github.com/megatontech/mynoteforgo@v0.0.0-20200507084910-5d0c6ea6e890/源码/cmd/compile/internal/gc/syntax.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // “Abstract” syntax representation.
     6  
     7  package gc
     8  
     9  import (
    10  	"cmd/compile/internal/ssa"
    11  	"cmd/compile/internal/syntax"
    12  	"cmd/compile/internal/types"
    13  	"cmd/internal/obj"
    14  	"cmd/internal/src"
    15  )
    16  
    17  // A Node is a single node in the syntax tree.
    18  // Actually the syntax tree is a syntax DAG, because there is only one
    19  // node with Op=ONAME for a given instance of a variable x.
    20  // The same is true for Op=OTYPE and Op=OLITERAL. See Node.mayBeShared.
    21  type Node struct {
    22  	// Tree structure.
    23  	// Generic recursive walks should follow these fields.
    24  	Left  *Node
    25  	Right *Node
    26  	Ninit Nodes
    27  	Nbody Nodes
    28  	List  Nodes
    29  	Rlist Nodes
    30  
    31  	// most nodes
    32  	Type *types.Type
    33  	Orig *Node // original form, for printing, and tracking copies of ONAMEs
    34  
    35  	// func
    36  	Func *Func
    37  
    38  	// ONAME, OTYPE, OPACK, OLABEL, some OLITERAL
    39  	Name *Name
    40  
    41  	Sym *types.Sym  // various
    42  	E   interface{} // Opt or Val, see methods below
    43  
    44  	// Various. Usually an offset into a struct. For example:
    45  	// - ONAME nodes that refer to local variables use it to identify their stack frame position.
    46  	// - ODOT, ODOTPTR, and OINDREGSP use it to indicate offset relative to their base address.
    47  	// - OSTRUCTKEY uses it to store the named field's offset.
    48  	// - Named OLITERALs use it to store their ambient iota value.
    49  	// - OINLMARK stores an index into the inlTree data structure.
    50  	// Possibly still more uses. If you find any, document them.
    51  	Xoffset int64
    52  
    53  	Pos src.XPos
    54  
    55  	flags bitset32
    56  
    57  	Esc uint16 // EscXXX
    58  
    59  	Op  Op
    60  	aux uint8
    61  }
    62  
    63  func (n *Node) ResetAux() {
    64  	n.aux = 0
    65  }
    66  
    67  func (n *Node) SubOp() Op {
    68  	switch n.Op {
    69  	case OASOP, ONAME:
    70  	default:
    71  		Fatalf("unexpected op: %v", n.Op)
    72  	}
    73  	return Op(n.aux)
    74  }
    75  
    76  func (n *Node) SetSubOp(op Op) {
    77  	switch n.Op {
    78  	case OASOP, ONAME:
    79  	default:
    80  		Fatalf("unexpected op: %v", n.Op)
    81  	}
    82  	n.aux = uint8(op)
    83  }
    84  
    85  func (n *Node) IndexMapLValue() bool {
    86  	if n.Op != OINDEXMAP {
    87  		Fatalf("unexpected op: %v", n.Op)
    88  	}
    89  	return n.aux != 0
    90  }
    91  
    92  func (n *Node) SetIndexMapLValue(b bool) {
    93  	if n.Op != OINDEXMAP {
    94  		Fatalf("unexpected op: %v", n.Op)
    95  	}
    96  	if b {
    97  		n.aux = 1
    98  	} else {
    99  		n.aux = 0
   100  	}
   101  }
   102  
   103  func (n *Node) TChanDir() types.ChanDir {
   104  	if n.Op != OTCHAN {
   105  		Fatalf("unexpected op: %v", n.Op)
   106  	}
   107  	return types.ChanDir(n.aux)
   108  }
   109  
   110  func (n *Node) SetTChanDir(dir types.ChanDir) {
   111  	if n.Op != OTCHAN {
   112  		Fatalf("unexpected op: %v", n.Op)
   113  	}
   114  	n.aux = uint8(dir)
   115  }
   116  
   117  func (n *Node) IsSynthetic() bool {
   118  	name := n.Sym.Name
   119  	return name[0] == '.' || name[0] == '~'
   120  }
   121  
   122  // IsAutoTmp indicates if n was created by the compiler as a temporary,
   123  // based on the setting of the .AutoTemp flag in n's Name.
   124  func (n *Node) IsAutoTmp() bool {
   125  	if n == nil || n.Op != ONAME {
   126  		return false
   127  	}
   128  	return n.Name.AutoTemp()
   129  }
   130  
   131  const (
   132  	nodeClass, _     = iota, 1 << iota // PPARAM, PAUTO, PEXTERN, etc; three bits; first in the list because frequently accessed
   133  	_, _                               // second nodeClass bit
   134  	_, _                               // third nodeClass bit
   135  	nodeWalkdef, _                     // tracks state during typecheckdef; 2 == loop detected; two bits
   136  	_, _                               // second nodeWalkdef bit
   137  	nodeTypecheck, _                   // tracks state during typechecking; 2 == loop detected; two bits
   138  	_, _                               // second nodeTypecheck bit
   139  	nodeInitorder, _                   // tracks state during init1; two bits
   140  	_, _                               // second nodeInitorder bit
   141  	_, nodeHasBreak
   142  	_, nodeIsClosureVar
   143  	_, nodeIsOutputParamHeapAddr
   144  	_, nodeNoInline  // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only
   145  	_, nodeAssigned  // is the variable ever assigned to
   146  	_, nodeAddrtaken // address taken, even if not moved to heap
   147  	_, nodeImplicit
   148  	_, nodeIsDDD     // is the argument variadic
   149  	_, nodeDiag      // already printed error about this
   150  	_, nodeColas     // OAS resulting from :=
   151  	_, nodeNonNil    // guaranteed to be non-nil
   152  	_, nodeNoescape  // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360)
   153  	_, nodeBounded   // bounds check unnecessary
   154  	_, nodeAddable   // addressable
   155  	_, nodeHasCall   // expression contains a function call
   156  	_, nodeLikely    // if statement condition likely
   157  	_, nodeHasVal    // node.E contains a Val
   158  	_, nodeHasOpt    // node.E contains an Opt
   159  	_, nodeEmbedded  // ODCLFIELD embedded type
   160  	_, nodeInlFormal // OPAUTO created by inliner, derived from callee formal
   161  	_, nodeInlLocal  // OPAUTO created by inliner, derived from callee local
   162  )
   163  
   164  func (n *Node) Class() Class     { return Class(n.flags.get3(nodeClass)) }
   165  func (n *Node) Walkdef() uint8   { return n.flags.get2(nodeWalkdef) }
   166  func (n *Node) Typecheck() uint8 { return n.flags.get2(nodeTypecheck) }
   167  func (n *Node) Initorder() uint8 { return n.flags.get2(nodeInitorder) }
   168  
   169  func (n *Node) HasBreak() bool              { return n.flags&nodeHasBreak != 0 }
   170  func (n *Node) IsClosureVar() bool          { return n.flags&nodeIsClosureVar != 0 }
   171  func (n *Node) NoInline() bool              { return n.flags&nodeNoInline != 0 }
   172  func (n *Node) IsOutputParamHeapAddr() bool { return n.flags&nodeIsOutputParamHeapAddr != 0 }
   173  func (n *Node) Assigned() bool              { return n.flags&nodeAssigned != 0 }
   174  func (n *Node) Addrtaken() bool             { return n.flags&nodeAddrtaken != 0 }
   175  func (n *Node) Implicit() bool              { return n.flags&nodeImplicit != 0 }
   176  func (n *Node) IsDDD() bool                 { return n.flags&nodeIsDDD != 0 }
   177  func (n *Node) Diag() bool                  { return n.flags&nodeDiag != 0 }
   178  func (n *Node) Colas() bool                 { return n.flags&nodeColas != 0 }
   179  func (n *Node) NonNil() bool                { return n.flags&nodeNonNil != 0 }
   180  func (n *Node) Noescape() bool              { return n.flags&nodeNoescape != 0 }
   181  func (n *Node) Bounded() bool               { return n.flags&nodeBounded != 0 }
   182  func (n *Node) Addable() bool               { return n.flags&nodeAddable != 0 }
   183  func (n *Node) HasCall() bool               { return n.flags&nodeHasCall != 0 }
   184  func (n *Node) Likely() bool                { return n.flags&nodeLikely != 0 }
   185  func (n *Node) HasVal() bool                { return n.flags&nodeHasVal != 0 }
   186  func (n *Node) HasOpt() bool                { return n.flags&nodeHasOpt != 0 }
   187  func (n *Node) Embedded() bool              { return n.flags&nodeEmbedded != 0 }
   188  func (n *Node) InlFormal() bool             { return n.flags&nodeInlFormal != 0 }
   189  func (n *Node) InlLocal() bool              { return n.flags&nodeInlLocal != 0 }
   190  
   191  func (n *Node) SetClass(b Class)     { n.flags.set3(nodeClass, uint8(b)) }
   192  func (n *Node) SetWalkdef(b uint8)   { n.flags.set2(nodeWalkdef, b) }
   193  func (n *Node) SetTypecheck(b uint8) { n.flags.set2(nodeTypecheck, b) }
   194  func (n *Node) SetInitorder(b uint8) { n.flags.set2(nodeInitorder, b) }
   195  
   196  func (n *Node) SetHasBreak(b bool)              { n.flags.set(nodeHasBreak, b) }
   197  func (n *Node) SetIsClosureVar(b bool)          { n.flags.set(nodeIsClosureVar, b) }
   198  func (n *Node) SetNoInline(b bool)              { n.flags.set(nodeNoInline, b) }
   199  func (n *Node) SetIsOutputParamHeapAddr(b bool) { n.flags.set(nodeIsOutputParamHeapAddr, b) }
   200  func (n *Node) SetAssigned(b bool)              { n.flags.set(nodeAssigned, b) }
   201  func (n *Node) SetAddrtaken(b bool)             { n.flags.set(nodeAddrtaken, b) }
   202  func (n *Node) SetImplicit(b bool)              { n.flags.set(nodeImplicit, b) }
   203  func (n *Node) SetIsDDD(b bool)                 { n.flags.set(nodeIsDDD, b) }
   204  func (n *Node) SetDiag(b bool)                  { n.flags.set(nodeDiag, b) }
   205  func (n *Node) SetColas(b bool)                 { n.flags.set(nodeColas, b) }
   206  func (n *Node) SetNonNil(b bool)                { n.flags.set(nodeNonNil, b) }
   207  func (n *Node) SetNoescape(b bool)              { n.flags.set(nodeNoescape, b) }
   208  func (n *Node) SetBounded(b bool)               { n.flags.set(nodeBounded, b) }
   209  func (n *Node) SetAddable(b bool)               { n.flags.set(nodeAddable, b) }
   210  func (n *Node) SetHasCall(b bool)               { n.flags.set(nodeHasCall, b) }
   211  func (n *Node) SetLikely(b bool)                { n.flags.set(nodeLikely, b) }
   212  func (n *Node) SetHasVal(b bool)                { n.flags.set(nodeHasVal, b) }
   213  func (n *Node) SetHasOpt(b bool)                { n.flags.set(nodeHasOpt, b) }
   214  func (n *Node) SetEmbedded(b bool)              { n.flags.set(nodeEmbedded, b) }
   215  func (n *Node) SetInlFormal(b bool)             { n.flags.set(nodeInlFormal, b) }
   216  func (n *Node) SetInlLocal(b bool)              { n.flags.set(nodeInlLocal, b) }
   217  
   218  // Val returns the Val for the node.
   219  func (n *Node) Val() Val {
   220  	if !n.HasVal() {
   221  		return Val{}
   222  	}
   223  	return Val{n.E}
   224  }
   225  
   226  // SetVal sets the Val for the node, which must not have been used with SetOpt.
   227  func (n *Node) SetVal(v Val) {
   228  	if n.HasOpt() {
   229  		Debug['h'] = 1
   230  		Dump("have Opt", n)
   231  		Fatalf("have Opt")
   232  	}
   233  	n.SetHasVal(true)
   234  	n.E = v.U
   235  }
   236  
   237  // Opt returns the optimizer data for the node.
   238  func (n *Node) Opt() interface{} {
   239  	if !n.HasOpt() {
   240  		return nil
   241  	}
   242  	return n.E
   243  }
   244  
   245  // SetOpt sets the optimizer data for the node, which must not have been used with SetVal.
   246  // SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts.
   247  func (n *Node) SetOpt(x interface{}) {
   248  	if x == nil && n.HasVal() {
   249  		return
   250  	}
   251  	if n.HasVal() {
   252  		Debug['h'] = 1
   253  		Dump("have Val", n)
   254  		Fatalf("have Val")
   255  	}
   256  	n.SetHasOpt(true)
   257  	n.E = x
   258  }
   259  
   260  func (n *Node) Iota() int64 {
   261  	return n.Xoffset
   262  }
   263  
   264  func (n *Node) SetIota(x int64) {
   265  	n.Xoffset = x
   266  }
   267  
   268  // mayBeShared reports whether n may occur in multiple places in the AST.
   269  // Extra care must be taken when mutating such a node.
   270  func (n *Node) mayBeShared() bool {
   271  	switch n.Op {
   272  	case ONAME, OLITERAL, OTYPE:
   273  		return true
   274  	}
   275  	return false
   276  }
   277  
   278  // isMethodExpression reports whether n represents a method expression T.M.
   279  func (n *Node) isMethodExpression() bool {
   280  	return n.Op == ONAME && n.Left != nil && n.Left.Op == OTYPE && n.Right != nil && n.Right.Op == ONAME
   281  }
   282  
   283  // funcname returns the name of the function n.
   284  func (n *Node) funcname() string {
   285  	if n == nil || n.Func == nil || n.Func.Nname == nil {
   286  		return "<nil>"
   287  	}
   288  	return n.Func.Nname.Sym.Name
   289  }
   290  
   291  // Name holds Node fields used only by named nodes (ONAME, OTYPE, OPACK, OLABEL, some OLITERAL).
   292  type Name struct {
   293  	Pack      *Node      // real package for import . names
   294  	Pkg       *types.Pkg // pkg for OPACK nodes
   295  	Defn      *Node      // initializing assignment
   296  	Curfn     *Node      // function for local variables
   297  	Param     *Param     // additional fields for ONAME, OTYPE
   298  	Decldepth int32      // declaration loop depth, increased for every loop or label
   299  	Vargen    int32      // unique name for ONAME within a function.  Function outputs are numbered starting at one.
   300  	flags     bitset8
   301  }
   302  
   303  const (
   304  	nameCaptured = 1 << iota // is the variable captured by a closure
   305  	nameReadonly
   306  	nameByval     // is the variable captured by value or by reference
   307  	nameNeedzero  // if it contains pointers, needs to be zeroed on function entry
   308  	nameKeepalive // mark value live across unknown assembly call
   309  	nameAutoTemp  // is the variable a temporary (implies no dwarf info. reset if escapes to heap)
   310  	nameUsed      // for variable declared and not used error
   311  )
   312  
   313  func (n *Name) Captured() bool  { return n.flags&nameCaptured != 0 }
   314  func (n *Name) Readonly() bool  { return n.flags&nameReadonly != 0 }
   315  func (n *Name) Byval() bool     { return n.flags&nameByval != 0 }
   316  func (n *Name) Needzero() bool  { return n.flags&nameNeedzero != 0 }
   317  func (n *Name) Keepalive() bool { return n.flags&nameKeepalive != 0 }
   318  func (n *Name) AutoTemp() bool  { return n.flags&nameAutoTemp != 0 }
   319  func (n *Name) Used() bool      { return n.flags&nameUsed != 0 }
   320  
   321  func (n *Name) SetCaptured(b bool)  { n.flags.set(nameCaptured, b) }
   322  func (n *Name) SetReadonly(b bool)  { n.flags.set(nameReadonly, b) }
   323  func (n *Name) SetByval(b bool)     { n.flags.set(nameByval, b) }
   324  func (n *Name) SetNeedzero(b bool)  { n.flags.set(nameNeedzero, b) }
   325  func (n *Name) SetKeepalive(b bool) { n.flags.set(nameKeepalive, b) }
   326  func (n *Name) SetAutoTemp(b bool)  { n.flags.set(nameAutoTemp, b) }
   327  func (n *Name) SetUsed(b bool)      { n.flags.set(nameUsed, b) }
   328  
   329  type Param struct {
   330  	Ntype    *Node
   331  	Heapaddr *Node // temp holding heap address of param
   332  
   333  	// ONAME PAUTOHEAP
   334  	Stackcopy *Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only)
   335  
   336  	// ONAME closure linkage
   337  	// Consider:
   338  	//
   339  	//	func f() {
   340  	//		x := 1 // x1
   341  	//		func() {
   342  	//			use(x) // x2
   343  	//			func() {
   344  	//				use(x) // x3
   345  	//				--- parser is here ---
   346  	//			}()
   347  	//		}()
   348  	//	}
   349  	//
   350  	// There is an original declaration of x and then a chain of mentions of x
   351  	// leading into the current function. Each time x is mentioned in a new closure,
   352  	// we create a variable representing x for use in that specific closure,
   353  	// since the way you get to x is different in each closure.
   354  	//
   355  	// Let's number the specific variables as shown in the code:
   356  	// x1 is the original x, x2 is when mentioned in the closure,
   357  	// and x3 is when mentioned in the closure in the closure.
   358  	//
   359  	// We keep these linked (assume N > 1):
   360  	//
   361  	//   - x1.Defn = original declaration statement for x (like most variables)
   362  	//   - x1.Innermost = current innermost closure x (in this case x3), or nil for none
   363  	//   - x1.IsClosureVar() = false
   364  	//
   365  	//   - xN.Defn = x1, N > 1
   366  	//   - xN.IsClosureVar() = true, N > 1
   367  	//   - x2.Outer = nil
   368  	//   - xN.Outer = x(N-1), N > 2
   369  	//
   370  	//
   371  	// When we look up x in the symbol table, we always get x1.
   372  	// Then we can use x1.Innermost (if not nil) to get the x
   373  	// for the innermost known closure function,
   374  	// but the first reference in a closure will find either no x1.Innermost
   375  	// or an x1.Innermost with .Funcdepth < Funcdepth.
   376  	// In that case, a new xN must be created, linked in with:
   377  	//
   378  	//     xN.Defn = x1
   379  	//     xN.Outer = x1.Innermost
   380  	//     x1.Innermost = xN
   381  	//
   382  	// When we finish the function, we'll process its closure variables
   383  	// and find xN and pop it off the list using:
   384  	//
   385  	//     x1 := xN.Defn
   386  	//     x1.Innermost = xN.Outer
   387  	//
   388  	// We leave xN.Innermost set so that we can still get to the original
   389  	// variable quickly. Not shown here, but once we're
   390  	// done parsing a function and no longer need xN.Outer for the
   391  	// lexical x reference links as described above, closurebody
   392  	// recomputes xN.Outer as the semantic x reference link tree,
   393  	// even filling in x in intermediate closures that might not
   394  	// have mentioned it along the way to inner closures that did.
   395  	// See closurebody for details.
   396  	//
   397  	// During the eventual compilation, then, for closure variables we have:
   398  	//
   399  	//     xN.Defn = original variable
   400  	//     xN.Outer = variable captured in next outward scope
   401  	//                to make closure where xN appears
   402  	//
   403  	// Because of the sharding of pieces of the node, x.Defn means x.Name.Defn
   404  	// and x.Innermost/Outer means x.Name.Param.Innermost/Outer.
   405  	Innermost *Node
   406  	Outer     *Node
   407  
   408  	// OTYPE
   409  	//
   410  	// TODO: Should Func pragmas also be stored on the Name?
   411  	Pragma syntax.Pragma
   412  	Alias  bool // node is alias for Ntype (only used when type-checking ODCLTYPE)
   413  }
   414  
   415  // Functions
   416  //
   417  // A simple function declaration is represented as an ODCLFUNC node f
   418  // and an ONAME node n. They're linked to one another through
   419  // f.Func.Nname == n and n.Name.Defn == f. When functions are
   420  // referenced by name in an expression, the function's ONAME node is
   421  // used directly.
   422  //
   423  // Function names have n.Class() == PFUNC. This distinguishes them
   424  // from variables of function type.
   425  //
   426  // Confusingly, n.Func and f.Func both exist, but commonly point to
   427  // different Funcs. (Exception: an OCALLPART's Func does point to its
   428  // ODCLFUNC's Func.)
   429  //
   430  // A method declaration is represented like functions, except n.Sym
   431  // will be the qualified method name (e.g., "T.m") and
   432  // f.Func.Shortname is the bare method name (e.g., "m").
   433  //
   434  // Method expressions are represented as ONAME/PFUNC nodes like
   435  // function names, but their Left and Right fields still point to the
   436  // type and method, respectively. They can be distinguished from
   437  // normal functions with isMethodExpression. Also, unlike function
   438  // name nodes, method expression nodes exist for each method
   439  // expression. The declaration ONAME can be accessed with
   440  // x.Type.Nname(), where x is the method expression ONAME node.
   441  //
   442  // Method values are represented by ODOTMETH/ODOTINTER when called
   443  // immediately, and OCALLPART otherwise. They are like method
   444  // expressions, except that for ODOTMETH/ODOTINTER the method name is
   445  // stored in Sym instead of Right.
   446  //
   447  // Closures are represented by OCLOSURE node c. They link back and
   448  // forth with the ODCLFUNC via Func.Closure; that is, c.Func.Closure
   449  // == f and f.Func.Closure == c.
   450  //
   451  // Function bodies are stored in f.Nbody, and inline function bodies
   452  // are stored in n.Func.Inl. Pragmas are stored in f.Func.Pragma.
   453  //
   454  // Imported functions skip the ODCLFUNC, so n.Name.Defn is nil. They
   455  // also use Dcl instead of Inldcl.
   456  
   457  // Func holds Node fields used only with function-like nodes.
   458  type Func struct {
   459  	Shortname *types.Sym
   460  	Enter     Nodes // for example, allocate and initialize memory for escaping parameters
   461  	Exit      Nodes
   462  	Cvars     Nodes   // closure params
   463  	Dcl       []*Node // autodcl for this func/closure
   464  
   465  	// Parents records the parent scope of each scope within a
   466  	// function. The root scope (0) has no parent, so the i'th
   467  	// scope's parent is stored at Parents[i-1].
   468  	Parents []ScopeID
   469  
   470  	// Marks records scope boundary changes.
   471  	Marks []Mark
   472  
   473  	// Closgen tracks how many closures have been generated within
   474  	// this function. Used by closurename for creating unique
   475  	// function names.
   476  	Closgen int
   477  
   478  	FieldTrack map[*types.Sym]struct{}
   479  	DebugInfo  *ssa.FuncDebug
   480  	Ntype      *Node // signature
   481  	Top        int   // top context (ctxCallee, etc)
   482  	Closure    *Node // OCLOSURE <-> ODCLFUNC
   483  	Nname      *Node
   484  	lsym       *obj.LSym
   485  
   486  	Inl *Inline
   487  
   488  	Label int32 // largest auto-generated label in this function
   489  
   490  	Endlineno src.XPos
   491  	WBPos     src.XPos // position of first write barrier; see SetWBPos
   492  
   493  	Pragma syntax.Pragma // go:xxx function annotations
   494  
   495  	flags bitset16
   496  
   497  	// nwbrCalls records the LSyms of functions called by this
   498  	// function for go:nowritebarrierrec analysis. Only filled in
   499  	// if nowritebarrierrecCheck != nil.
   500  	nwbrCalls *[]nowritebarrierrecCallSym
   501  }
   502  
   503  // An Inline holds fields used for function bodies that can be inlined.
   504  type Inline struct {
   505  	Cost int32 // heuristic cost of inlining this function
   506  
   507  	// Copies of Func.Dcl and Nbody for use during inlining.
   508  	Dcl  []*Node
   509  	Body []*Node
   510  }
   511  
   512  // A Mark represents a scope boundary.
   513  type Mark struct {
   514  	// Pos is the position of the token that marks the scope
   515  	// change.
   516  	Pos src.XPos
   517  
   518  	// Scope identifies the innermost scope to the right of Pos.
   519  	Scope ScopeID
   520  }
   521  
   522  // A ScopeID represents a lexical scope within a function.
   523  type ScopeID int32
   524  
   525  const (
   526  	funcDupok         = 1 << iota // duplicate definitions ok
   527  	funcWrapper                   // is method wrapper
   528  	funcNeedctxt                  // function uses context register (has closure variables)
   529  	funcReflectMethod             // function calls reflect.Type.Method or MethodByName
   530  	funcIsHiddenClosure
   531  	funcHasDefer            // contains a defer statement
   532  	funcNilCheckDisabled    // disable nil checks when compiling this function
   533  	funcInlinabilityChecked // inliner has already determined whether the function is inlinable
   534  	funcExportInline        // include inline body in export data
   535  	funcInstrumentBody      // add race/msan instrumentation during SSA construction
   536  )
   537  
   538  func (f *Func) Dupok() bool               { return f.flags&funcDupok != 0 }
   539  func (f *Func) Wrapper() bool             { return f.flags&funcWrapper != 0 }
   540  func (f *Func) Needctxt() bool            { return f.flags&funcNeedctxt != 0 }
   541  func (f *Func) ReflectMethod() bool       { return f.flags&funcReflectMethod != 0 }
   542  func (f *Func) IsHiddenClosure() bool     { return f.flags&funcIsHiddenClosure != 0 }
   543  func (f *Func) HasDefer() bool            { return f.flags&funcHasDefer != 0 }
   544  func (f *Func) NilCheckDisabled() bool    { return f.flags&funcNilCheckDisabled != 0 }
   545  func (f *Func) InlinabilityChecked() bool { return f.flags&funcInlinabilityChecked != 0 }
   546  func (f *Func) ExportInline() bool        { return f.flags&funcExportInline != 0 }
   547  func (f *Func) InstrumentBody() bool      { return f.flags&funcInstrumentBody != 0 }
   548  
   549  func (f *Func) SetDupok(b bool)               { f.flags.set(funcDupok, b) }
   550  func (f *Func) SetWrapper(b bool)             { f.flags.set(funcWrapper, b) }
   551  func (f *Func) SetNeedctxt(b bool)            { f.flags.set(funcNeedctxt, b) }
   552  func (f *Func) SetReflectMethod(b bool)       { f.flags.set(funcReflectMethod, b) }
   553  func (f *Func) SetIsHiddenClosure(b bool)     { f.flags.set(funcIsHiddenClosure, b) }
   554  func (f *Func) SetHasDefer(b bool)            { f.flags.set(funcHasDefer, b) }
   555  func (f *Func) SetNilCheckDisabled(b bool)    { f.flags.set(funcNilCheckDisabled, b) }
   556  func (f *Func) SetInlinabilityChecked(b bool) { f.flags.set(funcInlinabilityChecked, b) }
   557  func (f *Func) SetExportInline(b bool)        { f.flags.set(funcExportInline, b) }
   558  func (f *Func) SetInstrumentBody(b bool)      { f.flags.set(funcInstrumentBody, b) }
   559  
   560  func (f *Func) setWBPos(pos src.XPos) {
   561  	if Debug_wb != 0 {
   562  		Warnl(pos, "write barrier")
   563  	}
   564  	if !f.WBPos.IsKnown() {
   565  		f.WBPos = pos
   566  	}
   567  }
   568  
   569  //go:generate stringer -type=Op -trimprefix=O
   570  
   571  type Op uint8
   572  
   573  // Node ops.
   574  const (
   575  	OXXX Op = iota
   576  
   577  	// names
   578  	ONAME    // var or func name
   579  	ONONAME  // unnamed arg or return value: f(int, string) (int, error) { etc }
   580  	OTYPE    // type name
   581  	OPACK    // import
   582  	OLITERAL // literal
   583  
   584  	// expressions
   585  	OADD          // Left + Right
   586  	OSUB          // Left - Right
   587  	OOR           // Left | Right
   588  	OXOR          // Left ^ Right
   589  	OADDSTR       // +{List} (string addition, list elements are strings)
   590  	OADDR         // &Left
   591  	OANDAND       // Left && Right
   592  	OAPPEND       // append(List); after walk, Left may contain elem type descriptor
   593  	OBYTES2STR    // Type(Left) (Type is string, Left is a []byte)
   594  	OBYTES2STRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral)
   595  	ORUNES2STR    // Type(Left) (Type is string, Left is a []rune)
   596  	OSTR2BYTES    // Type(Left) (Type is []byte, Left is a string)
   597  	OSTR2BYTESTMP // Type(Left) (Type is []byte, Left is a string, ephemeral)
   598  	OSTR2RUNES    // Type(Left) (Type is []rune, Left is a string)
   599  	OAS           // Left = Right or (if Colas=true) Left := Right
   600  	OAS2          // List = Rlist (x, y, z = a, b, c)
   601  	OAS2FUNC      // List = Rlist (x, y = f())
   602  	OAS2RECV      // List = Rlist (x, ok = <-c)
   603  	OAS2MAPR      // List = Rlist (x, ok = m["foo"])
   604  	OAS2DOTTYPE   // List = Rlist (x, ok = I.(int))
   605  	OASOP         // Left Etype= Right (x += y)
   606  	OCALL         // Left(List) (function call, method call or type conversion)
   607  
   608  	// OCALLFUNC, OCALLMETH, and OCALLINTER have the same structure.
   609  	// Prior to walk, they are: Left(List), where List is all regular arguments.
   610  	// If present, Right is an ODDDARG that holds the
   611  	// generated slice used in a call to a variadic function.
   612  	// After walk, List is a series of assignments to temporaries,
   613  	// and Rlist is an updated set of arguments, including any ODDDARG slice.
   614  	// TODO(josharian/khr): Use Ninit instead of List for the assignments to temporaries. See CL 114797.
   615  	OCALLFUNC  // Left(List/Rlist) (function call f(args))
   616  	OCALLMETH  // Left(List/Rlist) (direct method call x.Method(args))
   617  	OCALLINTER // Left(List/Rlist) (interface method call x.Method(args))
   618  	OCALLPART  // Left.Right (method expression x.Method, not called)
   619  	OCAP       // cap(Left)
   620  	OCLOSE     // close(Left)
   621  	OCLOSURE   // func Type { Body } (func literal)
   622  	OCOMPLIT   // Right{List} (composite literal, not yet lowered to specific form)
   623  	OMAPLIT    // Type{List} (composite literal, Type is map)
   624  	OSTRUCTLIT // Type{List} (composite literal, Type is struct)
   625  	OARRAYLIT  // Type{List} (composite literal, Type is array)
   626  	OSLICELIT  // Type{List} (composite literal, Type is slice) Right.Int64() = slice length.
   627  	OPTRLIT    // &Left (left is composite literal)
   628  	OCONV      // Type(Left) (type conversion)
   629  	OCONVIFACE // Type(Left) (type conversion, to interface)
   630  	OCONVNOP   // Type(Left) (type conversion, no effect)
   631  	OCOPY      // copy(Left, Right)
   632  	ODCL       // var Left (declares Left of type Left.Type)
   633  
   634  	// Used during parsing but don't last.
   635  	ODCLFUNC  // func f() or func (r) f()
   636  	ODCLFIELD // struct field, interface field, or func/method argument/return value.
   637  	ODCLCONST // const pi = 3.14
   638  	ODCLTYPE  // type Int int or type Int = int
   639  
   640  	ODELETE      // delete(Left, Right)
   641  	ODOT         // Left.Sym (Left is of struct type)
   642  	ODOTPTR      // Left.Sym (Left is of pointer to struct type)
   643  	ODOTMETH     // Left.Sym (Left is non-interface, Right is method name)
   644  	ODOTINTER    // Left.Sym (Left is interface, Right is method name)
   645  	OXDOT        // Left.Sym (before rewrite to one of the preceding)
   646  	ODOTTYPE     // Left.Right or Left.Type (.Right during parsing, .Type once resolved); after walk, .Right contains address of interface type descriptor and .Right.Right contains address of concrete type descriptor
   647  	ODOTTYPE2    // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, .Right contains address of interface type descriptor
   648  	OEQ          // Left == Right
   649  	ONE          // Left != Right
   650  	OLT          // Left < Right
   651  	OLE          // Left <= Right
   652  	OGE          // Left >= Right
   653  	OGT          // Left > Right
   654  	ODEREF       // *Left
   655  	OINDEX       // Left[Right] (index of array or slice)
   656  	OINDEXMAP    // Left[Right] (index of map)
   657  	OKEY         // Left:Right (key:value in struct/array/map literal)
   658  	OSTRUCTKEY   // Sym:Left (key:value in struct literal, after type checking)
   659  	OLEN         // len(Left)
   660  	OMAKE        // make(List) (before type checking converts to one of the following)
   661  	OMAKECHAN    // make(Type, Left) (type is chan)
   662  	OMAKEMAP     // make(Type, Left) (type is map)
   663  	OMAKESLICE   // make(Type, Left, Right) (type is slice)
   664  	OMUL         // Left * Right
   665  	ODIV         // Left / Right
   666  	OMOD         // Left % Right
   667  	OLSH         // Left << Right
   668  	ORSH         // Left >> Right
   669  	OAND         // Left & Right
   670  	OANDNOT      // Left &^ Right
   671  	ONEW         // new(Left)
   672  	ONOT         // !Left
   673  	OBITNOT      // ^Left
   674  	OPLUS        // +Left
   675  	ONEG         // -Left
   676  	OOROR        // Left || Right
   677  	OPANIC       // panic(Left)
   678  	OPRINT       // print(List)
   679  	OPRINTN      // println(List)
   680  	OPAREN       // (Left)
   681  	OSEND        // Left <- Right
   682  	OSLICE       // Left[List[0] : List[1]] (Left is untypechecked or slice)
   683  	OSLICEARR    // Left[List[0] : List[1]] (Left is array)
   684  	OSLICESTR    // Left[List[0] : List[1]] (Left is string)
   685  	OSLICE3      // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice)
   686  	OSLICE3ARR   // Left[List[0] : List[1] : List[2]] (Left is array)
   687  	OSLICEHEADER // sliceheader{Left, List[0], List[1]} (Left is unsafe.Pointer, List[0] is length, List[1] is capacity)
   688  	ORECOVER     // recover()
   689  	ORECV        // <-Left
   690  	ORUNESTR     // Type(Left) (Type is string, Left is rune)
   691  	OSELRECV     // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV)
   692  	OSELRECV2    // List = <-Right.Left: (apperas as .Left of OCASE; count(List) == 2, Right.Op == ORECV)
   693  	OIOTA        // iota
   694  	OREAL        // real(Left)
   695  	OIMAG        // imag(Left)
   696  	OCOMPLEX     // complex(Left, Right) or complex(List[0]) where List[0] is a 2-result function call
   697  	OALIGNOF     // unsafe.Alignof(Left)
   698  	OOFFSETOF    // unsafe.Offsetof(Left)
   699  	OSIZEOF      // unsafe.Sizeof(Left)
   700  
   701  	// statements
   702  	OBLOCK    // { List } (block of code)
   703  	OBREAK    // break [Sym]
   704  	OCASE     // case Left or List[0]..List[1]: Nbody (select case after processing; Left==nil and List==nil means default)
   705  	OXCASE    // case List: Nbody (select case before processing; List==nil means default)
   706  	OCONTINUE // continue [Sym]
   707  	ODEFER    // defer Left (Left must be call)
   708  	OEMPTY    // no-op (empty statement)
   709  	OFALL     // fallthrough
   710  	OFOR      // for Ninit; Left; Right { Nbody }
   711  	// OFORUNTIL is like OFOR, but the test (Left) is applied after the body:
   712  	// 	Ninit
   713  	// 	top: { Nbody }   // Execute the body at least once
   714  	// 	cont: Right
   715  	// 	if Left {        // And then test the loop condition
   716  	// 		List     // Before looping to top, execute List
   717  	// 		goto top
   718  	// 	}
   719  	// OFORUNTIL is created by walk. There's no way to write this in Go code.
   720  	OFORUNTIL
   721  	OGOTO   // goto Sym
   722  	OIF     // if Ninit; Left { Nbody } else { Rlist }
   723  	OLABEL  // Sym:
   724  	OGO     // go Left (Left must be call)
   725  	ORANGE  // for List = range Right { Nbody }
   726  	ORETURN // return List
   727  	OSELECT // select { List } (List is list of OXCASE or OCASE)
   728  	OSWITCH // switch Ninit; Left { List } (List is a list of OXCASE or OCASE)
   729  	OTYPESW // Left = Right.(type) (appears as .Left of OSWITCH)
   730  
   731  	// types
   732  	OTCHAN   // chan int
   733  	OTMAP    // map[string]int
   734  	OTSTRUCT // struct{}
   735  	OTINTER  // interface{}
   736  	OTFUNC   // func()
   737  	OTARRAY  // []int, [8]int, [N]int or [...]int
   738  
   739  	// misc
   740  	ODDD        // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}.
   741  	ODDDARG     // func f(args ...int), introduced by escape analysis.
   742  	OINLCALL    // intermediary representation of an inlined call.
   743  	OEFACE      // itable and data words of an empty-interface value.
   744  	OITAB       // itable word of an interface value.
   745  	OIDATA      // data word of an interface value in Left
   746  	OSPTR       // base pointer of a slice or string.
   747  	OCLOSUREVAR // variable reference at beginning of closure function
   748  	OCFUNC      // reference to c function pointer (not go func value)
   749  	OCHECKNIL   // emit code to ensure pointer/interface not nil
   750  	OVARDEF     // variable is about to be fully initialized
   751  	OVARKILL    // variable is dead
   752  	OVARLIVE    // variable is alive
   753  	OINDREGSP   // offset plus indirect of REGSP, such as 8(SP).
   754  	OINLMARK    // start of an inlined body, with file/line of caller. Xoffset is an index into the inline tree.
   755  
   756  	// arch-specific opcodes
   757  	ORETJMP // return to other function
   758  	OGETG   // runtime.getg() (read g pointer)
   759  
   760  	OEND
   761  )
   762  
   763  // Nodes is a pointer to a slice of *Node.
   764  // For fields that are not used in most nodes, this is used instead of
   765  // a slice to save space.
   766  type Nodes struct{ slice *[]*Node }
   767  
   768  // asNodes returns a slice of *Node as a Nodes value.
   769  func asNodes(s []*Node) Nodes {
   770  	return Nodes{&s}
   771  }
   772  
   773  // Slice returns the entries in Nodes as a slice.
   774  // Changes to the slice entries (as in s[i] = n) will be reflected in
   775  // the Nodes.
   776  func (n Nodes) Slice() []*Node {
   777  	if n.slice == nil {
   778  		return nil
   779  	}
   780  	return *n.slice
   781  }
   782  
   783  // Len returns the number of entries in Nodes.
   784  func (n Nodes) Len() int {
   785  	if n.slice == nil {
   786  		return 0
   787  	}
   788  	return len(*n.slice)
   789  }
   790  
   791  // Index returns the i'th element of Nodes.
   792  // It panics if n does not have at least i+1 elements.
   793  func (n Nodes) Index(i int) *Node {
   794  	return (*n.slice)[i]
   795  }
   796  
   797  // First returns the first element of Nodes (same as n.Index(0)).
   798  // It panics if n has no elements.
   799  func (n Nodes) First() *Node {
   800  	return (*n.slice)[0]
   801  }
   802  
   803  // Second returns the second element of Nodes (same as n.Index(1)).
   804  // It panics if n has fewer than two elements.
   805  func (n Nodes) Second() *Node {
   806  	return (*n.slice)[1]
   807  }
   808  
   809  // Set sets n to a slice.
   810  // This takes ownership of the slice.
   811  func (n *Nodes) Set(s []*Node) {
   812  	if len(s) == 0 {
   813  		n.slice = nil
   814  	} else {
   815  		// Copy s and take address of t rather than s to avoid
   816  		// allocation in the case where len(s) == 0 (which is
   817  		// over 3x more common, dynamically, for make.bash).
   818  		t := s
   819  		n.slice = &t
   820  	}
   821  }
   822  
   823  // Set1 sets n to a slice containing a single node.
   824  func (n *Nodes) Set1(n1 *Node) {
   825  	n.slice = &[]*Node{n1}
   826  }
   827  
   828  // Set2 sets n to a slice containing two nodes.
   829  func (n *Nodes) Set2(n1, n2 *Node) {
   830  	n.slice = &[]*Node{n1, n2}
   831  }
   832  
   833  // Set3 sets n to a slice containing three nodes.
   834  func (n *Nodes) Set3(n1, n2, n3 *Node) {
   835  	n.slice = &[]*Node{n1, n2, n3}
   836  }
   837  
   838  // MoveNodes sets n to the contents of n2, then clears n2.
   839  func (n *Nodes) MoveNodes(n2 *Nodes) {
   840  	n.slice = n2.slice
   841  	n2.slice = nil
   842  }
   843  
   844  // SetIndex sets the i'th element of Nodes to node.
   845  // It panics if n does not have at least i+1 elements.
   846  func (n Nodes) SetIndex(i int, node *Node) {
   847  	(*n.slice)[i] = node
   848  }
   849  
   850  // SetFirst sets the first element of Nodes to node.
   851  // It panics if n does not have at least one elements.
   852  func (n Nodes) SetFirst(node *Node) {
   853  	(*n.slice)[0] = node
   854  }
   855  
   856  // SetSecond sets the second element of Nodes to node.
   857  // It panics if n does not have at least two elements.
   858  func (n Nodes) SetSecond(node *Node) {
   859  	(*n.slice)[1] = node
   860  }
   861  
   862  // Addr returns the address of the i'th element of Nodes.
   863  // It panics if n does not have at least i+1 elements.
   864  func (n Nodes) Addr(i int) **Node {
   865  	return &(*n.slice)[i]
   866  }
   867  
   868  // Append appends entries to Nodes.
   869  func (n *Nodes) Append(a ...*Node) {
   870  	if len(a) == 0 {
   871  		return
   872  	}
   873  	if n.slice == nil {
   874  		s := make([]*Node, len(a))
   875  		copy(s, a)
   876  		n.slice = &s
   877  		return
   878  	}
   879  	*n.slice = append(*n.slice, a...)
   880  }
   881  
   882  // Prepend prepends entries to Nodes.
   883  // If a slice is passed in, this will take ownership of it.
   884  func (n *Nodes) Prepend(a ...*Node) {
   885  	if len(a) == 0 {
   886  		return
   887  	}
   888  	if n.slice == nil {
   889  		n.slice = &a
   890  	} else {
   891  		*n.slice = append(a, *n.slice...)
   892  	}
   893  }
   894  
   895  // AppendNodes appends the contents of *n2 to n, then clears n2.
   896  func (n *Nodes) AppendNodes(n2 *Nodes) {
   897  	switch {
   898  	case n2.slice == nil:
   899  	case n.slice == nil:
   900  		n.slice = n2.slice
   901  	default:
   902  		*n.slice = append(*n.slice, *n2.slice...)
   903  	}
   904  	n2.slice = nil
   905  }
   906  
   907  // inspect invokes f on each node in an AST in depth-first order.
   908  // If f(n) returns false, inspect skips visiting n's children.
   909  func inspect(n *Node, f func(*Node) bool) {
   910  	if n == nil || !f(n) {
   911  		return
   912  	}
   913  	inspectList(n.Ninit, f)
   914  	inspect(n.Left, f)
   915  	inspect(n.Right, f)
   916  	inspectList(n.List, f)
   917  	inspectList(n.Nbody, f)
   918  	inspectList(n.Rlist, f)
   919  }
   920  
   921  func inspectList(l Nodes, f func(*Node) bool) {
   922  	for _, n := range l.Slice() {
   923  		inspect(n, f)
   924  	}
   925  }
   926  
   927  // nodeQueue is a FIFO queue of *Node. The zero value of nodeQueue is
   928  // a ready-to-use empty queue.
   929  type nodeQueue struct {
   930  	ring       []*Node
   931  	head, tail int
   932  }
   933  
   934  // empty reports whether q contains no Nodes.
   935  func (q *nodeQueue) empty() bool {
   936  	return q.head == q.tail
   937  }
   938  
   939  // pushRight appends n to the right of the queue.
   940  func (q *nodeQueue) pushRight(n *Node) {
   941  	if len(q.ring) == 0 {
   942  		q.ring = make([]*Node, 16)
   943  	} else if q.head+len(q.ring) == q.tail {
   944  		// Grow the ring.
   945  		nring := make([]*Node, len(q.ring)*2)
   946  		// Copy the old elements.
   947  		part := q.ring[q.head%len(q.ring):]
   948  		if q.tail-q.head <= len(part) {
   949  			part = part[:q.tail-q.head]
   950  			copy(nring, part)
   951  		} else {
   952  			pos := copy(nring, part)
   953  			copy(nring[pos:], q.ring[:q.tail%len(q.ring)])
   954  		}
   955  		q.ring, q.head, q.tail = nring, 0, q.tail-q.head
   956  	}
   957  
   958  	q.ring[q.tail%len(q.ring)] = n
   959  	q.tail++
   960  }
   961  
   962  // popLeft pops a node from the left of the queue. It panics if q is
   963  // empty.
   964  func (q *nodeQueue) popLeft() *Node {
   965  	if q.empty() {
   966  		panic("dequeue empty")
   967  	}
   968  	n := q.ring[q.head%len(q.ring)]
   969  	q.head++
   970  	return n
   971  }