   134  	longest := m.re.longest
   135  	m.matched = false
   136  
   137  	b.push(pc, pos, 0)
   138  	for len(b.jobs) > 0 {
   139  		l := len(b.jobs) - 1
   140  		// Pop job off the stack.
   141  		pc := b.jobs[l].pc
   142  		pos := b.jobs[l].pos
   143  		arg := b.jobs[l].arg
   144  		b.jobs = b.jobs[:l]
   145  
   146  		// Optimization: rather than push and pop,
   147  		// code that is going to Push and continue
   148  		// the loop simply updates ip, p, and arg
   149  		// and jumps to CheckAndLoop.  We have to
   150  		// do the ShouldVisit check that Push
   151  		// would have, but we avoid the stack
   152  		// manipulation.
   153  		goto Skip
   154  	CheckAndLoop:
   155  		if !b.shouldVisit(pc, pos) {
   156  			continue
   157  		}
   158  	Skip:
   159  
   160  		inst := b.prog.Inst[pc]
   161  
   162  		switch inst.Op {
   163  		default:
   164  			panic("bad inst")
   165  		case syntax.InstFail:
   166  			panic("unexpected InstFail")
   167  		case syntax.InstAlt:
   168  			// Cannot just
   169  			//   b.push(inst.Out, pos, 0)
   170  			//   b.push(inst.Arg, pos, 0)
   171  			// If during the processing of inst.Out, we encounter
   172  			// inst.Arg via another path, we want to process it then.
   173  			// Pushing it here will inhibit that. Instead, re-push
   174  			// inst with arg==1 as a reminder to push inst.Arg out
   175  			// later.
   176  			switch arg {
   177  			case 0:
   178  				b.push(pc, pos, 1)
   179  				pc = inst.Out
   180  				goto CheckAndLoop
   181  			case 1:
   182  				// Finished inst.Out; try inst.Arg.
   183  				arg = 0
   184  				pc = inst.Arg
   185  				goto CheckAndLoop
   186  			}
   187  			panic("bad arg in InstAlt")
   188  
   189  		case syntax.InstAltMatch:
   190  			// One opcode consumes runes; the other leads to match.
   191  			switch b.prog.Inst[inst.Out].Op {
   192  			case syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
   193  				// inst.Arg is the match.
   194  				b.push(inst.Arg, pos, 0)
   195  				pc = inst.Arg
   196  				pos = b.end
   197  				goto CheckAndLoop
   198  			}
   199  			// inst.Out is the match - non-greedy
   200  			b.push(inst.Out, b.end, 0)
   201  			pc = inst.Out
   202  			goto CheckAndLoop
   203  
   204  		case syntax.InstRune:
   205  			r, width := i.step(pos)
   206  			if !inst.MatchRune(r) {
   207  				continue
   208  			}
   209  			pos += width
   210  			pc = inst.Out
   211  			goto CheckAndLoop
   212  
   213  		case syntax.InstRune1:
   214  			r, width := i.step(pos)
   215  			if r != inst.Rune[0] {
   216  				continue
   217  			}
   218  			pos += width
   219  			pc = inst.Out
   220  			goto CheckAndLoop
   221  
   222  		case syntax.InstRuneAnyNotNL:
   223  			r, width := i.step(pos)
   224  			if r == '\n' || r == endOfText {
   225  				continue
   226  			}
   227  			pos += width
   228  			pc = inst.Out
   229  			goto CheckAndLoop
   230  
   231  		case syntax.InstRuneAny:
   232  			r, width := i.step(pos)
   233  			if r == endOfText {
   234  				continue
   235  			}
   236  			pos += width
   237  			pc = inst.Out
   238  			goto CheckAndLoop
   239  
   240  		case syntax.InstCapture:
   241  			switch arg {
   242  			case 0:
   243  				if 0 <= inst.Arg && inst.Arg < uint32(len(b.cap)) {
   244  					// Capture pos to register, but save old value.
   245  					b.push(pc, b.cap[inst.Arg], 1) // come back when we're done.
   246  					b.cap[inst.Arg] = pos
   247  				}
   248  				pc = inst.Out
   249  				goto CheckAndLoop
   250  			case 1:
   251  				// Finished inst.Out; restore the old value.
   252  				b.cap[inst.Arg] = pos
   253  				continue
   254  
   255  			}
   256  			panic("bad arg in InstCapture")
   257  			continue
   258  
   259  		case syntax.InstEmptyWidth:
   260  			if syntax.EmptyOp(inst.Arg)&^i.context(pos) != 0 {
   261  				continue
   262  			}
   263  			pc = inst.Out
   264  			goto CheckAndLoop
   265  
   266  		case syntax.InstNop:
   267  			pc = inst.Out
   268  			goto CheckAndLoop
   269  
   270  		case syntax.InstMatch:
   271  			// We found a match. If the caller doesn't care
   272  			// where the match is, no point going further.
   273  			if len(b.cap) == 0 {
   274  				m.matched = true
   275  				return m.matched
   276  			}
   277  
   278  			// Record best match so far.
   279  			// Only need to check end point, because this entire
   280  			// call is only considering one start position.
   281  			if len(b.cap) > 1 {
   282  				b.cap[1] = pos
   283  			}
   284  			if !m.matched || (longest && pos > 0 && pos > m.matchcap[1]) {
   285  				copy(m.matchcap, b.cap)
   286  			}
   287  			m.matched = true
   288  
   289  			// If going for first match, we're done.
   290  			if !longest {
   291  				return m.matched
   292  			}
   293  
   294  			// If we used the entire text, no longer match is possible.
   295  			if pos == b.end {
   296  				return m.matched
   297  			}
   298  
   299  			// Otherwise, continue on in hope of a longer match.
   300  			continue
   301  		}
   302  		panic("unreachable")
   303  	}
   304  
   305  	return m.matched
   306  }
   307  
   308  // backtrack runs a backtracking search of prog on the input starting at pos.
   309  func (m *machine) backtrack(i input, pos int, end int, ncap int) bool {
   310  	if !i.canCheckPrefix() {
   311  		panic("backtrack called for a RuneReader")
   312  	}
   313  
   314  	startCond := m.re.cond
   315  	if startCond == ^syntax.EmptyOp(0) { // impossible
   316  		return false
   317  	}
   318  	if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
   319  		// Anchored match, past beginning of text.
   320  		return false
   321  	}
   322  
   323  	b := m.b
   324  	b.reset(end, ncap)
   325  
   326  	m.matchcap = m.matchcap[:ncap]
   327  	for i := range m.matchcap {
   328  		m.matchcap[i] = -1
   329  	}
   330  
   331  	// Anchored search must start at the beginning of the input
   332  	if startCond&syntax.EmptyBeginText != 0 {
   333  		if len(b.cap) > 0 {
   334  			b.cap[0] = pos
   335  		}
   336  		return m.tryBacktrack(b, i, uint32(m.p.Start), pos)
   337  	}
   338  
   339  	// Unanchored search, starting from each possible text position.
   340  	// Notice that we have to try the empty string at the end of
   341  	// the text, so the loop condition is pos <= end, not pos < end.
   342  	// This looks like it's quadratic in the size of the text,
   343  	// but we are not clearing visited between calls to TrySearch,
   344  	// so no work is duplicated and it ends up still being linear.
   345  	width := -1
   346  	for ; pos <= end && width != 0; pos += width {
   347  		if len(m.re.prefix) > 0 {
   348  			// Match requires literal prefix; fast search for it.
   349  			advance := i.index(m.re, pos)
   350  			if advance < 0 {
   351  				return false
   352  			}
   353  			pos += advance
   354  		}
   355  
   356  		if len(b.cap) > 0 {
   357  			b.cap[0] = pos
   358  		}
   359  		if m.tryBacktrack(b, i, uint32(m.p.Start), pos) {
   360  			// Match must be leftmost; done.
   361  			return true
   362  		}
   363  		_, width = i.step(pos)
   364  	}
   365  	return false
   366  }