github.com/megatontech/mynoteforgo@v0.0.0-20200507084910-5d0c6ea6e890/源码/cmd/compile/internal/ssa/gen/genericOps.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // +build ignore 6 7 package main 8 9 // Generic opcodes typically specify a width. The inputs and outputs 10 // of that op are the given number of bits wide. There is no notion of 11 // "sign", so Add32 can be used both for signed and unsigned 32-bit 12 // addition. 13 14 // Signed/unsigned is explicit with the extension ops 15 // (SignExt*/ZeroExt*) and implicit as the arg to some opcodes 16 // (e.g. the second argument to shifts is unsigned). If not mentioned, 17 // all args take signed inputs, or don't care whether their inputs 18 // are signed or unsigned. 19 20 var genericOps = []opData{ 21 // 2-input arithmetic 22 // Types must be consistent with Go typing. Add, for example, must take two values 23 // of the same type and produces that same type. 24 {name: "Add8", argLength: 2, commutative: true}, // arg0 + arg1 25 {name: "Add16", argLength: 2, commutative: true}, 26 {name: "Add32", argLength: 2, commutative: true}, 27 {name: "Add64", argLength: 2, commutative: true}, 28 {name: "AddPtr", argLength: 2}, // For address calculations. arg0 is a pointer and arg1 is an int. 29 {name: "Add32F", argLength: 2, commutative: true}, 30 {name: "Add64F", argLength: 2, commutative: true}, 31 32 {name: "Sub8", argLength: 2}, // arg0 - arg1 33 {name: "Sub16", argLength: 2}, 34 {name: "Sub32", argLength: 2}, 35 {name: "Sub64", argLength: 2}, 36 {name: "SubPtr", argLength: 2}, 37 {name: "Sub32F", argLength: 2}, 38 {name: "Sub64F", argLength: 2}, 39 40 {name: "Mul8", argLength: 2, commutative: true}, // arg0 * arg1 41 {name: "Mul16", argLength: 2, commutative: true}, 42 {name: "Mul32", argLength: 2, commutative: true}, 43 {name: "Mul64", argLength: 2, commutative: true}, 44 {name: "Mul32F", argLength: 2, commutative: true}, 45 {name: "Mul64F", argLength: 2, commutative: true}, 46 47 {name: "Div32F", argLength: 2}, // arg0 / arg1 48 {name: "Div64F", argLength: 2}, 49 50 {name: "Hmul32", argLength: 2, commutative: true}, 51 {name: "Hmul32u", argLength: 2, commutative: true}, 52 {name: "Hmul64", argLength: 2, commutative: true}, 53 {name: "Hmul64u", argLength: 2, commutative: true}, 54 55 {name: "Mul32uhilo", argLength: 2, typ: "(UInt32,UInt32)", commutative: true}, // arg0 * arg1, returns (hi, lo) 56 {name: "Mul64uhilo", argLength: 2, typ: "(UInt64,UInt64)", commutative: true}, // arg0 * arg1, returns (hi, lo) 57 58 {name: "Mul32uover", argLength: 2, typ: "(UInt32,Bool)", commutative: true}, // Let x = arg0*arg1 (full 32x32-> 64 unsigned multiply), returns (uint32(x), (uint32(x) != x)) 59 {name: "Mul64uover", argLength: 2, typ: "(UInt64,Bool)", commutative: true}, // Let x = arg0*arg1 (full 64x64->128 unsigned multiply), returns (uint64(x), (uint64(x) != x)) 60 61 // Weird special instructions for use in the strength reduction of divides. 62 // These ops compute unsigned (arg0 + arg1) / 2, correct to all 63 // 32/64 bits, even when the intermediate result of the add has 33/65 bits. 64 // These ops can assume arg0 >= arg1. 65 // Note: these ops aren't commutative! 66 {name: "Avg32u", argLength: 2, typ: "UInt32"}, // 32-bit platforms only 67 {name: "Avg64u", argLength: 2, typ: "UInt64"}, // 64-bit platforms only 68 69 // For Div16, Div32 and Div64, AuxInt non-zero means that the divisor has been proved to be not -1 70 // or that the dividend is not the most negative value. 71 {name: "Div8", argLength: 2}, // arg0 / arg1, signed 72 {name: "Div8u", argLength: 2}, // arg0 / arg1, unsigned 73 {name: "Div16", argLength: 2, aux: "Bool"}, 74 {name: "Div16u", argLength: 2}, 75 {name: "Div32", argLength: 2, aux: "Bool"}, 76 {name: "Div32u", argLength: 2}, 77 {name: "Div64", argLength: 2, aux: "Bool"}, 78 {name: "Div64u", argLength: 2}, 79 {name: "Div128u", argLength: 3}, // arg0:arg1 / arg2 (128-bit divided by 64-bit), returns (q, r) 80 81 // For Mod16, Mod32 and Mod64, AuxInt non-zero means that the divisor has been proved to be not -1. 82 {name: "Mod8", argLength: 2}, // arg0 % arg1, signed 83 {name: "Mod8u", argLength: 2}, // arg0 % arg1, unsigned 84 {name: "Mod16", argLength: 2, aux: "Bool"}, 85 {name: "Mod16u", argLength: 2}, 86 {name: "Mod32", argLength: 2, aux: "Bool"}, 87 {name: "Mod32u", argLength: 2}, 88 {name: "Mod64", argLength: 2, aux: "Bool"}, 89 {name: "Mod64u", argLength: 2}, 90 91 {name: "And8", argLength: 2, commutative: true}, // arg0 & arg1 92 {name: "And16", argLength: 2, commutative: true}, 93 {name: "And32", argLength: 2, commutative: true}, 94 {name: "And64", argLength: 2, commutative: true}, 95 96 {name: "Or8", argLength: 2, commutative: true}, // arg0 | arg1 97 {name: "Or16", argLength: 2, commutative: true}, 98 {name: "Or32", argLength: 2, commutative: true}, 99 {name: "Or64", argLength: 2, commutative: true}, 100 101 {name: "Xor8", argLength: 2, commutative: true}, // arg0 ^ arg1 102 {name: "Xor16", argLength: 2, commutative: true}, 103 {name: "Xor32", argLength: 2, commutative: true}, 104 {name: "Xor64", argLength: 2, commutative: true}, 105 106 // For shifts, AxB means the shifted value has A bits and the shift amount has B bits. 107 // Shift amounts are considered unsigned. 108 // If arg1 is known to be less than the number of bits in arg0, 109 // then auxInt may be set to 1. 110 // This enables better code generation on some platforms. 111 {name: "Lsh8x8", argLength: 2, aux: "Bool"}, // arg0 << arg1 112 {name: "Lsh8x16", argLength: 2, aux: "Bool"}, 113 {name: "Lsh8x32", argLength: 2, aux: "Bool"}, 114 {name: "Lsh8x64", argLength: 2, aux: "Bool"}, 115 {name: "Lsh16x8", argLength: 2, aux: "Bool"}, 116 {name: "Lsh16x16", argLength: 2, aux: "Bool"}, 117 {name: "Lsh16x32", argLength: 2, aux: "Bool"}, 118 {name: "Lsh16x64", argLength: 2, aux: "Bool"}, 119 {name: "Lsh32x8", argLength: 2, aux: "Bool"}, 120 {name: "Lsh32x16", argLength: 2, aux: "Bool"}, 121 {name: "Lsh32x32", argLength: 2, aux: "Bool"}, 122 {name: "Lsh32x64", argLength: 2, aux: "Bool"}, 123 {name: "Lsh64x8", argLength: 2, aux: "Bool"}, 124 {name: "Lsh64x16", argLength: 2, aux: "Bool"}, 125 {name: "Lsh64x32", argLength: 2, aux: "Bool"}, 126 {name: "Lsh64x64", argLength: 2, aux: "Bool"}, 127 128 {name: "Rsh8x8", argLength: 2, aux: "Bool"}, // arg0 >> arg1, signed 129 {name: "Rsh8x16", argLength: 2, aux: "Bool"}, 130 {name: "Rsh8x32", argLength: 2, aux: "Bool"}, 131 {name: "Rsh8x64", argLength: 2, aux: "Bool"}, 132 {name: "Rsh16x8", argLength: 2, aux: "Bool"}, 133 {name: "Rsh16x16", argLength: 2, aux: "Bool"}, 134 {name: "Rsh16x32", argLength: 2, aux: "Bool"}, 135 {name: "Rsh16x64", argLength: 2, aux: "Bool"}, 136 {name: "Rsh32x8", argLength: 2, aux: "Bool"}, 137 {name: "Rsh32x16", argLength: 2, aux: "Bool"}, 138 {name: "Rsh32x32", argLength: 2, aux: "Bool"}, 139 {name: "Rsh32x64", argLength: 2, aux: "Bool"}, 140 {name: "Rsh64x8", argLength: 2, aux: "Bool"}, 141 {name: "Rsh64x16", argLength: 2, aux: "Bool"}, 142 {name: "Rsh64x32", argLength: 2, aux: "Bool"}, 143 {name: "Rsh64x64", argLength: 2, aux: "Bool"}, 144 145 {name: "Rsh8Ux8", argLength: 2, aux: "Bool"}, // arg0 >> arg1, unsigned 146 {name: "Rsh8Ux16", argLength: 2, aux: "Bool"}, 147 {name: "Rsh8Ux32", argLength: 2, aux: "Bool"}, 148 {name: "Rsh8Ux64", argLength: 2, aux: "Bool"}, 149 {name: "Rsh16Ux8", argLength: 2, aux: "Bool"}, 150 {name: "Rsh16Ux16", argLength: 2, aux: "Bool"}, 151 {name: "Rsh16Ux32", argLength: 2, aux: "Bool"}, 152 {name: "Rsh16Ux64", argLength: 2, aux: "Bool"}, 153 {name: "Rsh32Ux8", argLength: 2, aux: "Bool"}, 154 {name: "Rsh32Ux16", argLength: 2, aux: "Bool"}, 155 {name: "Rsh32Ux32", argLength: 2, aux: "Bool"}, 156 {name: "Rsh32Ux64", argLength: 2, aux: "Bool"}, 157 {name: "Rsh64Ux8", argLength: 2, aux: "Bool"}, 158 {name: "Rsh64Ux16", argLength: 2, aux: "Bool"}, 159 {name: "Rsh64Ux32", argLength: 2, aux: "Bool"}, 160 {name: "Rsh64Ux64", argLength: 2, aux: "Bool"}, 161 162 // 2-input comparisons 163 {name: "Eq8", argLength: 2, commutative: true, typ: "Bool"}, // arg0 == arg1 164 {name: "Eq16", argLength: 2, commutative: true, typ: "Bool"}, 165 {name: "Eq32", argLength: 2, commutative: true, typ: "Bool"}, 166 {name: "Eq64", argLength: 2, commutative: true, typ: "Bool"}, 167 {name: "EqPtr", argLength: 2, commutative: true, typ: "Bool"}, 168 {name: "EqInter", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend 169 {name: "EqSlice", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend 170 {name: "Eq32F", argLength: 2, commutative: true, typ: "Bool"}, 171 {name: "Eq64F", argLength: 2, commutative: true, typ: "Bool"}, 172 173 {name: "Neq8", argLength: 2, commutative: true, typ: "Bool"}, // arg0 != arg1 174 {name: "Neq16", argLength: 2, commutative: true, typ: "Bool"}, 175 {name: "Neq32", argLength: 2, commutative: true, typ: "Bool"}, 176 {name: "Neq64", argLength: 2, commutative: true, typ: "Bool"}, 177 {name: "NeqPtr", argLength: 2, commutative: true, typ: "Bool"}, 178 {name: "NeqInter", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend 179 {name: "NeqSlice", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend 180 {name: "Neq32F", argLength: 2, commutative: true, typ: "Bool"}, 181 {name: "Neq64F", argLength: 2, commutative: true, typ: "Bool"}, 182 183 {name: "Less8", argLength: 2, typ: "Bool"}, // arg0 < arg1, signed 184 {name: "Less8U", argLength: 2, typ: "Bool"}, // arg0 < arg1, unsigned 185 {name: "Less16", argLength: 2, typ: "Bool"}, 186 {name: "Less16U", argLength: 2, typ: "Bool"}, 187 {name: "Less32", argLength: 2, typ: "Bool"}, 188 {name: "Less32U", argLength: 2, typ: "Bool"}, 189 {name: "Less64", argLength: 2, typ: "Bool"}, 190 {name: "Less64U", argLength: 2, typ: "Bool"}, 191 {name: "Less32F", argLength: 2, typ: "Bool"}, 192 {name: "Less64F", argLength: 2, typ: "Bool"}, 193 194 {name: "Leq8", argLength: 2, typ: "Bool"}, // arg0 <= arg1, signed 195 {name: "Leq8U", argLength: 2, typ: "Bool"}, // arg0 <= arg1, unsigned 196 {name: "Leq16", argLength: 2, typ: "Bool"}, 197 {name: "Leq16U", argLength: 2, typ: "Bool"}, 198 {name: "Leq32", argLength: 2, typ: "Bool"}, 199 {name: "Leq32U", argLength: 2, typ: "Bool"}, 200 {name: "Leq64", argLength: 2, typ: "Bool"}, 201 {name: "Leq64U", argLength: 2, typ: "Bool"}, 202 {name: "Leq32F", argLength: 2, typ: "Bool"}, 203 {name: "Leq64F", argLength: 2, typ: "Bool"}, 204 205 {name: "Greater8", argLength: 2, typ: "Bool"}, // arg0 > arg1, signed 206 {name: "Greater8U", argLength: 2, typ: "Bool"}, // arg0 > arg1, unsigned 207 {name: "Greater16", argLength: 2, typ: "Bool"}, 208 {name: "Greater16U", argLength: 2, typ: "Bool"}, 209 {name: "Greater32", argLength: 2, typ: "Bool"}, 210 {name: "Greater32U", argLength: 2, typ: "Bool"}, 211 {name: "Greater64", argLength: 2, typ: "Bool"}, 212 {name: "Greater64U", argLength: 2, typ: "Bool"}, 213 {name: "Greater32F", argLength: 2, typ: "Bool"}, 214 {name: "Greater64F", argLength: 2, typ: "Bool"}, 215 216 {name: "Geq8", argLength: 2, typ: "Bool"}, // arg0 <= arg1, signed 217 {name: "Geq8U", argLength: 2, typ: "Bool"}, // arg0 <= arg1, unsigned 218 {name: "Geq16", argLength: 2, typ: "Bool"}, 219 {name: "Geq16U", argLength: 2, typ: "Bool"}, 220 {name: "Geq32", argLength: 2, typ: "Bool"}, 221 {name: "Geq32U", argLength: 2, typ: "Bool"}, 222 {name: "Geq64", argLength: 2, typ: "Bool"}, 223 {name: "Geq64U", argLength: 2, typ: "Bool"}, 224 {name: "Geq32F", argLength: 2, typ: "Bool"}, 225 {name: "Geq64F", argLength: 2, typ: "Bool"}, 226 227 // the type of a CondSelect is the same as the type of its first 228 // two arguments, which should be register-width scalars; the third 229 // argument should be a boolean 230 {name: "CondSelect", argLength: 3}, // arg2 ? arg0 : arg1 231 232 // boolean ops 233 {name: "AndB", argLength: 2, commutative: true, typ: "Bool"}, // arg0 && arg1 (not shortcircuited) 234 {name: "OrB", argLength: 2, commutative: true, typ: "Bool"}, // arg0 || arg1 (not shortcircuited) 235 {name: "EqB", argLength: 2, commutative: true, typ: "Bool"}, // arg0 == arg1 236 {name: "NeqB", argLength: 2, commutative: true, typ: "Bool"}, // arg0 != arg1 237 {name: "Not", argLength: 1, typ: "Bool"}, // !arg0, boolean 238 239 // 1-input ops 240 {name: "Neg8", argLength: 1}, // -arg0 241 {name: "Neg16", argLength: 1}, 242 {name: "Neg32", argLength: 1}, 243 {name: "Neg64", argLength: 1}, 244 {name: "Neg32F", argLength: 1}, 245 {name: "Neg64F", argLength: 1}, 246 247 {name: "Com8", argLength: 1}, // ^arg0 248 {name: "Com16", argLength: 1}, 249 {name: "Com32", argLength: 1}, 250 {name: "Com64", argLength: 1}, 251 252 {name: "Ctz8", argLength: 1}, // Count trailing (low order) zeroes (returns 0-8) 253 {name: "Ctz16", argLength: 1}, // Count trailing (low order) zeroes (returns 0-16) 254 {name: "Ctz32", argLength: 1}, // Count trailing (low order) zeroes (returns 0-32) 255 {name: "Ctz64", argLength: 1}, // Count trailing (low order) zeroes (returns 0-64) 256 {name: "Ctz8NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-7 257 {name: "Ctz16NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-15 258 {name: "Ctz32NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-31 259 {name: "Ctz64NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-63 260 {name: "BitLen8", argLength: 1}, // Number of bits in arg[0] (returns 0-8) 261 {name: "BitLen16", argLength: 1}, // Number of bits in arg[0] (returns 0-16) 262 {name: "BitLen32", argLength: 1}, // Number of bits in arg[0] (returns 0-32) 263 {name: "BitLen64", argLength: 1}, // Number of bits in arg[0] (returns 0-64) 264 265 {name: "Bswap32", argLength: 1}, // Swap bytes 266 {name: "Bswap64", argLength: 1}, // Swap bytes 267 268 {name: "BitRev8", argLength: 1}, // Reverse the bits in arg[0] 269 {name: "BitRev16", argLength: 1}, // Reverse the bits in arg[0] 270 {name: "BitRev32", argLength: 1}, // Reverse the bits in arg[0] 271 {name: "BitRev64", argLength: 1}, // Reverse the bits in arg[0] 272 273 {name: "PopCount8", argLength: 1}, // Count bits in arg[0] 274 {name: "PopCount16", argLength: 1}, // Count bits in arg[0] 275 {name: "PopCount32", argLength: 1}, // Count bits in arg[0] 276 {name: "PopCount64", argLength: 1}, // Count bits in arg[0] 277 {name: "RotateLeft8", argLength: 2}, // Rotate bits in arg[0] left by arg[1] 278 {name: "RotateLeft16", argLength: 2}, // Rotate bits in arg[0] left by arg[1] 279 {name: "RotateLeft32", argLength: 2}, // Rotate bits in arg[0] left by arg[1] 280 {name: "RotateLeft64", argLength: 2}, // Rotate bits in arg[0] left by arg[1] 281 282 // Square root, float64 only. 283 // Special cases: 284 // +∞ → +∞ 285 // ±0 → ±0 (sign preserved) 286 // x<0 → NaN 287 // NaN → NaN 288 {name: "Sqrt", argLength: 1}, // √arg0 289 290 // Round to integer, float64 only. 291 // Special cases: 292 // ±∞ → ±∞ (sign preserved) 293 // ±0 → ±0 (sign preserved) 294 // NaN → NaN 295 {name: "Floor", argLength: 1}, // round arg0 toward -∞ 296 {name: "Ceil", argLength: 1}, // round arg0 toward +∞ 297 {name: "Trunc", argLength: 1}, // round arg0 toward 0 298 {name: "Round", argLength: 1}, // round arg0 to nearest, ties away from 0 299 {name: "RoundToEven", argLength: 1}, // round arg0 to nearest, ties to even 300 301 // Modify the sign bit 302 {name: "Abs", argLength: 1}, // absolute value arg0 303 {name: "Copysign", argLength: 2}, // copy sign from arg0 to arg1 304 305 // Data movement, max argument length for Phi is indefinite so just pick 306 // a really large number 307 {name: "Phi", argLength: -1, zeroWidth: true}, // select an argument based on which predecessor block we came from 308 {name: "Copy", argLength: 1}, // output = arg0 309 // Convert converts between pointers and integers. 310 // We have a special op for this so as to not confuse GC 311 // (particularly stack maps). It takes a memory arg so it 312 // gets correctly ordered with respect to GC safepoints. 313 // It gets compiled to nothing, so its result must in the same 314 // register as its argument. regalloc knows it can use any 315 // allocatable integer register for OpConvert. 316 // arg0=ptr/int arg1=mem, output=int/ptr 317 {name: "Convert", argLength: 2, zeroWidth: true, resultInArg0: true}, 318 319 // constants. Constant values are stored in the aux or 320 // auxint fields. 321 {name: "ConstBool", aux: "Bool"}, // auxint is 0 for false and 1 for true 322 {name: "ConstString", aux: "String"}, // value is aux.(string) 323 {name: "ConstNil", typ: "BytePtr"}, // nil pointer 324 {name: "Const8", aux: "Int8"}, // auxint is sign-extended 8 bits 325 {name: "Const16", aux: "Int16"}, // auxint is sign-extended 16 bits 326 {name: "Const32", aux: "Int32"}, // auxint is sign-extended 32 bits 327 // Note: ConstX are sign-extended even when the type of the value is unsigned. 328 // For instance, uint8(0xaa) is stored as auxint=0xffffffffffffffaa. 329 {name: "Const64", aux: "Int64"}, // value is auxint 330 {name: "Const32F", aux: "Float32"}, // value is math.Float64frombits(uint64(auxint)) and is exactly prepresentable as float 32 331 {name: "Const64F", aux: "Float64"}, // value is math.Float64frombits(uint64(auxint)) 332 {name: "ConstInterface"}, // nil interface 333 {name: "ConstSlice"}, // nil slice 334 335 // Constant-like things 336 {name: "InitMem", zeroWidth: true}, // memory input to the function. 337 {name: "Arg", aux: "SymOff", symEffect: "Read", zeroWidth: true}, // argument to the function. aux=GCNode of arg, off = offset in that arg. 338 339 // The address of a variable. arg0 is the base pointer. 340 // If the variable is a global, the base pointer will be SB and 341 // the Aux field will be a *obj.LSym. 342 // If the variable is a local, the base pointer will be SP and 343 // the Aux field will be a *gc.Node. 344 {name: "Addr", argLength: 1, aux: "Sym", symEffect: "Addr"}, // Address of a variable. Arg0=SB. Aux identifies the variable. 345 {name: "LocalAddr", argLength: 2, aux: "Sym", symEffect: "Addr"}, // Address of a variable. Arg0=SP. Arg1=mem. Aux identifies the variable. 346 347 {name: "SP", zeroWidth: true}, // stack pointer 348 {name: "SB", typ: "Uintptr", zeroWidth: true}, // static base pointer (a.k.a. globals pointer) 349 {name: "Invalid"}, // unused value 350 351 // Memory operations 352 {name: "Load", argLength: 2}, // Load from arg0. arg1=memory 353 {name: "Store", argLength: 3, typ: "Mem", aux: "Typ"}, // Store arg1 to arg0. arg2=memory, aux=type. Returns memory. 354 // The source and destination of Move may overlap in some cases. See e.g. 355 // memmove inlining in generic.rules. When inlineablememmovesize (in ../rewrite.go) 356 // returns true, we must do all loads before all stores, when lowering Move. 357 {name: "Move", argLength: 3, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=srcptr, arg2=mem, auxint=size, aux=type. Returns memory. 358 {name: "Zero", argLength: 2, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=mem, auxint=size, aux=type. Returns memory. 359 360 // Memory operations with write barriers. 361 // Expand to runtime calls. Write barrier will be removed if write on stack. 362 {name: "StoreWB", argLength: 3, typ: "Mem", aux: "Typ"}, // Store arg1 to arg0. arg2=memory, aux=type. Returns memory. 363 {name: "MoveWB", argLength: 3, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=srcptr, arg2=mem, auxint=size, aux=type. Returns memory. 364 {name: "ZeroWB", argLength: 2, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=mem, auxint=size, aux=type. Returns memory. 365 366 // WB invokes runtime.gcWriteBarrier. This is not a normal 367 // call: it takes arguments in registers, doesn't clobber 368 // general-purpose registers (the exact clobber set is 369 // arch-dependent), and is not a safe-point. 370 {name: "WB", argLength: 3, typ: "Mem", aux: "Sym", symEffect: "None"}, // arg0=destptr, arg1=srcptr, arg2=mem, aux=runtime.gcWriteBarrier 371 372 // Function calls. Arguments to the call have already been written to the stack. 373 // Return values appear on the stack. The method receiver, if any, is treated 374 // as a phantom first argument. 375 {name: "ClosureCall", argLength: 3, aux: "Int64", call: true}, // arg0=code pointer, arg1=context ptr, arg2=memory. auxint=arg size. Returns memory. 376 {name: "StaticCall", argLength: 1, aux: "SymOff", call: true, symEffect: "None"}, // call function aux.(*obj.LSym), arg0=memory. auxint=arg size. Returns memory. 377 {name: "InterCall", argLength: 2, aux: "Int64", call: true}, // interface call. arg0=code pointer, arg1=memory, auxint=arg size. Returns memory. 378 379 // Conversions: signed extensions, zero (unsigned) extensions, truncations 380 {name: "SignExt8to16", argLength: 1, typ: "Int16"}, 381 {name: "SignExt8to32", argLength: 1, typ: "Int32"}, 382 {name: "SignExt8to64", argLength: 1, typ: "Int64"}, 383 {name: "SignExt16to32", argLength: 1, typ: "Int32"}, 384 {name: "SignExt16to64", argLength: 1, typ: "Int64"}, 385 {name: "SignExt32to64", argLength: 1, typ: "Int64"}, 386 {name: "ZeroExt8to16", argLength: 1, typ: "UInt16"}, 387 {name: "ZeroExt8to32", argLength: 1, typ: "UInt32"}, 388 {name: "ZeroExt8to64", argLength: 1, typ: "UInt64"}, 389 {name: "ZeroExt16to32", argLength: 1, typ: "UInt32"}, 390 {name: "ZeroExt16to64", argLength: 1, typ: "UInt64"}, 391 {name: "ZeroExt32to64", argLength: 1, typ: "UInt64"}, 392 {name: "Trunc16to8", argLength: 1}, 393 {name: "Trunc32to8", argLength: 1}, 394 {name: "Trunc32to16", argLength: 1}, 395 {name: "Trunc64to8", argLength: 1}, 396 {name: "Trunc64to16", argLength: 1}, 397 {name: "Trunc64to32", argLength: 1}, 398 399 {name: "Cvt32to32F", argLength: 1}, 400 {name: "Cvt32to64F", argLength: 1}, 401 {name: "Cvt64to32F", argLength: 1}, 402 {name: "Cvt64to64F", argLength: 1}, 403 {name: "Cvt32Fto32", argLength: 1}, 404 {name: "Cvt32Fto64", argLength: 1}, 405 {name: "Cvt64Fto32", argLength: 1}, 406 {name: "Cvt64Fto64", argLength: 1}, 407 {name: "Cvt32Fto64F", argLength: 1}, 408 {name: "Cvt64Fto32F", argLength: 1}, 409 410 // Force rounding to precision of type. 411 {name: "Round32F", argLength: 1}, 412 {name: "Round64F", argLength: 1}, 413 414 // Automatically inserted safety checks 415 {name: "IsNonNil", argLength: 1, typ: "Bool"}, // arg0 != nil 416 {name: "IsInBounds", argLength: 2, typ: "Bool"}, // 0 <= arg0 < arg1. arg1 is guaranteed >= 0. 417 {name: "IsSliceInBounds", argLength: 2, typ: "Bool"}, // 0 <= arg0 <= arg1. arg1 is guaranteed >= 0. 418 {name: "NilCheck", argLength: 2, typ: "Void"}, // arg0=ptr, arg1=mem. Panics if arg0 is nil. Returns void. 419 420 // Pseudo-ops 421 {name: "GetG", argLength: 1, zeroWidth: true}, // runtime.getg() (read g pointer). arg0=mem 422 {name: "GetClosurePtr"}, // get closure pointer from dedicated register 423 {name: "GetCallerPC"}, // for getcallerpc intrinsic 424 {name: "GetCallerSP"}, // for getcallersp intrinsic 425 426 // Indexing operations 427 {name: "PtrIndex", argLength: 2}, // arg0=ptr, arg1=index. Computes ptr+sizeof(*v.type)*index, where index is extended to ptrwidth type 428 {name: "OffPtr", argLength: 1, aux: "Int64"}, // arg0 + auxint (arg0 and result are pointers) 429 430 // Slices 431 {name: "SliceMake", argLength: 3}, // arg0=ptr, arg1=len, arg2=cap 432 {name: "SlicePtr", argLength: 1, typ: "BytePtr"}, // ptr(arg0) 433 {name: "SliceLen", argLength: 1}, // len(arg0) 434 {name: "SliceCap", argLength: 1}, // cap(arg0) 435 436 // Complex (part/whole) 437 {name: "ComplexMake", argLength: 2}, // arg0=real, arg1=imag 438 {name: "ComplexReal", argLength: 1}, // real(arg0) 439 {name: "ComplexImag", argLength: 1}, // imag(arg0) 440 441 // Strings 442 {name: "StringMake", argLength: 2}, // arg0=ptr, arg1=len 443 {name: "StringPtr", argLength: 1, typ: "BytePtr"}, // ptr(arg0) 444 {name: "StringLen", argLength: 1, typ: "Int"}, // len(arg0) 445 446 // Interfaces 447 {name: "IMake", argLength: 2}, // arg0=itab, arg1=data 448 {name: "ITab", argLength: 1, typ: "Uintptr"}, // arg0=interface, returns itable field 449 {name: "IData", argLength: 1}, // arg0=interface, returns data field 450 451 // Structs 452 {name: "StructMake0"}, // Returns struct with 0 fields. 453 {name: "StructMake1", argLength: 1}, // arg0=field0. Returns struct. 454 {name: "StructMake2", argLength: 2}, // arg0,arg1=field0,field1. Returns struct. 455 {name: "StructMake3", argLength: 3}, // arg0..2=field0..2. Returns struct. 456 {name: "StructMake4", argLength: 4}, // arg0..3=field0..3. Returns struct. 457 {name: "StructSelect", argLength: 1, aux: "Int64"}, // arg0=struct, auxint=field index. Returns the auxint'th field. 458 459 // Arrays 460 {name: "ArrayMake0"}, // Returns array with 0 elements 461 {name: "ArrayMake1", argLength: 1}, // Returns array with 1 element 462 {name: "ArraySelect", argLength: 1, aux: "Int64"}, // arg0=array, auxint=index. Returns a[i]. 463 464 // Spill&restore ops for the register allocator. These are 465 // semantically identical to OpCopy; they do not take/return 466 // stores like regular memory ops do. We can get away without memory 467 // args because we know there is no aliasing of spill slots on the stack. 468 {name: "StoreReg", argLength: 1}, 469 {name: "LoadReg", argLength: 1}, 470 471 // Used during ssa construction. Like Copy, but the arg has not been specified yet. 472 {name: "FwdRef", aux: "Sym", symEffect: "None"}, 473 474 // Unknown value. Used for Values whose values don't matter because they are dead code. 475 {name: "Unknown"}, 476 477 {name: "VarDef", argLength: 1, aux: "Sym", typ: "Mem", symEffect: "None", zeroWidth: true}, // aux is a *gc.Node of a variable that is about to be initialized. arg0=mem, returns mem 478 {name: "VarKill", argLength: 1, aux: "Sym", symEffect: "None"}, // aux is a *gc.Node of a variable that is known to be dead. arg0=mem, returns mem 479 // TODO: what's the difference betweeen VarLive and KeepAlive? 480 {name: "VarLive", argLength: 1, aux: "Sym", symEffect: "Read", zeroWidth: true}, // aux is a *gc.Node of a variable that must be kept live. arg0=mem, returns mem 481 {name: "KeepAlive", argLength: 2, typ: "Mem", zeroWidth: true}, // arg[0] is a value that must be kept alive until this mark. arg[1]=mem, returns mem 482 483 // InlMark marks the start of an inlined function body. Its AuxInt field 484 // distinguishes which entry in the local inline tree it is marking. 485 {name: "InlMark", argLength: 1, aux: "Int32", typ: "Void"}, // arg[0]=mem, returns void. 486 487 // Ops for breaking 64-bit operations on 32-bit architectures 488 {name: "Int64Make", argLength: 2, typ: "UInt64"}, // arg0=hi, arg1=lo 489 {name: "Int64Hi", argLength: 1, typ: "UInt32"}, // high 32-bit of arg0 490 {name: "Int64Lo", argLength: 1, typ: "UInt32"}, // low 32-bit of arg0 491 492 {name: "Add32carry", argLength: 2, commutative: true, typ: "(UInt32,Flags)"}, // arg0 + arg1, returns (value, carry) 493 {name: "Add32withcarry", argLength: 3, commutative: true}, // arg0 + arg1 + arg2, arg2=carry (0 or 1) 494 495 {name: "Sub32carry", argLength: 2, typ: "(UInt32,Flags)"}, // arg0 - arg1, returns (value, carry) 496 {name: "Sub32withcarry", argLength: 3}, // arg0 - arg1 - arg2, arg2=carry (0 or 1) 497 498 {name: "Add64carry", argLength: 3, commutative: true, typ: "(UInt64,UInt64)"}, // arg0 + arg1 + arg2, arg2 must be 0 or 1. returns (value, value>>64) 499 {name: "Sub64borrow", argLength: 3, typ: "(UInt64,UInt64)"}, // arg0 - (arg1 + arg2), arg2 must be 0 or 1. returns (value, value>>64&1) 500 501 {name: "Signmask", argLength: 1, typ: "Int32"}, // 0 if arg0 >= 0, -1 if arg0 < 0 502 {name: "Zeromask", argLength: 1, typ: "UInt32"}, // 0 if arg0 == 0, 0xffffffff if arg0 != 0 503 {name: "Slicemask", argLength: 1}, // 0 if arg0 == 0, -1 if arg0 > 0, undef if arg0<0. Type is native int size. 504 505 {name: "Cvt32Uto32F", argLength: 1}, // uint32 -> float32, only used on 32-bit arch 506 {name: "Cvt32Uto64F", argLength: 1}, // uint32 -> float64, only used on 32-bit arch 507 {name: "Cvt32Fto32U", argLength: 1}, // float32 -> uint32, only used on 32-bit arch 508 {name: "Cvt64Fto32U", argLength: 1}, // float64 -> uint32, only used on 32-bit arch 509 {name: "Cvt64Uto32F", argLength: 1}, // uint64 -> float32, only used on archs that has the instruction 510 {name: "Cvt64Uto64F", argLength: 1}, // uint64 -> float64, only used on archs that has the instruction 511 {name: "Cvt32Fto64U", argLength: 1}, // float32 -> uint64, only used on archs that has the instruction 512 {name: "Cvt64Fto64U", argLength: 1}, // float64 -> uint64, only used on archs that has the instruction 513 514 // pseudo-ops for breaking Tuple 515 {name: "Select0", argLength: 1, zeroWidth: true}, // the first component of a tuple 516 {name: "Select1", argLength: 1, zeroWidth: true}, // the second component of a tuple 517 518 // Atomic operations used for semantically inlining runtime/internal/atomic. 519 // Atomic loads return a new memory so that the loads are properly ordered 520 // with respect to other loads and stores. 521 // TODO: use for sync/atomic at some point. 522 {name: "AtomicLoad32", argLength: 2, typ: "(UInt32,Mem)"}, // Load from arg0. arg1=memory. Returns loaded value and new memory. 523 {name: "AtomicLoad64", argLength: 2, typ: "(UInt64,Mem)"}, // Load from arg0. arg1=memory. Returns loaded value and new memory. 524 {name: "AtomicLoadPtr", argLength: 2, typ: "(BytePtr,Mem)"}, // Load from arg0. arg1=memory. Returns loaded value and new memory. 525 {name: "AtomicLoadAcq32", argLength: 2, typ: "(UInt32,Mem)"}, // Load from arg0. arg1=memory. Lock acquisition, returns loaded value and new memory. 526 {name: "AtomicStore32", argLength: 3, typ: "Mem", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns memory. 527 {name: "AtomicStore64", argLength: 3, typ: "Mem", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns memory. 528 {name: "AtomicStorePtrNoWB", argLength: 3, typ: "Mem", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns memory. 529 {name: "AtomicStoreRel32", argLength: 3, typ: "Mem", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Lock release, returns memory. 530 {name: "AtomicExchange32", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns old contents of *arg0 and new memory. 531 {name: "AtomicExchange64", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns old contents of *arg0 and new memory. 532 {name: "AtomicAdd32", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true}, // Do *arg0 += arg1. arg2=memory. Returns sum and new memory. 533 {name: "AtomicAdd64", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true}, // Do *arg0 += arg1. arg2=memory. Returns sum and new memory. 534 {name: "AtomicCompareAndSwap32", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true}, // if *arg0==arg1, then set *arg0=arg2. Returns true if store happens and new memory. 535 {name: "AtomicCompareAndSwap64", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true}, // if *arg0==arg1, then set *arg0=arg2. Returns true if store happens and new memory. 536 {name: "AtomicCompareAndSwapRel32", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true}, // if *arg0==arg1, then set *arg0=arg2. Lock release, reports whether store happens and new memory. 537 {name: "AtomicAnd8", argLength: 3, typ: "Mem", hasSideEffects: true}, // *arg0 &= arg1. arg2=memory. Returns memory. 538 {name: "AtomicOr8", argLength: 3, typ: "Mem", hasSideEffects: true}, // *arg0 |= arg1. arg2=memory. Returns memory. 539 540 // Atomic operation variants 541 // These variants have the same semantics as above atomic operations. 542 // But they are used for generating more efficient code on certain modern machines, with run-time CPU feature detection. 543 // Currently, they are used on ARM64 only. 544 {name: "AtomicAdd32Variant", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true}, // Do *arg0 += arg1. arg2=memory. Returns sum and new memory. 545 {name: "AtomicAdd64Variant", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true}, // Do *arg0 += arg1. arg2=memory. Returns sum and new memory. 546 547 // Clobber experiment op 548 {name: "Clobber", argLength: 0, typ: "Void", aux: "SymOff", symEffect: "None"}, // write an invalid pointer value to the given pointer slot of a stack variable 549 } 550 551 // kind control successors implicit exit 552 // ---------------------------------------------------------- 553 // Exit return mem [] yes 554 // Ret return mem [] yes 555 // RetJmp return mem [] yes 556 // Plain nil [next] 557 // If a boolean Value [then, else] 558 // Call mem [next] yes (control opcode should be OpCall or OpStaticCall) 559 // Check void [next] yes (control opcode should be Op{Lowered}NilCheck) 560 // First nil [always,never] 561 562 var genericBlocks = []blockData{ 563 {name: "Plain"}, // a single successor 564 {name: "If"}, // 2 successors, if control goto Succs[0] else goto Succs[1] 565 {name: "Defer"}, // 2 successors, Succs[0]=defer queued, Succs[1]=defer recovered. control is call op (of memory type) 566 {name: "Ret"}, // no successors, control value is memory result 567 {name: "RetJmp"}, // no successors, jumps to b.Aux.(*gc.Sym) 568 {name: "Exit"}, // no successors, control value generates a panic 569 570 // transient block state used for dead code removal 571 {name: "First"}, // 2 successors, always takes the first one (second is dead) 572 } 573 574 func init() { 575 archs = append(archs, arch{ 576 name: "generic", 577 ops: genericOps, 578 blocks: genericBlocks, 579 generic: true, 580 }) 581 }