github.com/megatontech/mynoteforgo@v0.0.0-20200507084910-5d0c6ea6e890/源码/cmd/link/internal/ppc64/asm.go (about) 1 // Inferno utils/5l/asm.c 2 // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/5l/asm.c 3 // 4 // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. 5 // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) 6 // Portions Copyright © 1997-1999 Vita Nuova Limited 7 // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) 8 // Portions Copyright © 2004,2006 Bruce Ellis 9 // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) 10 // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others 11 // Portions Copyright © 2009 The Go Authors. All rights reserved. 12 // 13 // Permission is hereby granted, free of charge, to any person obtaining a copy 14 // of this software and associated documentation files (the "Software"), to deal 15 // in the Software without restriction, including without limitation the rights 16 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 17 // copies of the Software, and to permit persons to whom the Software is 18 // furnished to do so, subject to the following conditions: 19 // 20 // The above copyright notice and this permission notice shall be included in 21 // all copies or substantial portions of the Software. 22 // 23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 24 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 26 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 28 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 29 // THE SOFTWARE. 30 31 package ppc64 32 33 import ( 34 "cmd/internal/objabi" 35 "cmd/internal/sys" 36 "cmd/link/internal/ld" 37 "cmd/link/internal/sym" 38 "debug/elf" 39 "encoding/binary" 40 "fmt" 41 "log" 42 "strings" 43 ) 44 45 func genplt(ctxt *ld.Link) { 46 // The ppc64 ABI PLT has similar concepts to other 47 // architectures, but is laid out quite differently. When we 48 // see an R_PPC64_REL24 relocation to a dynamic symbol 49 // (indicating that the call needs to go through the PLT), we 50 // generate up to three stubs and reserve a PLT slot. 51 // 52 // 1) The call site will be bl x; nop (where the relocation 53 // applies to the bl). We rewrite this to bl x_stub; ld 54 // r2,24(r1). The ld is necessary because x_stub will save 55 // r2 (the TOC pointer) at 24(r1) (the "TOC save slot"). 56 // 57 // 2) We reserve space for a pointer in the .plt section (once 58 // per referenced dynamic function). .plt is a data 59 // section filled solely by the dynamic linker (more like 60 // .plt.got on other architectures). Initially, the 61 // dynamic linker will fill each slot with a pointer to the 62 // corresponding x@plt entry point. 63 // 64 // 3) We generate the "call stub" x_stub (once per dynamic 65 // function/object file pair). This saves the TOC in the 66 // TOC save slot, reads the function pointer from x's .plt 67 // slot and calls it like any other global entry point 68 // (including setting r12 to the function address). 69 // 70 // 4) We generate the "symbol resolver stub" x@plt (once per 71 // dynamic function). This is solely a branch to the glink 72 // resolver stub. 73 // 74 // 5) We generate the glink resolver stub (only once). This 75 // computes which symbol resolver stub we came through and 76 // invokes the dynamic resolver via a pointer provided by 77 // the dynamic linker. This will patch up the .plt slot to 78 // point directly at the function so future calls go 79 // straight from the call stub to the real function, and 80 // then call the function. 81 82 // NOTE: It's possible we could make ppc64 closer to other 83 // architectures: ppc64's .plt is like .plt.got on other 84 // platforms and ppc64's .glink is like .plt on other 85 // platforms. 86 87 // Find all R_PPC64_REL24 relocations that reference dynamic 88 // imports. Reserve PLT entries for these symbols and 89 // generate call stubs. The call stubs need to live in .text, 90 // which is why we need to do this pass this early. 91 // 92 // This assumes "case 1" from the ABI, where the caller needs 93 // us to save and restore the TOC pointer. 94 var stubs []*sym.Symbol 95 for _, s := range ctxt.Textp { 96 for i := range s.R { 97 r := &s.R[i] 98 if r.Type != 256+objabi.RelocType(elf.R_PPC64_REL24) || r.Sym.Type != sym.SDYNIMPORT { 99 continue 100 } 101 102 // Reserve PLT entry and generate symbol 103 // resolver 104 addpltsym(ctxt, r.Sym) 105 106 // Generate call stub 107 n := fmt.Sprintf("%s.%s", s.Name, r.Sym.Name) 108 109 stub := ctxt.Syms.Lookup(n, 0) 110 if s.Attr.Reachable() { 111 stub.Attr |= sym.AttrReachable 112 } 113 if stub.Size == 0 { 114 // Need outer to resolve .TOC. 115 stub.Outer = s 116 stubs = append(stubs, stub) 117 gencallstub(ctxt, 1, stub, r.Sym) 118 } 119 120 // Update the relocation to use the call stub 121 r.Sym = stub 122 123 // Restore TOC after bl. The compiler put a 124 // nop here for us to overwrite. 125 const o1 = 0xe8410018 // ld r2,24(r1) 126 ctxt.Arch.ByteOrder.PutUint32(s.P[r.Off+4:], o1) 127 } 128 } 129 // Put call stubs at the beginning (instead of the end). 130 // So when resolving the relocations to calls to the stubs, 131 // the addresses are known and trampolines can be inserted 132 // when necessary. 133 ctxt.Textp = append(stubs, ctxt.Textp...) 134 } 135 136 func genaddmoduledata(ctxt *ld.Link) { 137 addmoduledata := ctxt.Syms.ROLookup("runtime.addmoduledata", sym.SymVerABI0) 138 if addmoduledata.Type == sym.STEXT && ctxt.BuildMode != ld.BuildModePlugin { 139 return 140 } 141 addmoduledata.Attr |= sym.AttrReachable 142 initfunc := ctxt.Syms.Lookup("go.link.addmoduledata", 0) 143 initfunc.Type = sym.STEXT 144 initfunc.Attr |= sym.AttrLocal 145 initfunc.Attr |= sym.AttrReachable 146 o := func(op uint32) { 147 initfunc.AddUint32(ctxt.Arch, op) 148 } 149 // addis r2, r12, .TOC.-func@ha 150 rel := initfunc.AddRel() 151 rel.Off = int32(initfunc.Size) 152 rel.Siz = 8 153 rel.Sym = ctxt.Syms.Lookup(".TOC.", 0) 154 rel.Sym.Attr |= sym.AttrReachable 155 rel.Type = objabi.R_ADDRPOWER_PCREL 156 o(0x3c4c0000) 157 // addi r2, r2, .TOC.-func@l 158 o(0x38420000) 159 // mflr r31 160 o(0x7c0802a6) 161 // stdu r31, -32(r1) 162 o(0xf801ffe1) 163 // addis r3, r2, local.moduledata@got@ha 164 rel = initfunc.AddRel() 165 rel.Off = int32(initfunc.Size) 166 rel.Siz = 8 167 if s := ctxt.Syms.ROLookup("local.moduledata", 0); s != nil { 168 rel.Sym = s 169 } else if s := ctxt.Syms.ROLookup("local.pluginmoduledata", 0); s != nil { 170 rel.Sym = s 171 } else { 172 rel.Sym = ctxt.Syms.Lookup("runtime.firstmoduledata", 0) 173 } 174 rel.Sym.Attr |= sym.AttrReachable 175 rel.Sym.Attr |= sym.AttrLocal 176 rel.Type = objabi.R_ADDRPOWER_GOT 177 o(0x3c620000) 178 // ld r3, local.moduledata@got@l(r3) 179 o(0xe8630000) 180 // bl runtime.addmoduledata 181 rel = initfunc.AddRel() 182 rel.Off = int32(initfunc.Size) 183 rel.Siz = 4 184 rel.Sym = addmoduledata 185 rel.Type = objabi.R_CALLPOWER 186 o(0x48000001) 187 // nop 188 o(0x60000000) 189 // ld r31, 0(r1) 190 o(0xe8010000) 191 // mtlr r31 192 o(0x7c0803a6) 193 // addi r1,r1,32 194 o(0x38210020) 195 // blr 196 o(0x4e800020) 197 198 if ctxt.BuildMode == ld.BuildModePlugin { 199 ctxt.Textp = append(ctxt.Textp, addmoduledata) 200 } 201 initarray_entry := ctxt.Syms.Lookup("go.link.addmoduledatainit", 0) 202 ctxt.Textp = append(ctxt.Textp, initfunc) 203 initarray_entry.Attr |= sym.AttrReachable 204 initarray_entry.Attr |= sym.AttrLocal 205 initarray_entry.Type = sym.SINITARR 206 initarray_entry.AddAddr(ctxt.Arch, initfunc) 207 } 208 209 func gentext(ctxt *ld.Link) { 210 if ctxt.DynlinkingGo() { 211 genaddmoduledata(ctxt) 212 } 213 214 if ctxt.LinkMode == ld.LinkInternal { 215 genplt(ctxt) 216 } 217 } 218 219 // Construct a call stub in stub that calls symbol targ via its PLT 220 // entry. 221 func gencallstub(ctxt *ld.Link, abicase int, stub *sym.Symbol, targ *sym.Symbol) { 222 if abicase != 1 { 223 // If we see R_PPC64_TOCSAVE or R_PPC64_REL24_NOTOC 224 // relocations, we'll need to implement cases 2 and 3. 225 log.Fatalf("gencallstub only implements case 1 calls") 226 } 227 228 plt := ctxt.Syms.Lookup(".plt", 0) 229 230 stub.Type = sym.STEXT 231 232 // Save TOC pointer in TOC save slot 233 stub.AddUint32(ctxt.Arch, 0xf8410018) // std r2,24(r1) 234 235 // Load the function pointer from the PLT. 236 r := stub.AddRel() 237 238 r.Off = int32(stub.Size) 239 r.Sym = plt 240 r.Add = int64(targ.Plt()) 241 r.Siz = 2 242 if ctxt.Arch.ByteOrder == binary.BigEndian { 243 r.Off += int32(r.Siz) 244 } 245 r.Type = objabi.R_POWER_TOC 246 r.Variant = sym.RV_POWER_HA 247 stub.AddUint32(ctxt.Arch, 0x3d820000) // addis r12,r2,targ@plt@toc@ha 248 r = stub.AddRel() 249 r.Off = int32(stub.Size) 250 r.Sym = plt 251 r.Add = int64(targ.Plt()) 252 r.Siz = 2 253 if ctxt.Arch.ByteOrder == binary.BigEndian { 254 r.Off += int32(r.Siz) 255 } 256 r.Type = objabi.R_POWER_TOC 257 r.Variant = sym.RV_POWER_LO 258 stub.AddUint32(ctxt.Arch, 0xe98c0000) // ld r12,targ@plt@toc@l(r12) 259 260 // Jump to the loaded pointer 261 stub.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12 262 stub.AddUint32(ctxt.Arch, 0x4e800420) // bctr 263 } 264 265 func adddynrel(ctxt *ld.Link, s *sym.Symbol, r *sym.Reloc) bool { 266 if ctxt.IsELF { 267 return addelfdynrel(ctxt, s, r) 268 } else if ctxt.HeadType == objabi.Haix { 269 return ld.Xcoffadddynrel(ctxt, s, r) 270 } 271 return false 272 } 273 func addelfdynrel(ctxt *ld.Link, s *sym.Symbol, r *sym.Reloc) bool { 274 targ := r.Sym 275 276 switch r.Type { 277 default: 278 if r.Type >= 256 { 279 ld.Errorf(s, "unexpected relocation type %d (%s)", r.Type, sym.RelocName(ctxt.Arch, r.Type)) 280 return false 281 } 282 283 // Handle relocations found in ELF object files. 284 case 256 + objabi.RelocType(elf.R_PPC64_REL24): 285 r.Type = objabi.R_CALLPOWER 286 287 // This is a local call, so the caller isn't setting 288 // up r12 and r2 is the same for the caller and 289 // callee. Hence, we need to go to the local entry 290 // point. (If we don't do this, the callee will try 291 // to use r12 to compute r2.) 292 r.Add += int64(r.Sym.Localentry()) * 4 293 294 if targ.Type == sym.SDYNIMPORT { 295 // Should have been handled in elfsetupplt 296 ld.Errorf(s, "unexpected R_PPC64_REL24 for dyn import") 297 } 298 299 return true 300 301 case 256 + objabi.RelocType(elf.R_PPC_REL32): 302 r.Type = objabi.R_PCREL 303 r.Add += 4 304 305 if targ.Type == sym.SDYNIMPORT { 306 ld.Errorf(s, "unexpected R_PPC_REL32 for dyn import") 307 } 308 309 return true 310 311 case 256 + objabi.RelocType(elf.R_PPC64_ADDR64): 312 r.Type = objabi.R_ADDR 313 if targ.Type == sym.SDYNIMPORT { 314 // These happen in .toc sections 315 ld.Adddynsym(ctxt, targ) 316 317 rela := ctxt.Syms.Lookup(".rela", 0) 318 rela.AddAddrPlus(ctxt.Arch, s, int64(r.Off)) 319 rela.AddUint64(ctxt.Arch, ld.ELF64_R_INFO(uint32(targ.Dynid), uint32(elf.R_PPC64_ADDR64))) 320 rela.AddUint64(ctxt.Arch, uint64(r.Add)) 321 r.Type = 256 // ignore during relocsym 322 } 323 324 return true 325 326 case 256 + objabi.RelocType(elf.R_PPC64_TOC16): 327 r.Type = objabi.R_POWER_TOC 328 r.Variant = sym.RV_POWER_LO | sym.RV_CHECK_OVERFLOW 329 return true 330 331 case 256 + objabi.RelocType(elf.R_PPC64_TOC16_LO): 332 r.Type = objabi.R_POWER_TOC 333 r.Variant = sym.RV_POWER_LO 334 return true 335 336 case 256 + objabi.RelocType(elf.R_PPC64_TOC16_HA): 337 r.Type = objabi.R_POWER_TOC 338 r.Variant = sym.RV_POWER_HA | sym.RV_CHECK_OVERFLOW 339 return true 340 341 case 256 + objabi.RelocType(elf.R_PPC64_TOC16_HI): 342 r.Type = objabi.R_POWER_TOC 343 r.Variant = sym.RV_POWER_HI | sym.RV_CHECK_OVERFLOW 344 return true 345 346 case 256 + objabi.RelocType(elf.R_PPC64_TOC16_DS): 347 r.Type = objabi.R_POWER_TOC 348 r.Variant = sym.RV_POWER_DS | sym.RV_CHECK_OVERFLOW 349 return true 350 351 case 256 + objabi.RelocType(elf.R_PPC64_TOC16_LO_DS): 352 r.Type = objabi.R_POWER_TOC 353 r.Variant = sym.RV_POWER_DS 354 return true 355 356 case 256 + objabi.RelocType(elf.R_PPC64_REL16_LO): 357 r.Type = objabi.R_PCREL 358 r.Variant = sym.RV_POWER_LO 359 r.Add += 2 // Compensate for relocation size of 2 360 return true 361 362 case 256 + objabi.RelocType(elf.R_PPC64_REL16_HI): 363 r.Type = objabi.R_PCREL 364 r.Variant = sym.RV_POWER_HI | sym.RV_CHECK_OVERFLOW 365 r.Add += 2 366 return true 367 368 case 256 + objabi.RelocType(elf.R_PPC64_REL16_HA): 369 r.Type = objabi.R_PCREL 370 r.Variant = sym.RV_POWER_HA | sym.RV_CHECK_OVERFLOW 371 r.Add += 2 372 return true 373 } 374 375 // Handle references to ELF symbols from our own object files. 376 if targ.Type != sym.SDYNIMPORT { 377 return true 378 } 379 380 // TODO(austin): Translate our relocations to ELF 381 382 return false 383 } 384 385 func elfreloc1(ctxt *ld.Link, r *sym.Reloc, sectoff int64) bool { 386 // Beware that bit0~bit15 start from the third byte of a instruction in Big-Endian machines. 387 if r.Type == objabi.R_ADDR || r.Type == objabi.R_POWER_TLS || r.Type == objabi.R_CALLPOWER { 388 } else { 389 if ctxt.Arch.ByteOrder == binary.BigEndian { 390 sectoff += 2 391 } 392 } 393 ctxt.Out.Write64(uint64(sectoff)) 394 395 elfsym := r.Xsym.ElfsymForReloc() 396 switch r.Type { 397 default: 398 return false 399 case objabi.R_ADDR: 400 switch r.Siz { 401 case 4: 402 ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR32) | uint64(elfsym)<<32) 403 case 8: 404 ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR64) | uint64(elfsym)<<32) 405 default: 406 return false 407 } 408 case objabi.R_POWER_TLS: 409 ctxt.Out.Write64(uint64(elf.R_PPC64_TLS) | uint64(elfsym)<<32) 410 case objabi.R_POWER_TLS_LE: 411 ctxt.Out.Write64(uint64(elf.R_PPC64_TPREL16) | uint64(elfsym)<<32) 412 case objabi.R_POWER_TLS_IE: 413 ctxt.Out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_HA) | uint64(elfsym)<<32) 414 ctxt.Out.Write64(uint64(r.Xadd)) 415 ctxt.Out.Write64(uint64(sectoff + 4)) 416 ctxt.Out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_LO_DS) | uint64(elfsym)<<32) 417 case objabi.R_ADDRPOWER: 418 ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32) 419 ctxt.Out.Write64(uint64(r.Xadd)) 420 ctxt.Out.Write64(uint64(sectoff + 4)) 421 ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_LO) | uint64(elfsym)<<32) 422 case objabi.R_ADDRPOWER_DS: 423 ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32) 424 ctxt.Out.Write64(uint64(r.Xadd)) 425 ctxt.Out.Write64(uint64(sectoff + 4)) 426 ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_LO_DS) | uint64(elfsym)<<32) 427 case objabi.R_ADDRPOWER_GOT: 428 ctxt.Out.Write64(uint64(elf.R_PPC64_GOT16_HA) | uint64(elfsym)<<32) 429 ctxt.Out.Write64(uint64(r.Xadd)) 430 ctxt.Out.Write64(uint64(sectoff + 4)) 431 ctxt.Out.Write64(uint64(elf.R_PPC64_GOT16_LO_DS) | uint64(elfsym)<<32) 432 case objabi.R_ADDRPOWER_PCREL: 433 ctxt.Out.Write64(uint64(elf.R_PPC64_REL16_HA) | uint64(elfsym)<<32) 434 ctxt.Out.Write64(uint64(r.Xadd)) 435 ctxt.Out.Write64(uint64(sectoff + 4)) 436 ctxt.Out.Write64(uint64(elf.R_PPC64_REL16_LO) | uint64(elfsym)<<32) 437 r.Xadd += 4 438 case objabi.R_ADDRPOWER_TOCREL: 439 ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32) 440 ctxt.Out.Write64(uint64(r.Xadd)) 441 ctxt.Out.Write64(uint64(sectoff + 4)) 442 ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_LO) | uint64(elfsym)<<32) 443 case objabi.R_ADDRPOWER_TOCREL_DS: 444 ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32) 445 ctxt.Out.Write64(uint64(r.Xadd)) 446 ctxt.Out.Write64(uint64(sectoff + 4)) 447 ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_LO_DS) | uint64(elfsym)<<32) 448 case objabi.R_CALLPOWER: 449 if r.Siz != 4 { 450 return false 451 } 452 ctxt.Out.Write64(uint64(elf.R_PPC64_REL24) | uint64(elfsym)<<32) 453 454 } 455 ctxt.Out.Write64(uint64(r.Xadd)) 456 457 return true 458 } 459 460 func elfsetupplt(ctxt *ld.Link) { 461 plt := ctxt.Syms.Lookup(".plt", 0) 462 if plt.Size == 0 { 463 // The dynamic linker stores the address of the 464 // dynamic resolver and the DSO identifier in the two 465 // doublewords at the beginning of the .plt section 466 // before the PLT array. Reserve space for these. 467 plt.Size = 16 468 } 469 } 470 471 func machoreloc1(arch *sys.Arch, out *ld.OutBuf, s *sym.Symbol, r *sym.Reloc, sectoff int64) bool { 472 return false 473 } 474 475 // Return the value of .TOC. for symbol s 476 func symtoc(ctxt *ld.Link, s *sym.Symbol) int64 { 477 var toc *sym.Symbol 478 479 if s.Outer != nil { 480 toc = ctxt.Syms.ROLookup(".TOC.", int(s.Outer.Version)) 481 } else { 482 toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version)) 483 } 484 485 if toc == nil { 486 ld.Errorf(s, "TOC-relative relocation in object without .TOC.") 487 return 0 488 } 489 490 return toc.Value 491 } 492 493 // archreloctoc relocates a TOC relative symbol. 494 // If the symbol pointed by this TOC relative symbol is in .data or .bss, the 495 // default load instruction can be changed to an addi instruction and the 496 // symbol address can be used directly. 497 // This code is for AIX only. 498 func archreloctoc(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, val int64) int64 { 499 if ctxt.HeadType == objabi.Hlinux { 500 ld.Errorf(s, "archrelocaddr called for %s relocation\n", r.Sym.Name) 501 } 502 var o1, o2 uint32 503 504 o1 = uint32(val >> 32) 505 o2 = uint32(val) 506 507 var t int64 508 useAddi := false 509 const prefix = "TOC." 510 var tarSym *sym.Symbol 511 if strings.HasPrefix(r.Sym.Name, prefix) { 512 tarSym = ctxt.Syms.ROLookup(strings.TrimPrefix(r.Sym.Name, prefix), 0) 513 } else { 514 ld.Errorf(s, "archreloctoc called for a symbol without TOC anchor") 515 } 516 517 if tarSym != nil && tarSym.Attr.Reachable() && (tarSym.Sect.Seg == &ld.Segdata) { 518 t = ld.Symaddr(tarSym) + r.Add - ctxt.Syms.ROLookup("TOC", 0).Value 519 // change ld to addi in the second instruction 520 o2 = (o2 & 0x03FF0000) | 0xE<<26 521 useAddi = true 522 } else { 523 t = ld.Symaddr(r.Sym) + r.Add - ctxt.Syms.ROLookup("TOC", 0).Value 524 } 525 526 if t != int64(int32(t)) { 527 ld.Errorf(s, "TOC relocation for %s is too big to relocate %s: 0x%x", s.Name, r.Sym, t) 528 } 529 530 if t&0x8000 != 0 { 531 t += 0x10000 532 } 533 534 o1 |= uint32((t >> 16) & 0xFFFF) 535 536 switch r.Type { 537 case objabi.R_ADDRPOWER_TOCREL_DS: 538 if useAddi { 539 o2 |= uint32(t) & 0xFFFF 540 } else { 541 if t&3 != 0 { 542 ld.Errorf(s, "bad DS reloc for %s: %d", s.Name, ld.Symaddr(r.Sym)) 543 } 544 o2 |= uint32(t) & 0xFFFC 545 } 546 default: 547 return -1 548 } 549 550 return int64(o1)<<32 | int64(o2) 551 } 552 553 // archrelocaddr relocates a symbol address. 554 // This code is for AIX only. 555 func archrelocaddr(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, val int64) int64 { 556 if ctxt.HeadType == objabi.Haix { 557 ld.Errorf(s, "archrelocaddr called for %s relocation\n", r.Sym.Name) 558 } 559 var o1, o2 uint32 560 if ctxt.Arch.ByteOrder == binary.BigEndian { 561 o1 = uint32(val >> 32) 562 o2 = uint32(val) 563 } else { 564 o1 = uint32(val) 565 o2 = uint32(val >> 32) 566 } 567 568 // We are spreading a 31-bit address across two instructions, putting the 569 // high (adjusted) part in the low 16 bits of the first instruction and the 570 // low part in the low 16 bits of the second instruction, or, in the DS case, 571 // bits 15-2 (inclusive) of the address into bits 15-2 of the second 572 // instruction (it is an error in this case if the low 2 bits of the address 573 // are non-zero). 574 575 t := ld.Symaddr(r.Sym) + r.Add 576 if t < 0 || t >= 1<<31 { 577 ld.Errorf(s, "relocation for %s is too big (>=2G): 0x%x", s.Name, ld.Symaddr(r.Sym)) 578 } 579 if t&0x8000 != 0 { 580 t += 0x10000 581 } 582 583 switch r.Type { 584 case objabi.R_ADDRPOWER: 585 o1 |= (uint32(t) >> 16) & 0xffff 586 o2 |= uint32(t) & 0xffff 587 case objabi.R_ADDRPOWER_DS: 588 o1 |= (uint32(t) >> 16) & 0xffff 589 if t&3 != 0 { 590 ld.Errorf(s, "bad DS reloc for %s: %d", s.Name, ld.Symaddr(r.Sym)) 591 } 592 o2 |= uint32(t) & 0xfffc 593 default: 594 return -1 595 } 596 597 if ctxt.Arch.ByteOrder == binary.BigEndian { 598 return int64(o1)<<32 | int64(o2) 599 } 600 return int64(o2)<<32 | int64(o1) 601 } 602 603 // resolve direct jump relocation r in s, and add trampoline if necessary 604 func trampoline(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol) { 605 606 // Trampolines are created if the branch offset is too large and the linker cannot insert a call stub to handle it. 607 // For internal linking, trampolines are always created for long calls. 608 // For external linking, the linker can insert a call stub to handle a long call, but depends on having the TOC address in 609 // r2. For those build modes with external linking where the TOC address is not maintained in r2, trampolines must be created. 610 if ctxt.LinkMode == ld.LinkExternal && (ctxt.DynlinkingGo() || ctxt.BuildMode == ld.BuildModeCArchive || ctxt.BuildMode == ld.BuildModeCShared || ctxt.BuildMode == ld.BuildModePIE) { 611 // No trampolines needed since r2 contains the TOC 612 return 613 } 614 615 t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off)) 616 switch r.Type { 617 case objabi.R_CALLPOWER: 618 619 // If branch offset is too far then create a trampoline. 620 621 if (ctxt.LinkMode == ld.LinkExternal && s.Sect != r.Sym.Sect) || (ctxt.LinkMode == ld.LinkInternal && int64(int32(t<<6)>>6) != t) || (*ld.FlagDebugTramp > 1 && s.File != r.Sym.File) { 622 var tramp *sym.Symbol 623 for i := 0; ; i++ { 624 625 // Using r.Add as part of the name is significant in functions like duffzero where the call 626 // target is at some offset within the function. Calls to duff+8 and duff+256 must appear as 627 // distinct trampolines. 628 629 name := r.Sym.Name 630 if r.Add == 0 { 631 name = name + fmt.Sprintf("-tramp%d", i) 632 } else { 633 name = name + fmt.Sprintf("%+x-tramp%d", r.Add, i) 634 } 635 636 // Look up the trampoline in case it already exists 637 638 tramp = ctxt.Syms.Lookup(name, int(r.Sym.Version)) 639 if tramp.Value == 0 { 640 break 641 } 642 643 t = ld.Symaddr(tramp) + r.Add - (s.Value + int64(r.Off)) 644 645 // With internal linking, the trampoline can be used if it is not too far. 646 // With external linking, the trampoline must be in this section for it to be reused. 647 if (ctxt.LinkMode == ld.LinkInternal && int64(int32(t<<6)>>6) == t) || (ctxt.LinkMode == ld.LinkExternal && s.Sect == tramp.Sect) { 648 break 649 } 650 } 651 if tramp.Type == 0 { 652 if ctxt.DynlinkingGo() || ctxt.BuildMode == ld.BuildModeCArchive || ctxt.BuildMode == ld.BuildModeCShared || ctxt.BuildMode == ld.BuildModePIE { 653 // Should have returned for above cases 654 ld.Errorf(s, "unexpected trampoline for shared or dynamic linking\n") 655 } else { 656 ctxt.AddTramp(tramp) 657 gentramp(ctxt.Arch, ctxt.LinkMode, tramp, r.Sym, r.Add) 658 } 659 } 660 r.Sym = tramp 661 r.Add = 0 // This was folded into the trampoline target address 662 r.Done = false 663 } 664 default: 665 ld.Errorf(s, "trampoline called with non-jump reloc: %d (%s)", r.Type, sym.RelocName(ctxt.Arch, r.Type)) 666 } 667 } 668 669 func gentramp(arch *sys.Arch, linkmode ld.LinkMode, tramp, target *sym.Symbol, offset int64) { 670 // Used for default build mode for an executable 671 // Address of the call target is generated using 672 // relocation and doesn't depend on r2 (TOC). 673 tramp.Size = 16 // 4 instructions 674 tramp.P = make([]byte, tramp.Size) 675 t := ld.Symaddr(target) + offset 676 o1 := uint32(0x3fe00000) // lis r31,targetaddr hi 677 o2 := uint32(0x3bff0000) // addi r31,targetaddr lo 678 // With external linking, the target address must be 679 // relocated using LO and HA 680 if linkmode == ld.LinkExternal { 681 tr := tramp.AddRel() 682 tr.Off = 0 683 tr.Type = objabi.R_ADDRPOWER 684 tr.Siz = 8 // generates 2 relocations: HA + LO 685 tr.Sym = target 686 tr.Add = offset 687 } else { 688 // adjustment needed if lo has sign bit set 689 // when using addi to compute address 690 val := uint32((t & 0xffff0000) >> 16) 691 if t&0x8000 != 0 { 692 val += 1 693 } 694 o1 |= val // hi part of addr 695 o2 |= uint32(t & 0xffff) // lo part of addr 696 } 697 o3 := uint32(0x7fe903a6) // mtctr r31 698 o4 := uint32(0x4e800420) // bctr 699 arch.ByteOrder.PutUint32(tramp.P, o1) 700 arch.ByteOrder.PutUint32(tramp.P[4:], o2) 701 arch.ByteOrder.PutUint32(tramp.P[8:], o3) 702 arch.ByteOrder.PutUint32(tramp.P[12:], o4) 703 } 704 705 func archreloc(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, val int64) (int64, bool) { 706 if ctxt.LinkMode == ld.LinkExternal { 707 switch r.Type { 708 default: 709 return val, false 710 case objabi.R_POWER_TLS, objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE: 711 r.Done = false 712 // check Outer is nil, Type is TLSBSS? 713 r.Xadd = r.Add 714 r.Xsym = r.Sym 715 return val, true 716 case objabi.R_ADDRPOWER, 717 objabi.R_ADDRPOWER_DS, 718 objabi.R_ADDRPOWER_TOCREL, 719 objabi.R_ADDRPOWER_TOCREL_DS, 720 objabi.R_ADDRPOWER_GOT, 721 objabi.R_ADDRPOWER_PCREL: 722 r.Done = false 723 724 // set up addend for eventual relocation via outer symbol. 725 rs := r.Sym 726 r.Xadd = r.Add 727 for rs.Outer != nil { 728 r.Xadd += ld.Symaddr(rs) - ld.Symaddr(rs.Outer) 729 rs = rs.Outer 730 } 731 732 if rs.Type != sym.SHOSTOBJ && rs.Type != sym.SDYNIMPORT && rs.Sect == nil { 733 ld.Errorf(s, "missing section for %s", rs.Name) 734 } 735 r.Xsym = rs 736 737 return val, true 738 case objabi.R_CALLPOWER: 739 r.Done = false 740 r.Xsym = r.Sym 741 r.Xadd = r.Add 742 return val, true 743 } 744 } 745 746 switch r.Type { 747 case objabi.R_CONST: 748 return r.Add, true 749 case objabi.R_GOTOFF: 750 return ld.Symaddr(r.Sym) + r.Add - ld.Symaddr(ctxt.Syms.Lookup(".got", 0)), true 751 case objabi.R_ADDRPOWER_TOCREL, objabi.R_ADDRPOWER_TOCREL_DS: 752 return archreloctoc(ctxt, r, s, val), true 753 case objabi.R_ADDRPOWER, objabi.R_ADDRPOWER_DS: 754 return archrelocaddr(ctxt, r, s, val), true 755 case objabi.R_CALLPOWER: 756 // Bits 6 through 29 = (S + A - P) >> 2 757 758 t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off)) 759 760 if t&3 != 0 { 761 ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t) 762 } 763 // If branch offset is too far then create a trampoline. 764 765 if int64(int32(t<<6)>>6) != t { 766 ld.Errorf(s, "direct call too far: %s %x", r.Sym.Name, t) 767 } 768 return val | int64(uint32(t)&^0xfc000003), true 769 case objabi.R_POWER_TOC: // S + A - .TOC. 770 return ld.Symaddr(r.Sym) + r.Add - symtoc(ctxt, s), true 771 772 case objabi.R_POWER_TLS_LE: 773 // The thread pointer points 0x7000 bytes after the start of the 774 // thread local storage area as documented in section "3.7.2 TLS 775 // Runtime Handling" of "Power Architecture 64-Bit ELF V2 ABI 776 // Specification". 777 v := r.Sym.Value - 0x7000 778 if ctxt.HeadType == objabi.Haix { 779 // On AIX, the thread pointer points 0x7800 bytes after 780 // the TLS. 781 v -= 0x800 782 } 783 if int64(int16(v)) != v { 784 ld.Errorf(s, "TLS offset out of range %d", v) 785 } 786 return (val &^ 0xffff) | (v & 0xffff), true 787 } 788 789 return val, false 790 } 791 792 func archrelocvariant(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, t int64) int64 { 793 switch r.Variant & sym.RV_TYPE_MASK { 794 default: 795 ld.Errorf(s, "unexpected relocation variant %d", r.Variant) 796 fallthrough 797 798 case sym.RV_NONE: 799 return t 800 801 case sym.RV_POWER_LO: 802 if r.Variant&sym.RV_CHECK_OVERFLOW != 0 { 803 // Whether to check for signed or unsigned 804 // overflow depends on the instruction 805 var o1 uint32 806 if ctxt.Arch.ByteOrder == binary.BigEndian { 807 o1 = binary.BigEndian.Uint32(s.P[r.Off-2:]) 808 } else { 809 o1 = binary.LittleEndian.Uint32(s.P[r.Off:]) 810 } 811 switch o1 >> 26 { 812 case 24, // ori 813 26, // xori 814 28: // andi 815 if t>>16 != 0 { 816 goto overflow 817 } 818 819 default: 820 if int64(int16(t)) != t { 821 goto overflow 822 } 823 } 824 } 825 826 return int64(int16(t)) 827 828 case sym.RV_POWER_HA: 829 t += 0x8000 830 fallthrough 831 832 // Fallthrough 833 case sym.RV_POWER_HI: 834 t >>= 16 835 836 if r.Variant&sym.RV_CHECK_OVERFLOW != 0 { 837 // Whether to check for signed or unsigned 838 // overflow depends on the instruction 839 var o1 uint32 840 if ctxt.Arch.ByteOrder == binary.BigEndian { 841 o1 = binary.BigEndian.Uint32(s.P[r.Off-2:]) 842 } else { 843 o1 = binary.LittleEndian.Uint32(s.P[r.Off:]) 844 } 845 switch o1 >> 26 { 846 case 25, // oris 847 27, // xoris 848 29: // andis 849 if t>>16 != 0 { 850 goto overflow 851 } 852 853 default: 854 if int64(int16(t)) != t { 855 goto overflow 856 } 857 } 858 } 859 860 return int64(int16(t)) 861 862 case sym.RV_POWER_DS: 863 var o1 uint32 864 if ctxt.Arch.ByteOrder == binary.BigEndian { 865 o1 = uint32(binary.BigEndian.Uint16(s.P[r.Off:])) 866 } else { 867 o1 = uint32(binary.LittleEndian.Uint16(s.P[r.Off:])) 868 } 869 if t&3 != 0 { 870 ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t) 871 } 872 if (r.Variant&sym.RV_CHECK_OVERFLOW != 0) && int64(int16(t)) != t { 873 goto overflow 874 } 875 return int64(o1)&0x3 | int64(int16(t)) 876 } 877 878 overflow: 879 ld.Errorf(s, "relocation for %s+%d is too big: %d", r.Sym.Name, r.Off, t) 880 return t 881 } 882 883 func addpltsym(ctxt *ld.Link, s *sym.Symbol) { 884 if s.Plt() >= 0 { 885 return 886 } 887 888 ld.Adddynsym(ctxt, s) 889 890 if ctxt.IsELF { 891 plt := ctxt.Syms.Lookup(".plt", 0) 892 rela := ctxt.Syms.Lookup(".rela.plt", 0) 893 if plt.Size == 0 { 894 elfsetupplt(ctxt) 895 } 896 897 // Create the glink resolver if necessary 898 glink := ensureglinkresolver(ctxt) 899 900 // Write symbol resolver stub (just a branch to the 901 // glink resolver stub) 902 r := glink.AddRel() 903 904 r.Sym = glink 905 r.Off = int32(glink.Size) 906 r.Siz = 4 907 r.Type = objabi.R_CALLPOWER 908 glink.AddUint32(ctxt.Arch, 0x48000000) // b .glink 909 910 // In the ppc64 ABI, the dynamic linker is responsible 911 // for writing the entire PLT. We just need to 912 // reserve 8 bytes for each PLT entry and generate a 913 // JMP_SLOT dynamic relocation for it. 914 // 915 // TODO(austin): ABI v1 is different 916 s.SetPlt(int32(plt.Size)) 917 918 plt.Size += 8 919 920 rela.AddAddrPlus(ctxt.Arch, plt, int64(s.Plt())) 921 rela.AddUint64(ctxt.Arch, ld.ELF64_R_INFO(uint32(s.Dynid), uint32(elf.R_PPC64_JMP_SLOT))) 922 rela.AddUint64(ctxt.Arch, 0) 923 } else { 924 ld.Errorf(s, "addpltsym: unsupported binary format") 925 } 926 } 927 928 // Generate the glink resolver stub if necessary and return the .glink section 929 func ensureglinkresolver(ctxt *ld.Link) *sym.Symbol { 930 glink := ctxt.Syms.Lookup(".glink", 0) 931 if glink.Size != 0 { 932 return glink 933 } 934 935 // This is essentially the resolver from the ppc64 ELF ABI. 936 // At entry, r12 holds the address of the symbol resolver stub 937 // for the target routine and the argument registers hold the 938 // arguments for the target routine. 939 // 940 // This stub is PIC, so first get the PC of label 1 into r11. 941 // Other things will be relative to this. 942 glink.AddUint32(ctxt.Arch, 0x7c0802a6) // mflr r0 943 glink.AddUint32(ctxt.Arch, 0x429f0005) // bcl 20,31,1f 944 glink.AddUint32(ctxt.Arch, 0x7d6802a6) // 1: mflr r11 945 glink.AddUint32(ctxt.Arch, 0x7c0803a6) // mtlf r0 946 947 // Compute the .plt array index from the entry point address. 948 // Because this is PIC, everything is relative to label 1b (in 949 // r11): 950 // r0 = ((r12 - r11) - (res_0 - r11)) / 4 = (r12 - res_0) / 4 951 glink.AddUint32(ctxt.Arch, 0x3800ffd0) // li r0,-(res_0-1b)=-48 952 glink.AddUint32(ctxt.Arch, 0x7c006214) // add r0,r0,r12 953 glink.AddUint32(ctxt.Arch, 0x7c0b0050) // sub r0,r0,r11 954 glink.AddUint32(ctxt.Arch, 0x7800f082) // srdi r0,r0,2 955 956 // r11 = address of the first byte of the PLT 957 r := glink.AddRel() 958 959 r.Off = int32(glink.Size) 960 r.Sym = ctxt.Syms.Lookup(".plt", 0) 961 r.Siz = 8 962 r.Type = objabi.R_ADDRPOWER 963 964 glink.AddUint32(ctxt.Arch, 0x3d600000) // addis r11,0,.plt@ha 965 glink.AddUint32(ctxt.Arch, 0x396b0000) // addi r11,r11,.plt@l 966 967 // Load r12 = dynamic resolver address and r11 = DSO 968 // identifier from the first two doublewords of the PLT. 969 glink.AddUint32(ctxt.Arch, 0xe98b0000) // ld r12,0(r11) 970 glink.AddUint32(ctxt.Arch, 0xe96b0008) // ld r11,8(r11) 971 972 // Jump to the dynamic resolver 973 glink.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12 974 glink.AddUint32(ctxt.Arch, 0x4e800420) // bctr 975 976 // The symbol resolvers must immediately follow. 977 // res_0: 978 979 // Add DT_PPC64_GLINK .dynamic entry, which points to 32 bytes 980 // before the first symbol resolver stub. 981 s := ctxt.Syms.Lookup(".dynamic", 0) 982 983 ld.Elfwritedynentsymplus(ctxt, s, ld.DT_PPC64_GLINK, glink, glink.Size-32) 984 985 return glink 986 } 987 988 func asmb(ctxt *ld.Link) { 989 if ctxt.Debugvlog != 0 { 990 ctxt.Logf("%5.2f asmb\n", ld.Cputime()) 991 } 992 993 if ctxt.IsELF { 994 ld.Asmbelfsetup() 995 } 996 997 for _, sect := range ld.Segtext.Sections { 998 ctxt.Out.SeekSet(int64(sect.Vaddr - ld.Segtext.Vaddr + ld.Segtext.Fileoff)) 999 // Handle additional text sections with Codeblk 1000 if sect.Name == ".text" { 1001 ld.Codeblk(ctxt, int64(sect.Vaddr), int64(sect.Length)) 1002 } else { 1003 ld.Datblk(ctxt, int64(sect.Vaddr), int64(sect.Length)) 1004 } 1005 } 1006 1007 if ld.Segrodata.Filelen > 0 { 1008 if ctxt.Debugvlog != 0 { 1009 ctxt.Logf("%5.2f rodatblk\n", ld.Cputime()) 1010 } 1011 ctxt.Out.SeekSet(int64(ld.Segrodata.Fileoff)) 1012 ld.Datblk(ctxt, int64(ld.Segrodata.Vaddr), int64(ld.Segrodata.Filelen)) 1013 } 1014 if ld.Segrelrodata.Filelen > 0 { 1015 if ctxt.Debugvlog != 0 { 1016 ctxt.Logf("%5.2f relrodatblk\n", ld.Cputime()) 1017 } 1018 ctxt.Out.SeekSet(int64(ld.Segrelrodata.Fileoff)) 1019 ld.Datblk(ctxt, int64(ld.Segrelrodata.Vaddr), int64(ld.Segrelrodata.Filelen)) 1020 } 1021 1022 if ctxt.Debugvlog != 0 { 1023 ctxt.Logf("%5.2f datblk\n", ld.Cputime()) 1024 } 1025 1026 ctxt.Out.SeekSet(int64(ld.Segdata.Fileoff)) 1027 ld.Datblk(ctxt, int64(ld.Segdata.Vaddr), int64(ld.Segdata.Filelen)) 1028 1029 ctxt.Out.SeekSet(int64(ld.Segdwarf.Fileoff)) 1030 ld.Dwarfblk(ctxt, int64(ld.Segdwarf.Vaddr), int64(ld.Segdwarf.Filelen)) 1031 1032 /* output symbol table */ 1033 ld.Symsize = 0 1034 1035 ld.Lcsize = 0 1036 symo := uint32(0) 1037 if !*ld.FlagS { 1038 // TODO: rationalize 1039 if ctxt.Debugvlog != 0 { 1040 ctxt.Logf("%5.2f sym\n", ld.Cputime()) 1041 } 1042 switch ctxt.HeadType { 1043 default: 1044 if ctxt.IsELF { 1045 symo = uint32(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen) 1046 symo = uint32(ld.Rnd(int64(symo), int64(*ld.FlagRound))) 1047 } 1048 1049 case objabi.Hplan9: 1050 symo = uint32(ld.Segdata.Fileoff + ld.Segdata.Filelen) 1051 1052 case objabi.Haix: 1053 // Nothing to do 1054 } 1055 1056 ctxt.Out.SeekSet(int64(symo)) 1057 switch ctxt.HeadType { 1058 default: 1059 if ctxt.IsELF { 1060 if ctxt.Debugvlog != 0 { 1061 ctxt.Logf("%5.2f elfsym\n", ld.Cputime()) 1062 } 1063 ld.Asmelfsym(ctxt) 1064 ctxt.Out.Flush() 1065 ctxt.Out.Write(ld.Elfstrdat) 1066 1067 if ctxt.LinkMode == ld.LinkExternal { 1068 ld.Elfemitreloc(ctxt) 1069 } 1070 } 1071 1072 case objabi.Hplan9: 1073 ld.Asmplan9sym(ctxt) 1074 ctxt.Out.Flush() 1075 1076 sym := ctxt.Syms.Lookup("pclntab", 0) 1077 if sym != nil { 1078 ld.Lcsize = int32(len(sym.P)) 1079 ctxt.Out.Write(sym.P) 1080 ctxt.Out.Flush() 1081 } 1082 1083 case objabi.Haix: 1084 // symtab must be added once sections have been created in ld.Asmbxcoff 1085 ctxt.Out.Flush() 1086 } 1087 } 1088 1089 if ctxt.Debugvlog != 0 { 1090 ctxt.Logf("%5.2f header\n", ld.Cputime()) 1091 } 1092 ctxt.Out.SeekSet(0) 1093 switch ctxt.HeadType { 1094 default: 1095 case objabi.Hplan9: /* plan 9 */ 1096 ctxt.Out.Write32(0x647) /* magic */ 1097 ctxt.Out.Write32(uint32(ld.Segtext.Filelen)) /* sizes */ 1098 ctxt.Out.Write32(uint32(ld.Segdata.Filelen)) 1099 ctxt.Out.Write32(uint32(ld.Segdata.Length - ld.Segdata.Filelen)) 1100 ctxt.Out.Write32(uint32(ld.Symsize)) /* nsyms */ 1101 ctxt.Out.Write32(uint32(ld.Entryvalue(ctxt))) /* va of entry */ 1102 ctxt.Out.Write32(0) 1103 ctxt.Out.Write32(uint32(ld.Lcsize)) 1104 1105 case objabi.Hlinux, 1106 objabi.Hfreebsd, 1107 objabi.Hnetbsd, 1108 objabi.Hopenbsd, 1109 objabi.Hnacl: 1110 ld.Asmbelf(ctxt, int64(symo)) 1111 1112 case objabi.Haix: 1113 fileoff := uint32(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen) 1114 fileoff = uint32(ld.Rnd(int64(fileoff), int64(*ld.FlagRound))) 1115 ld.Asmbxcoff(ctxt, int64(fileoff)) 1116 } 1117 1118 ctxt.Out.Flush() 1119 if *ld.FlagC { 1120 fmt.Printf("textsize=%d\n", ld.Segtext.Filelen) 1121 fmt.Printf("datsize=%d\n", ld.Segdata.Filelen) 1122 fmt.Printf("bsssize=%d\n", ld.Segdata.Length-ld.Segdata.Filelen) 1123 fmt.Printf("symsize=%d\n", ld.Symsize) 1124 fmt.Printf("lcsize=%d\n", ld.Lcsize) 1125 fmt.Printf("total=%d\n", ld.Segtext.Filelen+ld.Segdata.Length+uint64(ld.Symsize)+uint64(ld.Lcsize)) 1126 } 1127 }