github.com/megatontech/mynoteforgo@v0.0.0-20200507084910-5d0c6ea6e890/源码/net/ip.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // IP address manipulations 6 // 7 // IPv4 addresses are 4 bytes; IPv6 addresses are 16 bytes. 8 // An IPv4 address can be converted to an IPv6 address by 9 // adding a canonical prefix (10 zeros, 2 0xFFs). 10 // This library accepts either size of byte slice but always 11 // returns 16-byte addresses. 12 13 package net 14 15 import "internal/bytealg" 16 17 // IP address lengths (bytes). 18 const ( 19 IPv4len = 4 20 IPv6len = 16 21 ) 22 23 // An IP is a single IP address, a slice of bytes. 24 // Functions in this package accept either 4-byte (IPv4) 25 // or 16-byte (IPv6) slices as input. 26 // 27 // Note that in this documentation, referring to an 28 // IP address as an IPv4 address or an IPv6 address 29 // is a semantic property of the address, not just the 30 // length of the byte slice: a 16-byte slice can still 31 // be an IPv4 address. 32 type IP []byte 33 34 // An IP mask is an IP address. 35 type IPMask []byte 36 37 // An IPNet represents an IP network. 38 type IPNet struct { 39 IP IP // network number 40 Mask IPMask // network mask 41 } 42 43 // IPv4 returns the IP address (in 16-byte form) of the 44 // IPv4 address a.b.c.d. 45 func IPv4(a, b, c, d byte) IP { 46 p := make(IP, IPv6len) 47 copy(p, v4InV6Prefix) 48 p[12] = a 49 p[13] = b 50 p[14] = c 51 p[15] = d 52 return p 53 } 54 55 var v4InV6Prefix = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff} 56 57 // IPv4Mask returns the IP mask (in 4-byte form) of the 58 // IPv4 mask a.b.c.d. 59 func IPv4Mask(a, b, c, d byte) IPMask { 60 p := make(IPMask, IPv4len) 61 p[0] = a 62 p[1] = b 63 p[2] = c 64 p[3] = d 65 return p 66 } 67 68 // CIDRMask returns an IPMask consisting of `ones' 1 bits 69 // followed by 0s up to a total length of `bits' bits. 70 // For a mask of this form, CIDRMask is the inverse of IPMask.Size. 71 func CIDRMask(ones, bits int) IPMask { 72 if bits != 8*IPv4len && bits != 8*IPv6len { 73 return nil 74 } 75 if ones < 0 || ones > bits { 76 return nil 77 } 78 l := bits / 8 79 m := make(IPMask, l) 80 n := uint(ones) 81 for i := 0; i < l; i++ { 82 if n >= 8 { 83 m[i] = 0xff 84 n -= 8 85 continue 86 } 87 m[i] = ^byte(0xff >> n) 88 n = 0 89 } 90 return m 91 } 92 93 // Well-known IPv4 addresses 94 var ( 95 IPv4bcast = IPv4(255, 255, 255, 255) // limited broadcast 96 IPv4allsys = IPv4(224, 0, 0, 1) // all systems 97 IPv4allrouter = IPv4(224, 0, 0, 2) // all routers 98 IPv4zero = IPv4(0, 0, 0, 0) // all zeros 99 ) 100 101 // Well-known IPv6 addresses 102 var ( 103 IPv6zero = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 104 IPv6unspecified = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 105 IPv6loopback = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 106 IPv6interfacelocalallnodes = IP{0xff, 0x01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01} 107 IPv6linklocalallnodes = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01} 108 IPv6linklocalallrouters = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x02} 109 ) 110 111 // IsUnspecified reports whether ip is an unspecified address, either 112 // the IPv4 address "0.0.0.0" or the IPv6 address "::". 113 func (ip IP) IsUnspecified() bool { 114 return ip.Equal(IPv4zero) || ip.Equal(IPv6unspecified) 115 } 116 117 // IsLoopback reports whether ip is a loopback address. 118 func (ip IP) IsLoopback() bool { 119 if ip4 := ip.To4(); ip4 != nil { 120 return ip4[0] == 127 121 } 122 return ip.Equal(IPv6loopback) 123 } 124 125 // IsMulticast reports whether ip is a multicast address. 126 func (ip IP) IsMulticast() bool { 127 if ip4 := ip.To4(); ip4 != nil { 128 return ip4[0]&0xf0 == 0xe0 129 } 130 return len(ip) == IPv6len && ip[0] == 0xff 131 } 132 133 // IsInterfaceLocalMulticast reports whether ip is 134 // an interface-local multicast address. 135 func (ip IP) IsInterfaceLocalMulticast() bool { 136 return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x01 137 } 138 139 // IsLinkLocalMulticast reports whether ip is a link-local 140 // multicast address. 141 func (ip IP) IsLinkLocalMulticast() bool { 142 if ip4 := ip.To4(); ip4 != nil { 143 return ip4[0] == 224 && ip4[1] == 0 && ip4[2] == 0 144 } 145 return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x02 146 } 147 148 // IsLinkLocalUnicast reports whether ip is a link-local 149 // unicast address. 150 func (ip IP) IsLinkLocalUnicast() bool { 151 if ip4 := ip.To4(); ip4 != nil { 152 return ip4[0] == 169 && ip4[1] == 254 153 } 154 return len(ip) == IPv6len && ip[0] == 0xfe && ip[1]&0xc0 == 0x80 155 } 156 157 // IsGlobalUnicast reports whether ip is a global unicast 158 // address. 159 // 160 // The identification of global unicast addresses uses address type 161 // identification as defined in RFC 1122, RFC 4632 and RFC 4291 with 162 // the exception of IPv4 directed broadcast addresses. 163 // It returns true even if ip is in IPv4 private address space or 164 // local IPv6 unicast address space. 165 func (ip IP) IsGlobalUnicast() bool { 166 return (len(ip) == IPv4len || len(ip) == IPv6len) && 167 !ip.Equal(IPv4bcast) && 168 !ip.IsUnspecified() && 169 !ip.IsLoopback() && 170 !ip.IsMulticast() && 171 !ip.IsLinkLocalUnicast() 172 } 173 174 // Is p all zeros? 175 func isZeros(p IP) bool { 176 for i := 0; i < len(p); i++ { 177 if p[i] != 0 { 178 return false 179 } 180 } 181 return true 182 } 183 184 // To4 converts the IPv4 address ip to a 4-byte representation. 185 // If ip is not an IPv4 address, To4 returns nil. 186 func (ip IP) To4() IP { 187 if len(ip) == IPv4len { 188 return ip 189 } 190 if len(ip) == IPv6len && 191 isZeros(ip[0:10]) && 192 ip[10] == 0xff && 193 ip[11] == 0xff { 194 return ip[12:16] 195 } 196 return nil 197 } 198 199 // To16 converts the IP address ip to a 16-byte representation. 200 // If ip is not an IP address (it is the wrong length), To16 returns nil. 201 func (ip IP) To16() IP { 202 if len(ip) == IPv4len { 203 return IPv4(ip[0], ip[1], ip[2], ip[3]) 204 } 205 if len(ip) == IPv6len { 206 return ip 207 } 208 return nil 209 } 210 211 // Default route masks for IPv4. 212 var ( 213 classAMask = IPv4Mask(0xff, 0, 0, 0) 214 classBMask = IPv4Mask(0xff, 0xff, 0, 0) 215 classCMask = IPv4Mask(0xff, 0xff, 0xff, 0) 216 ) 217 218 // DefaultMask returns the default IP mask for the IP address ip. 219 // Only IPv4 addresses have default masks; DefaultMask returns 220 // nil if ip is not a valid IPv4 address. 221 func (ip IP) DefaultMask() IPMask { 222 if ip = ip.To4(); ip == nil { 223 return nil 224 } 225 switch { 226 case ip[0] < 0x80: 227 return classAMask 228 case ip[0] < 0xC0: 229 return classBMask 230 default: 231 return classCMask 232 } 233 } 234 235 func allFF(b []byte) bool { 236 for _, c := range b { 237 if c != 0xff { 238 return false 239 } 240 } 241 return true 242 } 243 244 // Mask returns the result of masking the IP address ip with mask. 245 func (ip IP) Mask(mask IPMask) IP { 246 if len(mask) == IPv6len && len(ip) == IPv4len && allFF(mask[:12]) { 247 mask = mask[12:] 248 } 249 if len(mask) == IPv4len && len(ip) == IPv6len && bytealg.Equal(ip[:12], v4InV6Prefix) { 250 ip = ip[12:] 251 } 252 n := len(ip) 253 if n != len(mask) { 254 return nil 255 } 256 out := make(IP, n) 257 for i := 0; i < n; i++ { 258 out[i] = ip[i] & mask[i] 259 } 260 return out 261 } 262 263 // ubtoa encodes the string form of the integer v to dst[start:] and 264 // returns the number of bytes written to dst. The caller must ensure 265 // that dst has sufficient length. 266 func ubtoa(dst []byte, start int, v byte) int { 267 if v < 10 { 268 dst[start] = v + '0' 269 return 1 270 } else if v < 100 { 271 dst[start+1] = v%10 + '0' 272 dst[start] = v/10 + '0' 273 return 2 274 } 275 276 dst[start+2] = v%10 + '0' 277 dst[start+1] = (v/10)%10 + '0' 278 dst[start] = v/100 + '0' 279 return 3 280 } 281 282 // String returns the string form of the IP address ip. 283 // It returns one of 4 forms: 284 // - "<nil>", if ip has length 0 285 // - dotted decimal ("192.0.2.1"), if ip is an IPv4 or IP4-mapped IPv6 address 286 // - IPv6 ("2001:db8::1"), if ip is a valid IPv6 address 287 // - the hexadecimal form of ip, without punctuation, if no other cases apply 288 func (ip IP) String() string { 289 p := ip 290 291 if len(ip) == 0 { 292 return "<nil>" 293 } 294 295 // If IPv4, use dotted notation. 296 if p4 := p.To4(); len(p4) == IPv4len { 297 const maxIPv4StringLen = len("255.255.255.255") 298 b := make([]byte, maxIPv4StringLen) 299 300 n := ubtoa(b, 0, p4[0]) 301 b[n] = '.' 302 n++ 303 304 n += ubtoa(b, n, p4[1]) 305 b[n] = '.' 306 n++ 307 308 n += ubtoa(b, n, p4[2]) 309 b[n] = '.' 310 n++ 311 312 n += ubtoa(b, n, p4[3]) 313 return string(b[:n]) 314 } 315 if len(p) != IPv6len { 316 return "?" + hexString(ip) 317 } 318 319 // Find longest run of zeros. 320 e0 := -1 321 e1 := -1 322 for i := 0; i < IPv6len; i += 2 { 323 j := i 324 for j < IPv6len && p[j] == 0 && p[j+1] == 0 { 325 j += 2 326 } 327 if j > i && j-i > e1-e0 { 328 e0 = i 329 e1 = j 330 i = j 331 } 332 } 333 // The symbol "::" MUST NOT be used to shorten just one 16 bit 0 field. 334 if e1-e0 <= 2 { 335 e0 = -1 336 e1 = -1 337 } 338 339 const maxLen = len("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff") 340 b := make([]byte, 0, maxLen) 341 342 // Print with possible :: in place of run of zeros 343 for i := 0; i < IPv6len; i += 2 { 344 if i == e0 { 345 b = append(b, ':', ':') 346 i = e1 347 if i >= IPv6len { 348 break 349 } 350 } else if i > 0 { 351 b = append(b, ':') 352 } 353 b = appendHex(b, (uint32(p[i])<<8)|uint32(p[i+1])) 354 } 355 return string(b) 356 } 357 358 func hexString(b []byte) string { 359 s := make([]byte, len(b)*2) 360 for i, tn := range b { 361 s[i*2], s[i*2+1] = hexDigit[tn>>4], hexDigit[tn&0xf] 362 } 363 return string(s) 364 } 365 366 // ipEmptyString is like ip.String except that it returns 367 // an empty string when ip is unset. 368 func ipEmptyString(ip IP) string { 369 if len(ip) == 0 { 370 return "" 371 } 372 return ip.String() 373 } 374 375 // MarshalText implements the encoding.TextMarshaler interface. 376 // The encoding is the same as returned by String, with one exception: 377 // When len(ip) is zero, it returns an empty slice. 378 func (ip IP) MarshalText() ([]byte, error) { 379 if len(ip) == 0 { 380 return []byte(""), nil 381 } 382 if len(ip) != IPv4len && len(ip) != IPv6len { 383 return nil, &AddrError{Err: "invalid IP address", Addr: hexString(ip)} 384 } 385 return []byte(ip.String()), nil 386 } 387 388 // UnmarshalText implements the encoding.TextUnmarshaler interface. 389 // The IP address is expected in a form accepted by ParseIP. 390 func (ip *IP) UnmarshalText(text []byte) error { 391 if len(text) == 0 { 392 *ip = nil 393 return nil 394 } 395 s := string(text) 396 x := ParseIP(s) 397 if x == nil { 398 return &ParseError{Type: "IP address", Text: s} 399 } 400 *ip = x 401 return nil 402 } 403 404 // Equal reports whether ip and x are the same IP address. 405 // An IPv4 address and that same address in IPv6 form are 406 // considered to be equal. 407 func (ip IP) Equal(x IP) bool { 408 if len(ip) == len(x) { 409 return bytealg.Equal(ip, x) 410 } 411 if len(ip) == IPv4len && len(x) == IPv6len { 412 return bytealg.Equal(x[0:12], v4InV6Prefix) && bytealg.Equal(ip, x[12:]) 413 } 414 if len(ip) == IPv6len && len(x) == IPv4len { 415 return bytealg.Equal(ip[0:12], v4InV6Prefix) && bytealg.Equal(ip[12:], x) 416 } 417 return false 418 } 419 420 func (ip IP) matchAddrFamily(x IP) bool { 421 return ip.To4() != nil && x.To4() != nil || ip.To16() != nil && ip.To4() == nil && x.To16() != nil && x.To4() == nil 422 } 423 424 // If mask is a sequence of 1 bits followed by 0 bits, 425 // return the number of 1 bits. 426 func simpleMaskLength(mask IPMask) int { 427 var n int 428 for i, v := range mask { 429 if v == 0xff { 430 n += 8 431 continue 432 } 433 // found non-ff byte 434 // count 1 bits 435 for v&0x80 != 0 { 436 n++ 437 v <<= 1 438 } 439 // rest must be 0 bits 440 if v != 0 { 441 return -1 442 } 443 for i++; i < len(mask); i++ { 444 if mask[i] != 0 { 445 return -1 446 } 447 } 448 break 449 } 450 return n 451 } 452 453 // Size returns the number of leading ones and total bits in the mask. 454 // If the mask is not in the canonical form--ones followed by zeros--then 455 // Size returns 0, 0. 456 func (m IPMask) Size() (ones, bits int) { 457 ones, bits = simpleMaskLength(m), len(m)*8 458 if ones == -1 { 459 return 0, 0 460 } 461 return 462 } 463 464 // String returns the hexadecimal form of m, with no punctuation. 465 func (m IPMask) String() string { 466 if len(m) == 0 { 467 return "<nil>" 468 } 469 return hexString(m) 470 } 471 472 func networkNumberAndMask(n *IPNet) (ip IP, m IPMask) { 473 if ip = n.IP.To4(); ip == nil { 474 ip = n.IP 475 if len(ip) != IPv6len { 476 return nil, nil 477 } 478 } 479 m = n.Mask 480 switch len(m) { 481 case IPv4len: 482 if len(ip) != IPv4len { 483 return nil, nil 484 } 485 case IPv6len: 486 if len(ip) == IPv4len { 487 m = m[12:] 488 } 489 default: 490 return nil, nil 491 } 492 return 493 } 494 495 // Contains reports whether the network includes ip. 496 func (n *IPNet) Contains(ip IP) bool { 497 nn, m := networkNumberAndMask(n) 498 if x := ip.To4(); x != nil { 499 ip = x 500 } 501 l := len(ip) 502 if l != len(nn) { 503 return false 504 } 505 for i := 0; i < l; i++ { 506 if nn[i]&m[i] != ip[i]&m[i] { 507 return false 508 } 509 } 510 return true 511 } 512 513 // Network returns the address's network name, "ip+net". 514 func (n *IPNet) Network() string { return "ip+net" } 515 516 // String returns the CIDR notation of n like "192.0.2.1/24" 517 // or "2001:db8::/48" as defined in RFC 4632 and RFC 4291. 518 // If the mask is not in the canonical form, it returns the 519 // string which consists of an IP address, followed by a slash 520 // character and a mask expressed as hexadecimal form with no 521 // punctuation like "198.51.100.1/c000ff00". 522 func (n *IPNet) String() string { 523 nn, m := networkNumberAndMask(n) 524 if nn == nil || m == nil { 525 return "<nil>" 526 } 527 l := simpleMaskLength(m) 528 if l == -1 { 529 return nn.String() + "/" + m.String() 530 } 531 return nn.String() + "/" + uitoa(uint(l)) 532 } 533 534 // Parse IPv4 address (d.d.d.d). 535 func parseIPv4(s string) IP { 536 var p [IPv4len]byte 537 for i := 0; i < IPv4len; i++ { 538 if len(s) == 0 { 539 // Missing octets. 540 return nil 541 } 542 if i > 0 { 543 if s[0] != '.' { 544 return nil 545 } 546 s = s[1:] 547 } 548 n, c, ok := dtoi(s) 549 if !ok || n > 0xFF { 550 return nil 551 } 552 s = s[c:] 553 p[i] = byte(n) 554 } 555 if len(s) != 0 { 556 return nil 557 } 558 return IPv4(p[0], p[1], p[2], p[3]) 559 } 560 561 // parseIPv6Zone parses s as a literal IPv6 address and its associated zone 562 // identifier which is described in RFC 4007. 563 func parseIPv6Zone(s string) (IP, string) { 564 s, zone := splitHostZone(s) 565 return parseIPv6(s), zone 566 } 567 568 // parseIPv6Zone parses s as a literal IPv6 address described in RFC 4291 569 // and RFC 5952. 570 func parseIPv6(s string) (ip IP) { 571 ip = make(IP, IPv6len) 572 ellipsis := -1 // position of ellipsis in ip 573 574 // Might have leading ellipsis 575 if len(s) >= 2 && s[0] == ':' && s[1] == ':' { 576 ellipsis = 0 577 s = s[2:] 578 // Might be only ellipsis 579 if len(s) == 0 { 580 return ip 581 } 582 } 583 584 // Loop, parsing hex numbers followed by colon. 585 i := 0 586 for i < IPv6len { 587 // Hex number. 588 n, c, ok := xtoi(s) 589 if !ok || n > 0xFFFF { 590 return nil 591 } 592 593 // If followed by dot, might be in trailing IPv4. 594 if c < len(s) && s[c] == '.' { 595 if ellipsis < 0 && i != IPv6len-IPv4len { 596 // Not the right place. 597 return nil 598 } 599 if i+IPv4len > IPv6len { 600 // Not enough room. 601 return nil 602 } 603 ip4 := parseIPv4(s) 604 if ip4 == nil { 605 return nil 606 } 607 ip[i] = ip4[12] 608 ip[i+1] = ip4[13] 609 ip[i+2] = ip4[14] 610 ip[i+3] = ip4[15] 611 s = "" 612 i += IPv4len 613 break 614 } 615 616 // Save this 16-bit chunk. 617 ip[i] = byte(n >> 8) 618 ip[i+1] = byte(n) 619 i += 2 620 621 // Stop at end of string. 622 s = s[c:] 623 if len(s) == 0 { 624 break 625 } 626 627 // Otherwise must be followed by colon and more. 628 if s[0] != ':' || len(s) == 1 { 629 return nil 630 } 631 s = s[1:] 632 633 // Look for ellipsis. 634 if s[0] == ':' { 635 if ellipsis >= 0 { // already have one 636 return nil 637 } 638 ellipsis = i 639 s = s[1:] 640 if len(s) == 0 { // can be at end 641 break 642 } 643 } 644 } 645 646 // Must have used entire string. 647 if len(s) != 0 { 648 return nil 649 } 650 651 // If didn't parse enough, expand ellipsis. 652 if i < IPv6len { 653 if ellipsis < 0 { 654 return nil 655 } 656 n := IPv6len - i 657 for j := i - 1; j >= ellipsis; j-- { 658 ip[j+n] = ip[j] 659 } 660 for j := ellipsis + n - 1; j >= ellipsis; j-- { 661 ip[j] = 0 662 } 663 } else if ellipsis >= 0 { 664 // Ellipsis must represent at least one 0 group. 665 return nil 666 } 667 return ip 668 } 669 670 // ParseIP parses s as an IP address, returning the result. 671 // The string s can be in dotted decimal ("192.0.2.1") 672 // or IPv6 ("2001:db8::68") form. 673 // If s is not a valid textual representation of an IP address, 674 // ParseIP returns nil. 675 func ParseIP(s string) IP { 676 for i := 0; i < len(s); i++ { 677 switch s[i] { 678 case '.': 679 return parseIPv4(s) 680 case ':': 681 return parseIPv6(s) 682 } 683 } 684 return nil 685 } 686 687 // parseIPZone parses s as an IP address, return it and its associated zone 688 // identifier (IPv6 only). 689 func parseIPZone(s string) (IP, string) { 690 for i := 0; i < len(s); i++ { 691 switch s[i] { 692 case '.': 693 return parseIPv4(s), "" 694 case ':': 695 return parseIPv6Zone(s) 696 } 697 } 698 return nil, "" 699 } 700 701 // ParseCIDR parses s as a CIDR notation IP address and prefix length, 702 // like "192.0.2.0/24" or "2001:db8::/32", as defined in 703 // RFC 4632 and RFC 4291. 704 // 705 // It returns the IP address and the network implied by the IP and 706 // prefix length. 707 // For example, ParseCIDR("192.0.2.1/24") returns the IP address 708 // 192.0.2.1 and the network 192.0.2.0/24. 709 func ParseCIDR(s string) (IP, *IPNet, error) { 710 i := bytealg.IndexByteString(s, '/') 711 if i < 0 { 712 return nil, nil, &ParseError{Type: "CIDR address", Text: s} 713 } 714 addr, mask := s[:i], s[i+1:] 715 iplen := IPv4len 716 ip := parseIPv4(addr) 717 if ip == nil { 718 iplen = IPv6len 719 ip = parseIPv6(addr) 720 } 721 n, i, ok := dtoi(mask) 722 if ip == nil || !ok || i != len(mask) || n < 0 || n > 8*iplen { 723 return nil, nil, &ParseError{Type: "CIDR address", Text: s} 724 } 725 m := CIDRMask(n, 8*iplen) 726 return ip, &IPNet{IP: ip.Mask(m), Mask: m}, nil 727 }