github.com/mdempsky/go@v0.0.0-20151201204031-5dd372bd1e70/src/text/template/exec.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package template
     6  
     7  import (
     8  	"bytes"
     9  	"fmt"
    10  	"io"
    11  	"reflect"
    12  	"runtime"
    13  	"sort"
    14  	"strings"
    15  	"text/template/parse"
    16  )
    17  
    18  // state represents the state of an execution. It's not part of the
    19  // template so that multiple executions of the same template
    20  // can execute in parallel.
    21  type state struct {
    22  	tmpl *Template
    23  	wr   io.Writer
    24  	node parse.Node // current node, for errors
    25  	vars []variable // push-down stack of variable values.
    26  }
    27  
    28  // variable holds the dynamic value of a variable such as $, $x etc.
    29  type variable struct {
    30  	name  string
    31  	value reflect.Value
    32  }
    33  
    34  // push pushes a new variable on the stack.
    35  func (s *state) push(name string, value reflect.Value) {
    36  	s.vars = append(s.vars, variable{name, value})
    37  }
    38  
    39  // mark returns the length of the variable stack.
    40  func (s *state) mark() int {
    41  	return len(s.vars)
    42  }
    43  
    44  // pop pops the variable stack up to the mark.
    45  func (s *state) pop(mark int) {
    46  	s.vars = s.vars[0:mark]
    47  }
    48  
    49  // setVar overwrites the top-nth variable on the stack. Used by range iterations.
    50  func (s *state) setVar(n int, value reflect.Value) {
    51  	s.vars[len(s.vars)-n].value = value
    52  }
    53  
    54  // varValue returns the value of the named variable.
    55  func (s *state) varValue(name string) reflect.Value {
    56  	for i := s.mark() - 1; i >= 0; i-- {
    57  		if s.vars[i].name == name {
    58  			return s.vars[i].value
    59  		}
    60  	}
    61  	s.errorf("undefined variable: %s", name)
    62  	return zero
    63  }
    64  
    65  var zero reflect.Value
    66  
    67  // at marks the state to be on node n, for error reporting.
    68  func (s *state) at(node parse.Node) {
    69  	s.node = node
    70  }
    71  
    72  // doublePercent returns the string with %'s replaced by %%, if necessary,
    73  // so it can be used safely inside a Printf format string.
    74  func doublePercent(str string) string {
    75  	if strings.Contains(str, "%") {
    76  		str = strings.Replace(str, "%", "%%", -1)
    77  	}
    78  	return str
    79  }
    80  
    81  // TODO: It would be nice if ExecError was more broken down, but
    82  // the way ErrorContext embeds the template name makes the
    83  // processing too clumsy.
    84  
    85  // ExecError is the custom error type returned when Execute has an
    86  // error evaluating its template. (If a write error occurs, the actual
    87  // error is returned; it will not be of type ExecError.)
    88  type ExecError struct {
    89  	Name string // Name of template.
    90  	Err  error  // Pre-formatted error.
    91  }
    92  
    93  func (e ExecError) Error() string {
    94  	return e.Err.Error()
    95  }
    96  
    97  // errorf records an ExecError and terminates processing.
    98  func (s *state) errorf(format string, args ...interface{}) {
    99  	name := doublePercent(s.tmpl.Name())
   100  	if s.node == nil {
   101  		format = fmt.Sprintf("template: %s: %s", name, format)
   102  	} else {
   103  		location, context := s.tmpl.ErrorContext(s.node)
   104  		format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format)
   105  	}
   106  	panic(ExecError{
   107  		Name: s.tmpl.Name(),
   108  		Err:  fmt.Errorf(format, args...),
   109  	})
   110  }
   111  
   112  // writeError is the wrapper type used internally when Execute has an
   113  // error writing to its output. We strip the wrapper in errRecover.
   114  // Note that this is not an implementation of error, so it cannot escape
   115  // from the package as an error value.
   116  type writeError struct {
   117  	Err error // Original error.
   118  }
   119  
   120  func (s *state) writeError(err error) {
   121  	panic(writeError{
   122  		Err: err,
   123  	})
   124  }
   125  
   126  // errRecover is the handler that turns panics into returns from the top
   127  // level of Parse.
   128  func errRecover(errp *error) {
   129  	e := recover()
   130  	if e != nil {
   131  		switch err := e.(type) {
   132  		case runtime.Error:
   133  			panic(e)
   134  		case writeError:
   135  			*errp = err.Err // Strip the wrapper.
   136  		case ExecError:
   137  			*errp = err // Keep the wrapper.
   138  		default:
   139  			panic(e)
   140  		}
   141  	}
   142  }
   143  
   144  // ExecuteTemplate applies the template associated with t that has the given name
   145  // to the specified data object and writes the output to wr.
   146  // If an error occurs executing the template or writing its output,
   147  // execution stops, but partial results may already have been written to
   148  // the output writer.
   149  // A template may be executed safely in parallel.
   150  func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error {
   151  	var tmpl *Template
   152  	if t.common != nil {
   153  		tmpl = t.tmpl[name]
   154  	}
   155  	if tmpl == nil {
   156  		return fmt.Errorf("template: no template %q associated with template %q", name, t.name)
   157  	}
   158  	return tmpl.Execute(wr, data)
   159  }
   160  
   161  // Execute applies a parsed template to the specified data object,
   162  // and writes the output to wr.
   163  // If an error occurs executing the template or writing its output,
   164  // execution stops, but partial results may already have been written to
   165  // the output writer.
   166  // A template may be executed safely in parallel.
   167  func (t *Template) Execute(wr io.Writer, data interface{}) (err error) {
   168  	defer errRecover(&err)
   169  	value := reflect.ValueOf(data)
   170  	state := &state{
   171  		tmpl: t,
   172  		wr:   wr,
   173  		vars: []variable{{"$", value}},
   174  	}
   175  	if t.Tree == nil || t.Root == nil {
   176  		state.errorf("%q is an incomplete or empty template%s", t.Name(), t.DefinedTemplates())
   177  	}
   178  	state.walk(value, t.Root)
   179  	return
   180  }
   181  
   182  // DefinedTemplates returns a string listing the defined templates,
   183  // prefixed by the string "; defined templates are: ". If there are none,
   184  // it returns the empty string. For generating an error message here
   185  // and in html/template.
   186  func (t *Template) DefinedTemplates() string {
   187  	if t.common == nil {
   188  		return ""
   189  	}
   190  	var b bytes.Buffer
   191  	for name, tmpl := range t.tmpl {
   192  		if tmpl.Tree == nil || tmpl.Root == nil {
   193  			continue
   194  		}
   195  		if b.Len() > 0 {
   196  			b.WriteString(", ")
   197  		}
   198  		fmt.Fprintf(&b, "%q", name)
   199  	}
   200  	var s string
   201  	if b.Len() > 0 {
   202  		s = "; defined templates are: " + b.String()
   203  	}
   204  	return s
   205  }
   206  
   207  // Walk functions step through the major pieces of the template structure,
   208  // generating output as they go.
   209  func (s *state) walk(dot reflect.Value, node parse.Node) {
   210  	s.at(node)
   211  	switch node := node.(type) {
   212  	case *parse.ActionNode:
   213  		// Do not pop variables so they persist until next end.
   214  		// Also, if the action declares variables, don't print the result.
   215  		val := s.evalPipeline(dot, node.Pipe)
   216  		if len(node.Pipe.Decl) == 0 {
   217  			s.printValue(node, val)
   218  		}
   219  	case *parse.IfNode:
   220  		s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList)
   221  	case *parse.ListNode:
   222  		for _, node := range node.Nodes {
   223  			s.walk(dot, node)
   224  		}
   225  	case *parse.RangeNode:
   226  		s.walkRange(dot, node)
   227  	case *parse.TemplateNode:
   228  		s.walkTemplate(dot, node)
   229  	case *parse.TextNode:
   230  		if _, err := s.wr.Write(node.Text); err != nil {
   231  			s.writeError(err)
   232  		}
   233  	case *parse.WithNode:
   234  		s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList)
   235  	default:
   236  		s.errorf("unknown node: %s", node)
   237  	}
   238  }
   239  
   240  // walkIfOrWith walks an 'if' or 'with' node. The two control structures
   241  // are identical in behavior except that 'with' sets dot.
   242  func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) {
   243  	defer s.pop(s.mark())
   244  	val := s.evalPipeline(dot, pipe)
   245  	truth, ok := isTrue(val)
   246  	if !ok {
   247  		s.errorf("if/with can't use %v", val)
   248  	}
   249  	if truth {
   250  		if typ == parse.NodeWith {
   251  			s.walk(val, list)
   252  		} else {
   253  			s.walk(dot, list)
   254  		}
   255  	} else if elseList != nil {
   256  		s.walk(dot, elseList)
   257  	}
   258  }
   259  
   260  // IsTrue reports whether the value is 'true', in the sense of not the zero of its type,
   261  // and whether the value has a meaningful truth value. This is the definition of
   262  // truth used by if and other such actions.
   263  func IsTrue(val interface{}) (truth, ok bool) {
   264  	return isTrue(reflect.ValueOf(val))
   265  }
   266  
   267  func isTrue(val reflect.Value) (truth, ok bool) {
   268  	if !val.IsValid() {
   269  		// Something like var x interface{}, never set. It's a form of nil.
   270  		return false, true
   271  	}
   272  	switch val.Kind() {
   273  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   274  		truth = val.Len() > 0
   275  	case reflect.Bool:
   276  		truth = val.Bool()
   277  	case reflect.Complex64, reflect.Complex128:
   278  		truth = val.Complex() != 0
   279  	case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface:
   280  		truth = !val.IsNil()
   281  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   282  		truth = val.Int() != 0
   283  	case reflect.Float32, reflect.Float64:
   284  		truth = val.Float() != 0
   285  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   286  		truth = val.Uint() != 0
   287  	case reflect.Struct:
   288  		truth = true // Struct values are always true.
   289  	default:
   290  		return
   291  	}
   292  	return truth, true
   293  }
   294  
   295  func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) {
   296  	s.at(r)
   297  	defer s.pop(s.mark())
   298  	val, _ := indirect(s.evalPipeline(dot, r.Pipe))
   299  	// mark top of stack before any variables in the body are pushed.
   300  	mark := s.mark()
   301  	oneIteration := func(index, elem reflect.Value) {
   302  		// Set top var (lexically the second if there are two) to the element.
   303  		if len(r.Pipe.Decl) > 0 {
   304  			s.setVar(1, elem)
   305  		}
   306  		// Set next var (lexically the first if there are two) to the index.
   307  		if len(r.Pipe.Decl) > 1 {
   308  			s.setVar(2, index)
   309  		}
   310  		s.walk(elem, r.List)
   311  		s.pop(mark)
   312  	}
   313  	switch val.Kind() {
   314  	case reflect.Array, reflect.Slice:
   315  		if val.Len() == 0 {
   316  			break
   317  		}
   318  		for i := 0; i < val.Len(); i++ {
   319  			oneIteration(reflect.ValueOf(i), val.Index(i))
   320  		}
   321  		return
   322  	case reflect.Map:
   323  		if val.Len() == 0 {
   324  			break
   325  		}
   326  		for _, key := range sortKeys(val.MapKeys()) {
   327  			oneIteration(key, val.MapIndex(key))
   328  		}
   329  		return
   330  	case reflect.Chan:
   331  		if val.IsNil() {
   332  			break
   333  		}
   334  		i := 0
   335  		for ; ; i++ {
   336  			elem, ok := val.Recv()
   337  			if !ok {
   338  				break
   339  			}
   340  			oneIteration(reflect.ValueOf(i), elem)
   341  		}
   342  		if i == 0 {
   343  			break
   344  		}
   345  		return
   346  	case reflect.Invalid:
   347  		break // An invalid value is likely a nil map, etc. and acts like an empty map.
   348  	default:
   349  		s.errorf("range can't iterate over %v", val)
   350  	}
   351  	if r.ElseList != nil {
   352  		s.walk(dot, r.ElseList)
   353  	}
   354  }
   355  
   356  func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) {
   357  	s.at(t)
   358  	tmpl := s.tmpl.tmpl[t.Name]
   359  	if tmpl == nil {
   360  		s.errorf("template %q not defined", t.Name)
   361  	}
   362  	// Variables declared by the pipeline persist.
   363  	dot = s.evalPipeline(dot, t.Pipe)
   364  	newState := *s
   365  	newState.tmpl = tmpl
   366  	// No dynamic scoping: template invocations inherit no variables.
   367  	newState.vars = []variable{{"$", dot}}
   368  	newState.walk(dot, tmpl.Root)
   369  }
   370  
   371  // Eval functions evaluate pipelines, commands, and their elements and extract
   372  // values from the data structure by examining fields, calling methods, and so on.
   373  // The printing of those values happens only through walk functions.
   374  
   375  // evalPipeline returns the value acquired by evaluating a pipeline. If the
   376  // pipeline has a variable declaration, the variable will be pushed on the
   377  // stack. Callers should therefore pop the stack after they are finished
   378  // executing commands depending on the pipeline value.
   379  func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) {
   380  	if pipe == nil {
   381  		return
   382  	}
   383  	s.at(pipe)
   384  	for _, cmd := range pipe.Cmds {
   385  		value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg.
   386  		// If the object has type interface{}, dig down one level to the thing inside.
   387  		if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 {
   388  			value = reflect.ValueOf(value.Interface()) // lovely!
   389  		}
   390  	}
   391  	for _, variable := range pipe.Decl {
   392  		s.push(variable.Ident[0], value)
   393  	}
   394  	return value
   395  }
   396  
   397  func (s *state) notAFunction(args []parse.Node, final reflect.Value) {
   398  	if len(args) > 1 || final.IsValid() {
   399  		s.errorf("can't give argument to non-function %s", args[0])
   400  	}
   401  }
   402  
   403  func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value {
   404  	firstWord := cmd.Args[0]
   405  	switch n := firstWord.(type) {
   406  	case *parse.FieldNode:
   407  		return s.evalFieldNode(dot, n, cmd.Args, final)
   408  	case *parse.ChainNode:
   409  		return s.evalChainNode(dot, n, cmd.Args, final)
   410  	case *parse.IdentifierNode:
   411  		// Must be a function.
   412  		return s.evalFunction(dot, n, cmd, cmd.Args, final)
   413  	case *parse.PipeNode:
   414  		// Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored.
   415  		return s.evalPipeline(dot, n)
   416  	case *parse.VariableNode:
   417  		return s.evalVariableNode(dot, n, cmd.Args, final)
   418  	}
   419  	s.at(firstWord)
   420  	s.notAFunction(cmd.Args, final)
   421  	switch word := firstWord.(type) {
   422  	case *parse.BoolNode:
   423  		return reflect.ValueOf(word.True)
   424  	case *parse.DotNode:
   425  		return dot
   426  	case *parse.NilNode:
   427  		s.errorf("nil is not a command")
   428  	case *parse.NumberNode:
   429  		return s.idealConstant(word)
   430  	case *parse.StringNode:
   431  		return reflect.ValueOf(word.Text)
   432  	}
   433  	s.errorf("can't evaluate command %q", firstWord)
   434  	panic("not reached")
   435  }
   436  
   437  // idealConstant is called to return the value of a number in a context where
   438  // we don't know the type. In that case, the syntax of the number tells us
   439  // its type, and we use Go rules to resolve.  Note there is no such thing as
   440  // a uint ideal constant in this situation - the value must be of int type.
   441  func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value {
   442  	// These are ideal constants but we don't know the type
   443  	// and we have no context.  (If it was a method argument,
   444  	// we'd know what we need.) The syntax guides us to some extent.
   445  	s.at(constant)
   446  	switch {
   447  	case constant.IsComplex:
   448  		return reflect.ValueOf(constant.Complex128) // incontrovertible.
   449  	case constant.IsFloat && !isHexConstant(constant.Text) && strings.IndexAny(constant.Text, ".eE") >= 0:
   450  		return reflect.ValueOf(constant.Float64)
   451  	case constant.IsInt:
   452  		n := int(constant.Int64)
   453  		if int64(n) != constant.Int64 {
   454  			s.errorf("%s overflows int", constant.Text)
   455  		}
   456  		return reflect.ValueOf(n)
   457  	case constant.IsUint:
   458  		s.errorf("%s overflows int", constant.Text)
   459  	}
   460  	return zero
   461  }
   462  
   463  func isHexConstant(s string) bool {
   464  	return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')
   465  }
   466  
   467  func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value {
   468  	s.at(field)
   469  	return s.evalFieldChain(dot, dot, field, field.Ident, args, final)
   470  }
   471  
   472  func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value {
   473  	s.at(chain)
   474  	if len(chain.Field) == 0 {
   475  		s.errorf("internal error: no fields in evalChainNode")
   476  	}
   477  	if chain.Node.Type() == parse.NodeNil {
   478  		s.errorf("indirection through explicit nil in %s", chain)
   479  	}
   480  	// (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields.
   481  	pipe := s.evalArg(dot, nil, chain.Node)
   482  	return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final)
   483  }
   484  
   485  func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value {
   486  	// $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields.
   487  	s.at(variable)
   488  	value := s.varValue(variable.Ident[0])
   489  	if len(variable.Ident) == 1 {
   490  		s.notAFunction(args, final)
   491  		return value
   492  	}
   493  	return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final)
   494  }
   495  
   496  // evalFieldChain evaluates .X.Y.Z possibly followed by arguments.
   497  // dot is the environment in which to evaluate arguments, while
   498  // receiver is the value being walked along the chain.
   499  func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value {
   500  	n := len(ident)
   501  	for i := 0; i < n-1; i++ {
   502  		receiver = s.evalField(dot, ident[i], node, nil, zero, receiver)
   503  	}
   504  	// Now if it's a method, it gets the arguments.
   505  	return s.evalField(dot, ident[n-1], node, args, final, receiver)
   506  }
   507  
   508  func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value {
   509  	s.at(node)
   510  	name := node.Ident
   511  	function, ok := findFunction(name, s.tmpl)
   512  	if !ok {
   513  		s.errorf("%q is not a defined function", name)
   514  	}
   515  	return s.evalCall(dot, function, cmd, name, args, final)
   516  }
   517  
   518  // evalField evaluates an expression like (.Field) or (.Field arg1 arg2).
   519  // The 'final' argument represents the return value from the preceding
   520  // value of the pipeline, if any.
   521  func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value {
   522  	if !receiver.IsValid() {
   523  		return zero
   524  	}
   525  	typ := receiver.Type()
   526  	receiver, isNil := indirect(receiver)
   527  	// Unless it's an interface, need to get to a value of type *T to guarantee
   528  	// we see all methods of T and *T.
   529  	ptr := receiver
   530  	if ptr.Kind() != reflect.Interface && ptr.CanAddr() {
   531  		ptr = ptr.Addr()
   532  	}
   533  	if method := ptr.MethodByName(fieldName); method.IsValid() {
   534  		return s.evalCall(dot, method, node, fieldName, args, final)
   535  	}
   536  	hasArgs := len(args) > 1 || final.IsValid()
   537  	// It's not a method; must be a field of a struct or an element of a map. The receiver must not be nil.
   538  	if isNil {
   539  		s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
   540  	}
   541  	switch receiver.Kind() {
   542  	case reflect.Struct:
   543  		tField, ok := receiver.Type().FieldByName(fieldName)
   544  		if ok {
   545  			field := receiver.FieldByIndex(tField.Index)
   546  			if tField.PkgPath != "" { // field is unexported
   547  				s.errorf("%s is an unexported field of struct type %s", fieldName, typ)
   548  			}
   549  			// If it's a function, we must call it.
   550  			if hasArgs {
   551  				s.errorf("%s has arguments but cannot be invoked as function", fieldName)
   552  			}
   553  			return field
   554  		}
   555  		s.errorf("%s is not a field of struct type %s", fieldName, typ)
   556  	case reflect.Map:
   557  		// If it's a map, attempt to use the field name as a key.
   558  		nameVal := reflect.ValueOf(fieldName)
   559  		if nameVal.Type().AssignableTo(receiver.Type().Key()) {
   560  			if hasArgs {
   561  				s.errorf("%s is not a method but has arguments", fieldName)
   562  			}
   563  			result := receiver.MapIndex(nameVal)
   564  			if !result.IsValid() {
   565  				switch s.tmpl.option.missingKey {
   566  				case mapInvalid:
   567  					// Just use the invalid value.
   568  				case mapZeroValue:
   569  					result = reflect.Zero(receiver.Type().Elem())
   570  				case mapError:
   571  					s.errorf("map has no entry for key %q", fieldName)
   572  				}
   573  			}
   574  			return result
   575  		}
   576  	}
   577  	s.errorf("can't evaluate field %s in type %s", fieldName, typ)
   578  	panic("not reached")
   579  }
   580  
   581  var (
   582  	errorType       = reflect.TypeOf((*error)(nil)).Elem()
   583  	fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
   584  )
   585  
   586  // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so
   587  // it looks just like a function call.  The arg list, if non-nil, includes (in the manner of the shell), arg[0]
   588  // as the function itself.
   589  func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value {
   590  	if args != nil {
   591  		args = args[1:] // Zeroth arg is function name/node; not passed to function.
   592  	}
   593  	typ := fun.Type()
   594  	numIn := len(args)
   595  	if final.IsValid() {
   596  		numIn++
   597  	}
   598  	numFixed := len(args)
   599  	if typ.IsVariadic() {
   600  		numFixed = typ.NumIn() - 1 // last arg is the variadic one.
   601  		if numIn < numFixed {
   602  			s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args))
   603  		}
   604  	} else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() {
   605  		s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args))
   606  	}
   607  	if !goodFunc(typ) {
   608  		// TODO: This could still be a confusing error; maybe goodFunc should provide info.
   609  		s.errorf("can't call method/function %q with %d results", name, typ.NumOut())
   610  	}
   611  	// Build the arg list.
   612  	argv := make([]reflect.Value, numIn)
   613  	// Args must be evaluated. Fixed args first.
   614  	i := 0
   615  	for ; i < numFixed && i < len(args); i++ {
   616  		argv[i] = s.evalArg(dot, typ.In(i), args[i])
   617  	}
   618  	// Now the ... args.
   619  	if typ.IsVariadic() {
   620  		argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice.
   621  		for ; i < len(args); i++ {
   622  			argv[i] = s.evalArg(dot, argType, args[i])
   623  		}
   624  	}
   625  	// Add final value if necessary.
   626  	if final.IsValid() {
   627  		t := typ.In(typ.NumIn() - 1)
   628  		if typ.IsVariadic() {
   629  			if numIn-1 < numFixed {
   630  				// The added final argument corresponds to a fixed parameter of the function.
   631  				// Validate against the type of the actual parameter.
   632  				t = typ.In(numIn - 1)
   633  			} else {
   634  				// The added final argument corresponds to the variadic part.
   635  				// Validate against the type of the elements of the variadic slice.
   636  				t = t.Elem()
   637  			}
   638  		}
   639  		argv[i] = s.validateType(final, t)
   640  	}
   641  	result := fun.Call(argv)
   642  	// If we have an error that is not nil, stop execution and return that error to the caller.
   643  	if len(result) == 2 && !result[1].IsNil() {
   644  		s.at(node)
   645  		s.errorf("error calling %s: %s", name, result[1].Interface().(error))
   646  	}
   647  	return result[0]
   648  }
   649  
   650  // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero.
   651  func canBeNil(typ reflect.Type) bool {
   652  	switch typ.Kind() {
   653  	case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
   654  		return true
   655  	}
   656  	return false
   657  }
   658  
   659  // validateType guarantees that the value is valid and assignable to the type.
   660  func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value {
   661  	if !value.IsValid() {
   662  		if typ == nil || canBeNil(typ) {
   663  			// An untyped nil interface{}. Accept as a proper nil value.
   664  			return reflect.Zero(typ)
   665  		}
   666  		s.errorf("invalid value; expected %s", typ)
   667  	}
   668  	if typ != nil && !value.Type().AssignableTo(typ) {
   669  		if value.Kind() == reflect.Interface && !value.IsNil() {
   670  			value = value.Elem()
   671  			if value.Type().AssignableTo(typ) {
   672  				return value
   673  			}
   674  			// fallthrough
   675  		}
   676  		// Does one dereference or indirection work? We could do more, as we
   677  		// do with method receivers, but that gets messy and method receivers
   678  		// are much more constrained, so it makes more sense there than here.
   679  		// Besides, one is almost always all you need.
   680  		switch {
   681  		case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ):
   682  			value = value.Elem()
   683  			if !value.IsValid() {
   684  				s.errorf("dereference of nil pointer of type %s", typ)
   685  			}
   686  		case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr():
   687  			value = value.Addr()
   688  		default:
   689  			s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
   690  		}
   691  	}
   692  	return value
   693  }
   694  
   695  func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value {
   696  	s.at(n)
   697  	switch arg := n.(type) {
   698  	case *parse.DotNode:
   699  		return s.validateType(dot, typ)
   700  	case *parse.NilNode:
   701  		if canBeNil(typ) {
   702  			return reflect.Zero(typ)
   703  		}
   704  		s.errorf("cannot assign nil to %s", typ)
   705  	case *parse.FieldNode:
   706  		return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ)
   707  	case *parse.VariableNode:
   708  		return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ)
   709  	case *parse.PipeNode:
   710  		return s.validateType(s.evalPipeline(dot, arg), typ)
   711  	case *parse.IdentifierNode:
   712  		return s.validateType(s.evalFunction(dot, arg, arg, nil, zero), typ)
   713  	case *parse.ChainNode:
   714  		return s.validateType(s.evalChainNode(dot, arg, nil, zero), typ)
   715  	}
   716  	switch typ.Kind() {
   717  	case reflect.Bool:
   718  		return s.evalBool(typ, n)
   719  	case reflect.Complex64, reflect.Complex128:
   720  		return s.evalComplex(typ, n)
   721  	case reflect.Float32, reflect.Float64:
   722  		return s.evalFloat(typ, n)
   723  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   724  		return s.evalInteger(typ, n)
   725  	case reflect.Interface:
   726  		if typ.NumMethod() == 0 {
   727  			return s.evalEmptyInterface(dot, n)
   728  		}
   729  	case reflect.String:
   730  		return s.evalString(typ, n)
   731  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   732  		return s.evalUnsignedInteger(typ, n)
   733  	}
   734  	s.errorf("can't handle %s for arg of type %s", n, typ)
   735  	panic("not reached")
   736  }
   737  
   738  func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value {
   739  	s.at(n)
   740  	if n, ok := n.(*parse.BoolNode); ok {
   741  		value := reflect.New(typ).Elem()
   742  		value.SetBool(n.True)
   743  		return value
   744  	}
   745  	s.errorf("expected bool; found %s", n)
   746  	panic("not reached")
   747  }
   748  
   749  func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value {
   750  	s.at(n)
   751  	if n, ok := n.(*parse.StringNode); ok {
   752  		value := reflect.New(typ).Elem()
   753  		value.SetString(n.Text)
   754  		return value
   755  	}
   756  	s.errorf("expected string; found %s", n)
   757  	panic("not reached")
   758  }
   759  
   760  func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value {
   761  	s.at(n)
   762  	if n, ok := n.(*parse.NumberNode); ok && n.IsInt {
   763  		value := reflect.New(typ).Elem()
   764  		value.SetInt(n.Int64)
   765  		return value
   766  	}
   767  	s.errorf("expected integer; found %s", n)
   768  	panic("not reached")
   769  }
   770  
   771  func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value {
   772  	s.at(n)
   773  	if n, ok := n.(*parse.NumberNode); ok && n.IsUint {
   774  		value := reflect.New(typ).Elem()
   775  		value.SetUint(n.Uint64)
   776  		return value
   777  	}
   778  	s.errorf("expected unsigned integer; found %s", n)
   779  	panic("not reached")
   780  }
   781  
   782  func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value {
   783  	s.at(n)
   784  	if n, ok := n.(*parse.NumberNode); ok && n.IsFloat {
   785  		value := reflect.New(typ).Elem()
   786  		value.SetFloat(n.Float64)
   787  		return value
   788  	}
   789  	s.errorf("expected float; found %s", n)
   790  	panic("not reached")
   791  }
   792  
   793  func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value {
   794  	if n, ok := n.(*parse.NumberNode); ok && n.IsComplex {
   795  		value := reflect.New(typ).Elem()
   796  		value.SetComplex(n.Complex128)
   797  		return value
   798  	}
   799  	s.errorf("expected complex; found %s", n)
   800  	panic("not reached")
   801  }
   802  
   803  func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value {
   804  	s.at(n)
   805  	switch n := n.(type) {
   806  	case *parse.BoolNode:
   807  		return reflect.ValueOf(n.True)
   808  	case *parse.DotNode:
   809  		return dot
   810  	case *parse.FieldNode:
   811  		return s.evalFieldNode(dot, n, nil, zero)
   812  	case *parse.IdentifierNode:
   813  		return s.evalFunction(dot, n, n, nil, zero)
   814  	case *parse.NilNode:
   815  		// NilNode is handled in evalArg, the only place that calls here.
   816  		s.errorf("evalEmptyInterface: nil (can't happen)")
   817  	case *parse.NumberNode:
   818  		return s.idealConstant(n)
   819  	case *parse.StringNode:
   820  		return reflect.ValueOf(n.Text)
   821  	case *parse.VariableNode:
   822  		return s.evalVariableNode(dot, n, nil, zero)
   823  	case *parse.PipeNode:
   824  		return s.evalPipeline(dot, n)
   825  	}
   826  	s.errorf("can't handle assignment of %s to empty interface argument", n)
   827  	panic("not reached")
   828  }
   829  
   830  // indirect returns the item at the end of indirection, and a bool to indicate if it's nil.
   831  func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
   832  	for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() {
   833  		if v.IsNil() {
   834  			return v, true
   835  		}
   836  	}
   837  	return v, false
   838  }
   839  
   840  // printValue writes the textual representation of the value to the output of
   841  // the template.
   842  func (s *state) printValue(n parse.Node, v reflect.Value) {
   843  	s.at(n)
   844  	iface, ok := printableValue(v)
   845  	if !ok {
   846  		s.errorf("can't print %s of type %s", n, v.Type())
   847  	}
   848  	_, err := fmt.Fprint(s.wr, iface)
   849  	if err != nil {
   850  		s.writeError(err)
   851  	}
   852  }
   853  
   854  // printableValue returns the, possibly indirected, interface value inside v that
   855  // is best for a call to formatted printer.
   856  func printableValue(v reflect.Value) (interface{}, bool) {
   857  	if v.Kind() == reflect.Ptr {
   858  		v, _ = indirect(v) // fmt.Fprint handles nil.
   859  	}
   860  	if !v.IsValid() {
   861  		return "<no value>", true
   862  	}
   863  
   864  	if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) {
   865  		if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) {
   866  			v = v.Addr()
   867  		} else {
   868  			switch v.Kind() {
   869  			case reflect.Chan, reflect.Func:
   870  				return nil, false
   871  			}
   872  		}
   873  	}
   874  	return v.Interface(), true
   875  }
   876  
   877  // Types to help sort the keys in a map for reproducible output.
   878  
   879  type rvs []reflect.Value
   880  
   881  func (x rvs) Len() int      { return len(x) }
   882  func (x rvs) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
   883  
   884  type rvInts struct{ rvs }
   885  
   886  func (x rvInts) Less(i, j int) bool { return x.rvs[i].Int() < x.rvs[j].Int() }
   887  
   888  type rvUints struct{ rvs }
   889  
   890  func (x rvUints) Less(i, j int) bool { return x.rvs[i].Uint() < x.rvs[j].Uint() }
   891  
   892  type rvFloats struct{ rvs }
   893  
   894  func (x rvFloats) Less(i, j int) bool { return x.rvs[i].Float() < x.rvs[j].Float() }
   895  
   896  type rvStrings struct{ rvs }
   897  
   898  func (x rvStrings) Less(i, j int) bool { return x.rvs[i].String() < x.rvs[j].String() }
   899  
   900  // sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys.
   901  func sortKeys(v []reflect.Value) []reflect.Value {
   902  	if len(v) <= 1 {
   903  		return v
   904  	}
   905  	switch v[0].Kind() {
   906  	case reflect.Float32, reflect.Float64:
   907  		sort.Sort(rvFloats{v})
   908  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   909  		sort.Sort(rvInts{v})
   910  	case reflect.String:
   911  		sort.Sort(rvStrings{v})
   912  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   913  		sort.Sort(rvUints{v})
   914  	}
   915  	return v
   916  }