github.com/megatontech/mynoteforgo@v0.0.0-20200507084910-5d0c6ea6e890/源码/runtime/malloc.go (about) 1 // Copyright 2014 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Memory allocator. 6 // 7 // This was originally based on tcmalloc, but has diverged quite a bit. 8 // http://goog-perftools.sourceforge.net/doc/tcmalloc.html 9 10 // The main allocator works in runs of pages. 11 // Small allocation sizes (up to and including 32 kB) are 12 // rounded to one of about 70 size classes, each of which 13 // has its own free set of objects of exactly that size. 14 // Any free page of memory can be split into a set of objects 15 // of one size class, which are then managed using a free bitmap. 16 // 17 // The allocator's data structures are: 18 // 19 // fixalloc: a free-list allocator for fixed-size off-heap objects, 20 // used to manage storage used by the allocator. 21 // mheap: the malloc heap, managed at page (8192-byte) granularity. 22 // mspan: a run of pages managed by the mheap. 23 // mcentral: collects all spans of a given size class. 24 // mcache: a per-P cache of mspans with free space. 25 // mstats: allocation statistics. 26 // 27 // Allocating a small object proceeds up a hierarchy of caches: 28 // 29 // 1. Round the size up to one of the small size classes 30 // and look in the corresponding mspan in this P's mcache. 31 // Scan the mspan's free bitmap to find a free slot. 32 // If there is a free slot, allocate it. 33 // This can all be done without acquiring a lock. 34 // 35 // 2. If the mspan has no free slots, obtain a new mspan 36 // from the mcentral's list of mspans of the required size 37 // class that have free space. 38 // Obtaining a whole span amortizes the cost of locking 39 // the mcentral. 40 // 41 // 3. If the mcentral's mspan list is empty, obtain a run 42 // of pages from the mheap to use for the mspan. 43 // 44 // 4. If the mheap is empty or has no page runs large enough, 45 // allocate a new group of pages (at least 1MB) from the 46 // operating system. Allocating a large run of pages 47 // amortizes the cost of talking to the operating system. 48 // 49 // Sweeping an mspan and freeing objects on it proceeds up a similar 50 // hierarchy: 51 // 52 // 1. If the mspan is being swept in response to allocation, it 53 // is returned to the mcache to satisfy the allocation. 54 // 55 // 2. Otherwise, if the mspan still has allocated objects in it, 56 // it is placed on the mcentral free list for the mspan's size 57 // class. 58 // 59 // 3. Otherwise, if all objects in the mspan are free, the mspan 60 // is now "idle", so it is returned to the mheap and no longer 61 // has a size class. 62 // This may coalesce it with adjacent idle mspans. 63 // 64 // 4. If an mspan remains idle for long enough, return its pages 65 // to the operating system. 66 // 67 // Allocating and freeing a large object uses the mheap 68 // directly, bypassing the mcache and mcentral. 69 // 70 // Free object slots in an mspan are zeroed only if mspan.needzero is 71 // false. If needzero is true, objects are zeroed as they are 72 // allocated. There are various benefits to delaying zeroing this way: 73 // 74 // 1. Stack frame allocation can avoid zeroing altogether. 75 // 76 // 2. It exhibits better temporal locality, since the program is 77 // probably about to write to the memory. 78 // 79 // 3. We don't zero pages that never get reused. 80 81 // Virtual memory layout 82 // 83 // The heap consists of a set of arenas, which are 64MB on 64-bit and 84 // 4MB on 32-bit (heapArenaBytes). Each arena's start address is also 85 // aligned to the arena size. 86 // 87 // Each arena has an associated heapArena object that stores the 88 // metadata for that arena: the heap bitmap for all words in the arena 89 // and the span map for all pages in the arena. heapArena objects are 90 // themselves allocated off-heap. 91 // 92 // Since arenas are aligned, the address space can be viewed as a 93 // series of arena frames. The arena map (mheap_.arenas) maps from 94 // arena frame number to *heapArena, or nil for parts of the address 95 // space not backed by the Go heap. The arena map is structured as a 96 // two-level array consisting of a "L1" arena map and many "L2" arena 97 // maps; however, since arenas are large, on many architectures, the 98 // arena map consists of a single, large L2 map. 99 // 100 // The arena map covers the entire possible address space, allowing 101 // the Go heap to use any part of the address space. The allocator 102 // attempts to keep arenas contiguous so that large spans (and hence 103 // large objects) can cross arenas. 104 105 package runtime 106 107 import ( 108 "runtime/internal/atomic" 109 "runtime/internal/math" 110 "runtime/internal/sys" 111 "unsafe" 112 ) 113 114 const ( 115 debugMalloc = false 116 117 maxTinySize = _TinySize 118 tinySizeClass = _TinySizeClass 119 maxSmallSize = _MaxSmallSize 120 121 pageShift = _PageShift 122 pageSize = _PageSize 123 pageMask = _PageMask 124 // By construction, single page spans of the smallest object class 125 // have the most objects per span. 126 maxObjsPerSpan = pageSize / 8 127 128 concurrentSweep = _ConcurrentSweep 129 130 _PageSize = 1 << _PageShift 131 _PageMask = _PageSize - 1 132 133 // _64bit = 1 on 64-bit systems, 0 on 32-bit systems 134 _64bit = 1 << (^uintptr(0) >> 63) / 2 135 136 // Tiny allocator parameters, see "Tiny allocator" comment in malloc.go. 137 _TinySize = 16 138 _TinySizeClass = int8(2) 139 140 _FixAllocChunk = 16 << 10 // Chunk size for FixAlloc 141 142 // Per-P, per order stack segment cache size. 143 _StackCacheSize = 32 * 1024 144 145 // Number of orders that get caching. Order 0 is FixedStack 146 // and each successive order is twice as large. 147 // We want to cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks 148 // will be allocated directly. 149 // Since FixedStack is different on different systems, we 150 // must vary NumStackOrders to keep the same maximum cached size. 151 // OS | FixedStack | NumStackOrders 152 // -----------------+------------+--------------- 153 // linux/darwin/bsd | 2KB | 4 154 // windows/32 | 4KB | 3 155 // windows/64 | 8KB | 2 156 // plan9 | 4KB | 3 157 _NumStackOrders = 4 - sys.PtrSize/4*sys.GoosWindows - 1*sys.GoosPlan9 158 159 // heapAddrBits is the number of bits in a heap address. On 160 // amd64, addresses are sign-extended beyond heapAddrBits. On 161 // other arches, they are zero-extended. 162 // 163 // On most 64-bit platforms, we limit this to 48 bits based on a 164 // combination of hardware and OS limitations. 165 // 166 // amd64 hardware limits addresses to 48 bits, sign-extended 167 // to 64 bits. Addresses where the top 16 bits are not either 168 // all 0 or all 1 are "non-canonical" and invalid. Because of 169 // these "negative" addresses, we offset addresses by 1<<47 170 // (arenaBaseOffset) on amd64 before computing indexes into 171 // the heap arenas index. In 2017, amd64 hardware added 172 // support for 57 bit addresses; however, currently only Linux 173 // supports this extension and the kernel will never choose an 174 // address above 1<<47 unless mmap is called with a hint 175 // address above 1<<47 (which we never do). 176 // 177 // arm64 hardware (as of ARMv8) limits user addresses to 48 178 // bits, in the range [0, 1<<48). 179 // 180 // ppc64, mips64, and s390x support arbitrary 64 bit addresses 181 // in hardware. On Linux, Go leans on stricter OS limits. Based 182 // on Linux's processor.h, the user address space is limited as 183 // follows on 64-bit architectures: 184 // 185 // Architecture Name Maximum Value (exclusive) 186 // --------------------------------------------------------------------- 187 // amd64 TASK_SIZE_MAX 0x007ffffffff000 (47 bit addresses) 188 // arm64 TASK_SIZE_64 0x01000000000000 (48 bit addresses) 189 // ppc64{,le} TASK_SIZE_USER64 0x00400000000000 (46 bit addresses) 190 // mips64{,le} TASK_SIZE64 0x00010000000000 (40 bit addresses) 191 // s390x TASK_SIZE 1<<64 (64 bit addresses) 192 // 193 // These limits may increase over time, but are currently at 194 // most 48 bits except on s390x. On all architectures, Linux 195 // starts placing mmap'd regions at addresses that are 196 // significantly below 48 bits, so even if it's possible to 197 // exceed Go's 48 bit limit, it's extremely unlikely in 198 // practice. 199 // 200 // On aix/ppc64, the limits is increased to 1<<60 to accept addresses 201 // returned by mmap syscall. These are in range: 202 // 0x0a00000000000000 - 0x0afffffffffffff 203 // 204 // On 32-bit platforms, we accept the full 32-bit address 205 // space because doing so is cheap. 206 // mips32 only has access to the low 2GB of virtual memory, so 207 // we further limit it to 31 bits. 208 // 209 // WebAssembly currently has a limit of 4GB linear memory. 210 heapAddrBits = (_64bit*(1-sys.GoarchWasm)*(1-sys.GoosAix))*48 + (1-_64bit+sys.GoarchWasm)*(32-(sys.GoarchMips+sys.GoarchMipsle)) + 60*sys.GoosAix 211 212 // maxAlloc is the maximum size of an allocation. On 64-bit, 213 // it's theoretically possible to allocate 1<<heapAddrBits bytes. On 214 // 32-bit, however, this is one less than 1<<32 because the 215 // number of bytes in the address space doesn't actually fit 216 // in a uintptr. 217 maxAlloc = (1 << heapAddrBits) - (1-_64bit)*1 218 219 // The number of bits in a heap address, the size of heap 220 // arenas, and the L1 and L2 arena map sizes are related by 221 // 222 // (1 << addr bits) = arena size * L1 entries * L2 entries 223 // 224 // Currently, we balance these as follows: 225 // 226 // Platform Addr bits Arena size L1 entries L2 entries 227 // -------------- --------- ---------- ---------- ----------- 228 // */64-bit 48 64MB 1 4M (32MB) 229 // aix/64-bit 60 256MB 4096 4M (32MB) 230 // windows/64-bit 48 4MB 64 1M (8MB) 231 // */32-bit 32 4MB 1 1024 (4KB) 232 // */mips(le) 31 4MB 1 512 (2KB) 233 234 // heapArenaBytes is the size of a heap arena. The heap 235 // consists of mappings of size heapArenaBytes, aligned to 236 // heapArenaBytes. The initial heap mapping is one arena. 237 // 238 // This is currently 64MB on 64-bit non-Windows and 4MB on 239 // 32-bit and on Windows. We use smaller arenas on Windows 240 // because all committed memory is charged to the process, 241 // even if it's not touched. Hence, for processes with small 242 // heaps, the mapped arena space needs to be commensurate. 243 // This is particularly important with the race detector, 244 // since it significantly amplifies the cost of committed 245 // memory. 246 heapArenaBytes = 1 << logHeapArenaBytes 247 248 // logHeapArenaBytes is log_2 of heapArenaBytes. For clarity, 249 // prefer using heapArenaBytes where possible (we need the 250 // constant to compute some other constants). 251 logHeapArenaBytes = (6+20)*(_64bit*(1-sys.GoosWindows)*(1-sys.GoosAix)) + (2+20)*(_64bit*sys.GoosWindows) + (2+20)*(1-_64bit) + (8+20)*sys.GoosAix 252 253 // heapArenaBitmapBytes is the size of each heap arena's bitmap. 254 heapArenaBitmapBytes = heapArenaBytes / (sys.PtrSize * 8 / 2) 255 256 pagesPerArena = heapArenaBytes / pageSize 257 258 // arenaL1Bits is the number of bits of the arena number 259 // covered by the first level arena map. 260 // 261 // This number should be small, since the first level arena 262 // map requires PtrSize*(1<<arenaL1Bits) of space in the 263 // binary's BSS. It can be zero, in which case the first level 264 // index is effectively unused. There is a performance benefit 265 // to this, since the generated code can be more efficient, 266 // but comes at the cost of having a large L2 mapping. 267 // 268 // We use the L1 map on 64-bit Windows because the arena size 269 // is small, but the address space is still 48 bits, and 270 // there's a high cost to having a large L2. 271 // 272 // We use the L1 map on aix/ppc64 to keep the same L2 value 273 // as on Linux. 274 arenaL1Bits = 6*(_64bit*sys.GoosWindows) + 12*sys.GoosAix 275 276 // arenaL2Bits is the number of bits of the arena number 277 // covered by the second level arena index. 278 // 279 // The size of each arena map allocation is proportional to 280 // 1<<arenaL2Bits, so it's important that this not be too 281 // large. 48 bits leads to 32MB arena index allocations, which 282 // is about the practical threshold. 283 arenaL2Bits = heapAddrBits - logHeapArenaBytes - arenaL1Bits 284 285 // arenaL1Shift is the number of bits to shift an arena frame 286 // number by to compute an index into the first level arena map. 287 arenaL1Shift = arenaL2Bits 288 289 // arenaBits is the total bits in a combined arena map index. 290 // This is split between the index into the L1 arena map and 291 // the L2 arena map. 292 arenaBits = arenaL1Bits + arenaL2Bits 293 294 // arenaBaseOffset is the pointer value that corresponds to 295 // index 0 in the heap arena map. 296 // 297 // On amd64, the address space is 48 bits, sign extended to 64 298 // bits. This offset lets us handle "negative" addresses (or 299 // high addresses if viewed as unsigned). 300 // 301 // On other platforms, the user address space is contiguous 302 // and starts at 0, so no offset is necessary. 303 arenaBaseOffset uintptr = sys.GoarchAmd64 * (1 << 47) 304 305 // Max number of threads to run garbage collection. 306 // 2, 3, and 4 are all plausible maximums depending 307 // on the hardware details of the machine. The garbage 308 // collector scales well to 32 cpus. 309 _MaxGcproc = 32 310 311 // minLegalPointer is the smallest possible legal pointer. 312 // This is the smallest possible architectural page size, 313 // since we assume that the first page is never mapped. 314 // 315 // This should agree with minZeroPage in the compiler. 316 minLegalPointer uintptr = 4096 317 ) 318 319 // physPageSize is the size in bytes of the OS's physical pages. 320 // Mapping and unmapping operations must be done at multiples of 321 // physPageSize. 322 // 323 // This must be set by the OS init code (typically in osinit) before 324 // mallocinit. 325 var physPageSize uintptr 326 327 // OS-defined helpers: 328 // 329 // sysAlloc obtains a large chunk of zeroed memory from the 330 // operating system, typically on the order of a hundred kilobytes 331 // or a megabyte. 332 // NOTE: sysAlloc returns OS-aligned memory, but the heap allocator 333 // may use larger alignment, so the caller must be careful to realign the 334 // memory obtained by sysAlloc. 335 // 336 // sysUnused notifies the operating system that the contents 337 // of the memory region are no longer needed and can be reused 338 // for other purposes. 339 // sysUsed notifies the operating system that the contents 340 // of the memory region are needed again. 341 // 342 // sysFree returns it unconditionally; this is only used if 343 // an out-of-memory error has been detected midway through 344 // an allocation. It is okay if sysFree is a no-op. 345 // 346 // sysReserve reserves address space without allocating memory. 347 // If the pointer passed to it is non-nil, the caller wants the 348 // reservation there, but sysReserve can still choose another 349 // location if that one is unavailable. 350 // NOTE: sysReserve returns OS-aligned memory, but the heap allocator 351 // may use larger alignment, so the caller must be careful to realign the 352 // memory obtained by sysAlloc. 353 // 354 // sysMap maps previously reserved address space for use. 355 // 356 // sysFault marks a (already sysAlloc'd) region to fault 357 // if accessed. Used only for debugging the runtime. 358 359 func mallocinit() { 360 if class_to_size[_TinySizeClass] != _TinySize { 361 throw("bad TinySizeClass") 362 } 363 364 testdefersizes() 365 366 if heapArenaBitmapBytes&(heapArenaBitmapBytes-1) != 0 { 367 // heapBits expects modular arithmetic on bitmap 368 // addresses to work. 369 throw("heapArenaBitmapBytes not a power of 2") 370 } 371 372 // Copy class sizes out for statistics table. 373 for i := range class_to_size { 374 memstats.by_size[i].size = uint32(class_to_size[i]) 375 } 376 377 // Check physPageSize. 378 if physPageSize == 0 { 379 // The OS init code failed to fetch the physical page size. 380 throw("failed to get system page size") 381 } 382 if physPageSize < minPhysPageSize { 383 print("system page size (", physPageSize, ") is smaller than minimum page size (", minPhysPageSize, ")\n") 384 throw("bad system page size") 385 } 386 if physPageSize&(physPageSize-1) != 0 { 387 print("system page size (", physPageSize, ") must be a power of 2\n") 388 throw("bad system page size") 389 } 390 391 // Initialize the heap. 392 mheap_.init() 393 _g_ := getg() 394 _g_.m.mcache = allocmcache() 395 396 // Create initial arena growth hints. 397 if sys.PtrSize == 8 && GOARCH != "wasm" { 398 // On a 64-bit machine, we pick the following hints 399 // because: 400 // 401 // 1. Starting from the middle of the address space 402 // makes it easier to grow out a contiguous range 403 // without running in to some other mapping. 404 // 405 // 2. This makes Go heap addresses more easily 406 // recognizable when debugging. 407 // 408 // 3. Stack scanning in gccgo is still conservative, 409 // so it's important that addresses be distinguishable 410 // from other data. 411 // 412 // Starting at 0x00c0 means that the valid memory addresses 413 // will begin 0x00c0, 0x00c1, ... 414 // In little-endian, that's c0 00, c1 00, ... None of those are valid 415 // UTF-8 sequences, and they are otherwise as far away from 416 // ff (likely a common byte) as possible. If that fails, we try other 0xXXc0 417 // addresses. An earlier attempt to use 0x11f8 caused out of memory errors 418 // on OS X during thread allocations. 0x00c0 causes conflicts with 419 // AddressSanitizer which reserves all memory up to 0x0100. 420 // These choices reduce the odds of a conservative garbage collector 421 // not collecting memory because some non-pointer block of memory 422 // had a bit pattern that matched a memory address. 423 // 424 // However, on arm64, we ignore all this advice above and slam the 425 // allocation at 0x40 << 32 because when using 4k pages with 3-level 426 // translation buffers, the user address space is limited to 39 bits 427 // On darwin/arm64, the address space is even smaller. 428 // On AIX, mmaps starts at 0x0A00000000000000 for 64-bit. 429 // processes. 430 for i := 0x7f; i >= 0; i-- { 431 var p uintptr 432 switch { 433 case GOARCH == "arm64" && GOOS == "darwin": 434 p = uintptr(i)<<40 | uintptrMask&(0x0013<<28) 435 case GOARCH == "arm64": 436 p = uintptr(i)<<40 | uintptrMask&(0x0040<<32) 437 case GOOS == "aix": 438 if i == 0 { 439 // We don't use addresses directly after 0x0A00000000000000 440 // to avoid collisions with others mmaps done by non-go programs. 441 continue 442 } 443 p = uintptr(i)<<40 | uintptrMask&(0xa0<<52) 444 case raceenabled: 445 // The TSAN runtime requires the heap 446 // to be in the range [0x00c000000000, 447 // 0x00e000000000). 448 p = uintptr(i)<<32 | uintptrMask&(0x00c0<<32) 449 if p >= uintptrMask&0x00e000000000 { 450 continue 451 } 452 default: 453 p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32) 454 } 455 hint := (*arenaHint)(mheap_.arenaHintAlloc.alloc()) 456 hint.addr = p 457 hint.next, mheap_.arenaHints = mheap_.arenaHints, hint 458 } 459 } else { 460 // On a 32-bit machine, we're much more concerned 461 // about keeping the usable heap contiguous. 462 // Hence: 463 // 464 // 1. We reserve space for all heapArenas up front so 465 // they don't get interleaved with the heap. They're 466 // ~258MB, so this isn't too bad. (We could reserve a 467 // smaller amount of space up front if this is a 468 // problem.) 469 // 470 // 2. We hint the heap to start right above the end of 471 // the binary so we have the best chance of keeping it 472 // contiguous. 473 // 474 // 3. We try to stake out a reasonably large initial 475 // heap reservation. 476 477 const arenaMetaSize = (1 << arenaBits) * unsafe.Sizeof(heapArena{}) 478 meta := uintptr(sysReserve(nil, arenaMetaSize)) 479 if meta != 0 { 480 mheap_.heapArenaAlloc.init(meta, arenaMetaSize) 481 } 482 483 // We want to start the arena low, but if we're linked 484 // against C code, it's possible global constructors 485 // have called malloc and adjusted the process' brk. 486 // Query the brk so we can avoid trying to map the 487 // region over it (which will cause the kernel to put 488 // the region somewhere else, likely at a high 489 // address). 490 procBrk := sbrk0() 491 492 // If we ask for the end of the data segment but the 493 // operating system requires a little more space 494 // before we can start allocating, it will give out a 495 // slightly higher pointer. Except QEMU, which is 496 // buggy, as usual: it won't adjust the pointer 497 // upward. So adjust it upward a little bit ourselves: 498 // 1/4 MB to get away from the running binary image. 499 p := firstmoduledata.end 500 if p < procBrk { 501 p = procBrk 502 } 503 if mheap_.heapArenaAlloc.next <= p && p < mheap_.heapArenaAlloc.end { 504 p = mheap_.heapArenaAlloc.end 505 } 506 p = round(p+(256<<10), heapArenaBytes) 507 // Because we're worried about fragmentation on 508 // 32-bit, we try to make a large initial reservation. 509 arenaSizes := []uintptr{ 510 512 << 20, 511 256 << 20, 512 128 << 20, 513 } 514 for _, arenaSize := range arenaSizes { 515 a, size := sysReserveAligned(unsafe.Pointer(p), arenaSize, heapArenaBytes) 516 if a != nil { 517 mheap_.arena.init(uintptr(a), size) 518 p = uintptr(a) + size // For hint below 519 break 520 } 521 } 522 hint := (*arenaHint)(mheap_.arenaHintAlloc.alloc()) 523 hint.addr = p 524 hint.next, mheap_.arenaHints = mheap_.arenaHints, hint 525 } 526 } 527 528 // sysAlloc allocates heap arena space for at least n bytes. The 529 // returned pointer is always heapArenaBytes-aligned and backed by 530 // h.arenas metadata. The returned size is always a multiple of 531 // heapArenaBytes. sysAlloc returns nil on failure. 532 // There is no corresponding free function. 533 // 534 // h must be locked. 535 func (h *mheap) sysAlloc(n uintptr) (v unsafe.Pointer, size uintptr) { 536 n = round(n, heapArenaBytes) 537 538 // First, try the arena pre-reservation. 539 v = h.arena.alloc(n, heapArenaBytes, &memstats.heap_sys) 540 if v != nil { 541 size = n 542 goto mapped 543 } 544 545 // Try to grow the heap at a hint address. 546 for h.arenaHints != nil { 547 hint := h.arenaHints 548 p := hint.addr 549 if hint.down { 550 p -= n 551 } 552 if p+n < p { 553 // We can't use this, so don't ask. 554 v = nil 555 } else if arenaIndex(p+n-1) >= 1<<arenaBits { 556 // Outside addressable heap. Can't use. 557 v = nil 558 } else { 559 v = sysReserve(unsafe.Pointer(p), n) 560 } 561 if p == uintptr(v) { 562 // Success. Update the hint. 563 if !hint.down { 564 p += n 565 } 566 hint.addr = p 567 size = n 568 break 569 } 570 // Failed. Discard this hint and try the next. 571 // 572 // TODO: This would be cleaner if sysReserve could be 573 // told to only return the requested address. In 574 // particular, this is already how Windows behaves, so 575 // it would simply things there. 576 if v != nil { 577 sysFree(v, n, nil) 578 } 579 h.arenaHints = hint.next 580 h.arenaHintAlloc.free(unsafe.Pointer(hint)) 581 } 582 583 if size == 0 { 584 if raceenabled { 585 // The race detector assumes the heap lives in 586 // [0x00c000000000, 0x00e000000000), but we 587 // just ran out of hints in this region. Give 588 // a nice failure. 589 throw("too many address space collisions for -race mode") 590 } 591 592 // All of the hints failed, so we'll take any 593 // (sufficiently aligned) address the kernel will give 594 // us. 595 v, size = sysReserveAligned(nil, n, heapArenaBytes) 596 if v == nil { 597 return nil, 0 598 } 599 600 // Create new hints for extending this region. 601 hint := (*arenaHint)(h.arenaHintAlloc.alloc()) 602 hint.addr, hint.down = uintptr(v), true 603 hint.next, mheap_.arenaHints = mheap_.arenaHints, hint 604 hint = (*arenaHint)(h.arenaHintAlloc.alloc()) 605 hint.addr = uintptr(v) + size 606 hint.next, mheap_.arenaHints = mheap_.arenaHints, hint 607 } 608 609 // Check for bad pointers or pointers we can't use. 610 { 611 var bad string 612 p := uintptr(v) 613 if p+size < p { 614 bad = "region exceeds uintptr range" 615 } else if arenaIndex(p) >= 1<<arenaBits { 616 bad = "base outside usable address space" 617 } else if arenaIndex(p+size-1) >= 1<<arenaBits { 618 bad = "end outside usable address space" 619 } 620 if bad != "" { 621 // This should be impossible on most architectures, 622 // but it would be really confusing to debug. 623 print("runtime: memory allocated by OS [", hex(p), ", ", hex(p+size), ") not in usable address space: ", bad, "\n") 624 throw("memory reservation exceeds address space limit") 625 } 626 } 627 628 if uintptr(v)&(heapArenaBytes-1) != 0 { 629 throw("misrounded allocation in sysAlloc") 630 } 631 632 // Back the reservation. 633 sysMap(v, size, &memstats.heap_sys) 634 635 mapped: 636 // Create arena metadata. 637 for ri := arenaIndex(uintptr(v)); ri <= arenaIndex(uintptr(v)+size-1); ri++ { 638 l2 := h.arenas[ri.l1()] 639 if l2 == nil { 640 // Allocate an L2 arena map. 641 l2 = (*[1 << arenaL2Bits]*heapArena)(persistentalloc(unsafe.Sizeof(*l2), sys.PtrSize, nil)) 642 if l2 == nil { 643 throw("out of memory allocating heap arena map") 644 } 645 atomic.StorepNoWB(unsafe.Pointer(&h.arenas[ri.l1()]), unsafe.Pointer(l2)) 646 } 647 648 if l2[ri.l2()] != nil { 649 throw("arena already initialized") 650 } 651 var r *heapArena 652 r = (*heapArena)(h.heapArenaAlloc.alloc(unsafe.Sizeof(*r), sys.PtrSize, &memstats.gc_sys)) 653 if r == nil { 654 r = (*heapArena)(persistentalloc(unsafe.Sizeof(*r), sys.PtrSize, &memstats.gc_sys)) 655 if r == nil { 656 throw("out of memory allocating heap arena metadata") 657 } 658 } 659 660 // Add the arena to the arenas list. 661 if len(h.allArenas) == cap(h.allArenas) { 662 size := 2 * uintptr(cap(h.allArenas)) * sys.PtrSize 663 if size == 0 { 664 size = physPageSize 665 } 666 newArray := (*notInHeap)(persistentalloc(size, sys.PtrSize, &memstats.gc_sys)) 667 if newArray == nil { 668 throw("out of memory allocating allArenas") 669 } 670 oldSlice := h.allArenas 671 *(*notInHeapSlice)(unsafe.Pointer(&h.allArenas)) = notInHeapSlice{newArray, len(h.allArenas), int(size / sys.PtrSize)} 672 copy(h.allArenas, oldSlice) 673 // Do not free the old backing array because 674 // there may be concurrent readers. Since we 675 // double the array each time, this can lead 676 // to at most 2x waste. 677 } 678 h.allArenas = h.allArenas[:len(h.allArenas)+1] 679 h.allArenas[len(h.allArenas)-1] = ri 680 681 // Store atomically just in case an object from the 682 // new heap arena becomes visible before the heap lock 683 // is released (which shouldn't happen, but there's 684 // little downside to this). 685 atomic.StorepNoWB(unsafe.Pointer(&l2[ri.l2()]), unsafe.Pointer(r)) 686 } 687 688 // Tell the race detector about the new heap memory. 689 if raceenabled { 690 racemapshadow(v, size) 691 } 692 693 return 694 } 695 696 // sysReserveAligned is like sysReserve, but the returned pointer is 697 // aligned to align bytes. It may reserve either n or n+align bytes, 698 // so it returns the size that was reserved. 699 func sysReserveAligned(v unsafe.Pointer, size, align uintptr) (unsafe.Pointer, uintptr) { 700 // Since the alignment is rather large in uses of this 701 // function, we're not likely to get it by chance, so we ask 702 // for a larger region and remove the parts we don't need. 703 retries := 0 704 retry: 705 p := uintptr(sysReserve(v, size+align)) 706 switch { 707 case p == 0: 708 return nil, 0 709 case p&(align-1) == 0: 710 // We got lucky and got an aligned region, so we can 711 // use the whole thing. 712 return unsafe.Pointer(p), size + align 713 case GOOS == "windows": 714 // On Windows we can't release pieces of a 715 // reservation, so we release the whole thing and 716 // re-reserve the aligned sub-region. This may race, 717 // so we may have to try again. 718 sysFree(unsafe.Pointer(p), size+align, nil) 719 p = round(p, align) 720 p2 := sysReserve(unsafe.Pointer(p), size) 721 if p != uintptr(p2) { 722 // Must have raced. Try again. 723 sysFree(p2, size, nil) 724 if retries++; retries == 100 { 725 throw("failed to allocate aligned heap memory; too many retries") 726 } 727 goto retry 728 } 729 // Success. 730 return p2, size 731 default: 732 // Trim off the unaligned parts. 733 pAligned := round(p, align) 734 sysFree(unsafe.Pointer(p), pAligned-p, nil) 735 end := pAligned + size 736 endLen := (p + size + align) - end 737 if endLen > 0 { 738 sysFree(unsafe.Pointer(end), endLen, nil) 739 } 740 return unsafe.Pointer(pAligned), size 741 } 742 } 743 744 // base address for all 0-byte allocations 745 var zerobase uintptr 746 747 // nextFreeFast returns the next free object if one is quickly available. 748 // Otherwise it returns 0. 749 func nextFreeFast(s *mspan) gclinkptr { 750 theBit := sys.Ctz64(s.allocCache) // Is there a free object in the allocCache? 751 if theBit < 64 { 752 result := s.freeindex + uintptr(theBit) 753 if result < s.nelems { 754 freeidx := result + 1 755 if freeidx%64 == 0 && freeidx != s.nelems { 756 return 0 757 } 758 s.allocCache >>= uint(theBit + 1) 759 s.freeindex = freeidx 760 s.allocCount++ 761 return gclinkptr(result*s.elemsize + s.base()) 762 } 763 } 764 return 0 765 } 766 767 // nextFree returns the next free object from the cached span if one is available. 768 // Otherwise it refills the cache with a span with an available object and 769 // returns that object along with a flag indicating that this was a heavy 770 // weight allocation. If it is a heavy weight allocation the caller must 771 // determine whether a new GC cycle needs to be started or if the GC is active 772 // whether this goroutine needs to assist the GC. 773 // 774 // Must run in a non-preemptible context since otherwise the owner of 775 // c could change. 776 func (c *mcache) nextFree(spc spanClass) (v gclinkptr, s *mspan, shouldhelpgc bool) { 777 s = c.alloc[spc] 778 shouldhelpgc = false 779 freeIndex := s.nextFreeIndex() 780 if freeIndex == s.nelems { 781 // The span is full. 782 if uintptr(s.allocCount) != s.nelems { 783 println("runtime: s.allocCount=", s.allocCount, "s.nelems=", s.nelems) 784 throw("s.allocCount != s.nelems && freeIndex == s.nelems") 785 } 786 c.refill(spc) 787 shouldhelpgc = true 788 s = c.alloc[spc] 789 790 freeIndex = s.nextFreeIndex() 791 } 792 793 if freeIndex >= s.nelems { 794 throw("freeIndex is not valid") 795 } 796 797 v = gclinkptr(freeIndex*s.elemsize + s.base()) 798 s.allocCount++ 799 if uintptr(s.allocCount) > s.nelems { 800 println("s.allocCount=", s.allocCount, "s.nelems=", s.nelems) 801 throw("s.allocCount > s.nelems") 802 } 803 return 804 } 805 806 // Allocate an object of size bytes. 807 // Small objects are allocated from the per-P cache's free lists. 808 // Large objects (> 32 kB) are allocated straight from the heap. 809 func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer { 810 if gcphase == _GCmarktermination { 811 throw("mallocgc called with gcphase == _GCmarktermination") 812 } 813 814 if size == 0 { 815 return unsafe.Pointer(&zerobase) 816 } 817 818 if debug.sbrk != 0 { 819 align := uintptr(16) 820 if typ != nil { 821 align = uintptr(typ.align) 822 } 823 return persistentalloc(size, align, &memstats.other_sys) 824 } 825 826 // assistG is the G to charge for this allocation, or nil if 827 // GC is not currently active. 828 var assistG *g 829 if gcBlackenEnabled != 0 { 830 // Charge the current user G for this allocation. 831 assistG = getg() 832 if assistG.m.curg != nil { 833 assistG = assistG.m.curg 834 } 835 // Charge the allocation against the G. We'll account 836 // for internal fragmentation at the end of mallocgc. 837 assistG.gcAssistBytes -= int64(size) 838 839 if assistG.gcAssistBytes < 0 { 840 // This G is in debt. Assist the GC to correct 841 // this before allocating. This must happen 842 // before disabling preemption. 843 gcAssistAlloc(assistG) 844 } 845 } 846 847 // Set mp.mallocing to keep from being preempted by GC. 848 mp := acquirem() 849 if mp.mallocing != 0 { 850 throw("malloc deadlock") 851 } 852 if mp.gsignal == getg() { 853 throw("malloc during signal") 854 } 855 mp.mallocing = 1 856 857 shouldhelpgc := false 858 dataSize := size 859 c := gomcache() 860 var x unsafe.Pointer 861 noscan := typ == nil || typ.kind&kindNoPointers != 0 862 if size <= maxSmallSize { 863 if noscan && size < maxTinySize { 864 // Tiny allocator. 865 // 866 // Tiny allocator combines several tiny allocation requests 867 // into a single memory block. The resulting memory block 868 // is freed when all subobjects are unreachable. The subobjects 869 // must be noscan (don't have pointers), this ensures that 870 // the amount of potentially wasted memory is bounded. 871 // 872 // Size of the memory block used for combining (maxTinySize) is tunable. 873 // Current setting is 16 bytes, which relates to 2x worst case memory 874 // wastage (when all but one subobjects are unreachable). 875 // 8 bytes would result in no wastage at all, but provides less 876 // opportunities for combining. 877 // 32 bytes provides more opportunities for combining, 878 // but can lead to 4x worst case wastage. 879 // The best case winning is 8x regardless of block size. 880 // 881 // Objects obtained from tiny allocator must not be freed explicitly. 882 // So when an object will be freed explicitly, we ensure that 883 // its size >= maxTinySize. 884 // 885 // SetFinalizer has a special case for objects potentially coming 886 // from tiny allocator, it such case it allows to set finalizers 887 // for an inner byte of a memory block. 888 // 889 // The main targets of tiny allocator are small strings and 890 // standalone escaping variables. On a json benchmark 891 // the allocator reduces number of allocations by ~12% and 892 // reduces heap size by ~20%. 893 off := c.tinyoffset 894 // Align tiny pointer for required (conservative) alignment. 895 if size&7 == 0 { 896 off = round(off, 8) 897 } else if size&3 == 0 { 898 off = round(off, 4) 899 } else if size&1 == 0 { 900 off = round(off, 2) 901 } 902 if off+size <= maxTinySize && c.tiny != 0 { 903 // The object fits into existing tiny block. 904 x = unsafe.Pointer(c.tiny + off) 905 c.tinyoffset = off + size 906 c.local_tinyallocs++ 907 mp.mallocing = 0 908 releasem(mp) 909 return x 910 } 911 // Allocate a new maxTinySize block. 912 span := c.alloc[tinySpanClass] 913 v := nextFreeFast(span) 914 if v == 0 { 915 v, _, shouldhelpgc = c.nextFree(tinySpanClass) 916 } 917 x = unsafe.Pointer(v) 918 (*[2]uint64)(x)[0] = 0 919 (*[2]uint64)(x)[1] = 0 920 // See if we need to replace the existing tiny block with the new one 921 // based on amount of remaining free space. 922 if size < c.tinyoffset || c.tiny == 0 { 923 c.tiny = uintptr(x) 924 c.tinyoffset = size 925 } 926 size = maxTinySize 927 } else { 928 var sizeclass uint8 929 if size <= smallSizeMax-8 { 930 sizeclass = size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv] 931 } else { 932 sizeclass = size_to_class128[(size-smallSizeMax+largeSizeDiv-1)/largeSizeDiv] 933 } 934 size = uintptr(class_to_size[sizeclass]) 935 spc := makeSpanClass(sizeclass, noscan) 936 span := c.alloc[spc] 937 v := nextFreeFast(span) 938 if v == 0 { 939 v, span, shouldhelpgc = c.nextFree(spc) 940 } 941 x = unsafe.Pointer(v) 942 if needzero && span.needzero != 0 { 943 memclrNoHeapPointers(unsafe.Pointer(v), size) 944 } 945 } 946 } else { 947 var s *mspan 948 shouldhelpgc = true 949 systemstack(func() { 950 s = largeAlloc(size, needzero, noscan) 951 }) 952 s.freeindex = 1 953 s.allocCount = 1 954 x = unsafe.Pointer(s.base()) 955 size = s.elemsize 956 } 957 958 var scanSize uintptr 959 if !noscan { 960 // If allocating a defer+arg block, now that we've picked a malloc size 961 // large enough to hold everything, cut the "asked for" size down to 962 // just the defer header, so that the GC bitmap will record the arg block 963 // as containing nothing at all (as if it were unused space at the end of 964 // a malloc block caused by size rounding). 965 // The defer arg areas are scanned as part of scanstack. 966 if typ == deferType { 967 dataSize = unsafe.Sizeof(_defer{}) 968 } 969 heapBitsSetType(uintptr(x), size, dataSize, typ) 970 if dataSize > typ.size { 971 // Array allocation. If there are any 972 // pointers, GC has to scan to the last 973 // element. 974 if typ.ptrdata != 0 { 975 scanSize = dataSize - typ.size + typ.ptrdata 976 } 977 } else { 978 scanSize = typ.ptrdata 979 } 980 c.local_scan += scanSize 981 } 982 983 // Ensure that the stores above that initialize x to 984 // type-safe memory and set the heap bits occur before 985 // the caller can make x observable to the garbage 986 // collector. Otherwise, on weakly ordered machines, 987 // the garbage collector could follow a pointer to x, 988 // but see uninitialized memory or stale heap bits. 989 publicationBarrier() 990 991 // Allocate black during GC. 992 // All slots hold nil so no scanning is needed. 993 // This may be racing with GC so do it atomically if there can be 994 // a race marking the bit. 995 if gcphase != _GCoff { 996 gcmarknewobject(uintptr(x), size, scanSize) 997 } 998 999 if raceenabled { 1000 racemalloc(x, size) 1001 } 1002 1003 if msanenabled { 1004 msanmalloc(x, size) 1005 } 1006 1007 mp.mallocing = 0 1008 releasem(mp) 1009 1010 if debug.allocfreetrace != 0 { 1011 tracealloc(x, size, typ) 1012 } 1013 1014 if rate := MemProfileRate; rate > 0 { 1015 if rate != 1 && int32(size) < c.next_sample { 1016 c.next_sample -= int32(size) 1017 } else { 1018 mp := acquirem() 1019 profilealloc(mp, x, size) 1020 releasem(mp) 1021 } 1022 } 1023 1024 if assistG != nil { 1025 // Account for internal fragmentation in the assist 1026 // debt now that we know it. 1027 assistG.gcAssistBytes -= int64(size - dataSize) 1028 } 1029 1030 if shouldhelpgc { 1031 if t := (gcTrigger{kind: gcTriggerHeap}); t.test() { 1032 gcStart(t) 1033 } 1034 } 1035 1036 return x 1037 } 1038 1039 func largeAlloc(size uintptr, needzero bool, noscan bool) *mspan { 1040 // print("largeAlloc size=", size, "\n") 1041 1042 if size+_PageSize < size { 1043 throw("out of memory") 1044 } 1045 npages := size >> _PageShift 1046 if size&_PageMask != 0 { 1047 npages++ 1048 } 1049 1050 // Deduct credit for this span allocation and sweep if 1051 // necessary. mHeap_Alloc will also sweep npages, so this only 1052 // pays the debt down to npage pages. 1053 deductSweepCredit(npages*_PageSize, npages) 1054 1055 s := mheap_.alloc(npages, makeSpanClass(0, noscan), true, needzero) 1056 if s == nil { 1057 throw("out of memory") 1058 } 1059 s.limit = s.base() + size 1060 heapBitsForAddr(s.base()).initSpan(s) 1061 return s 1062 } 1063 1064 // implementation of new builtin 1065 // compiler (both frontend and SSA backend) knows the signature 1066 // of this function 1067 func newobject(typ *_type) unsafe.Pointer { 1068 return mallocgc(typ.size, typ, true) 1069 } 1070 1071 //go:linkname reflect_unsafe_New reflect.unsafe_New 1072 func reflect_unsafe_New(typ *_type) unsafe.Pointer { 1073 return mallocgc(typ.size, typ, true) 1074 } 1075 1076 // newarray allocates an array of n elements of type typ. 1077 func newarray(typ *_type, n int) unsafe.Pointer { 1078 if n == 1 { 1079 return mallocgc(typ.size, typ, true) 1080 } 1081 mem, overflow := math.MulUintptr(typ.size, uintptr(n)) 1082 if overflow || mem > maxAlloc || n < 0 { 1083 panic(plainError("runtime: allocation size out of range")) 1084 } 1085 return mallocgc(mem, typ, true) 1086 } 1087 1088 //go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray 1089 func reflect_unsafe_NewArray(typ *_type, n int) unsafe.Pointer { 1090 return newarray(typ, n) 1091 } 1092 1093 func profilealloc(mp *m, x unsafe.Pointer, size uintptr) { 1094 mp.mcache.next_sample = nextSample() 1095 mProf_Malloc(x, size) 1096 } 1097 1098 // nextSample returns the next sampling point for heap profiling. The goal is 1099 // to sample allocations on average every MemProfileRate bytes, but with a 1100 // completely random distribution over the allocation timeline; this 1101 // corresponds to a Poisson process with parameter MemProfileRate. In Poisson 1102 // processes, the distance between two samples follows the exponential 1103 // distribution (exp(MemProfileRate)), so the best return value is a random 1104 // number taken from an exponential distribution whose mean is MemProfileRate. 1105 func nextSample() int32 { 1106 if GOOS == "plan9" { 1107 // Plan 9 doesn't support floating point in note handler. 1108 if g := getg(); g == g.m.gsignal { 1109 return nextSampleNoFP() 1110 } 1111 } 1112 1113 return fastexprand(MemProfileRate) 1114 } 1115 1116 // fastexprand returns a random number from an exponential distribution with 1117 // the specified mean. 1118 func fastexprand(mean int) int32 { 1119 // Avoid overflow. Maximum possible step is 1120 // -ln(1/(1<<randomBitCount)) * mean, approximately 20 * mean. 1121 switch { 1122 case mean > 0x7000000: 1123 mean = 0x7000000 1124 case mean == 0: 1125 return 0 1126 } 1127 1128 // Take a random sample of the exponential distribution exp(-mean*x). 1129 // The probability distribution function is mean*exp(-mean*x), so the CDF is 1130 // p = 1 - exp(-mean*x), so 1131 // q = 1 - p == exp(-mean*x) 1132 // log_e(q) = -mean*x 1133 // -log_e(q)/mean = x 1134 // x = -log_e(q) * mean 1135 // x = log_2(q) * (-log_e(2)) * mean ; Using log_2 for efficiency 1136 const randomBitCount = 26 1137 q := fastrand()%(1<<randomBitCount) + 1 1138 qlog := fastlog2(float64(q)) - randomBitCount 1139 if qlog > 0 { 1140 qlog = 0 1141 } 1142 const minusLog2 = -0.6931471805599453 // -ln(2) 1143 return int32(qlog*(minusLog2*float64(mean))) + 1 1144 } 1145 1146 // nextSampleNoFP is similar to nextSample, but uses older, 1147 // simpler code to avoid floating point. 1148 func nextSampleNoFP() int32 { 1149 // Set first allocation sample size. 1150 rate := MemProfileRate 1151 if rate > 0x3fffffff { // make 2*rate not overflow 1152 rate = 0x3fffffff 1153 } 1154 if rate != 0 { 1155 return int32(fastrand() % uint32(2*rate)) 1156 } 1157 return 0 1158 } 1159 1160 type persistentAlloc struct { 1161 base *notInHeap 1162 off uintptr 1163 } 1164 1165 var globalAlloc struct { 1166 mutex 1167 persistentAlloc 1168 } 1169 1170 // persistentChunkSize is the number of bytes we allocate when we grow 1171 // a persistentAlloc. 1172 const persistentChunkSize = 256 << 10 1173 1174 // persistentChunks is a list of all the persistent chunks we have 1175 // allocated. The list is maintained through the first word in the 1176 // persistent chunk. This is updated atomically. 1177 var persistentChunks *notInHeap 1178 1179 // Wrapper around sysAlloc that can allocate small chunks. 1180 // There is no associated free operation. 1181 // Intended for things like function/type/debug-related persistent data. 1182 // If align is 0, uses default align (currently 8). 1183 // The returned memory will be zeroed. 1184 // 1185 // Consider marking persistentalloc'd types go:notinheap. 1186 func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer { 1187 var p *notInHeap 1188 systemstack(func() { 1189 p = persistentalloc1(size, align, sysStat) 1190 }) 1191 return unsafe.Pointer(p) 1192 } 1193 1194 // Must run on system stack because stack growth can (re)invoke it. 1195 // See issue 9174. 1196 //go:systemstack 1197 func persistentalloc1(size, align uintptr, sysStat *uint64) *notInHeap { 1198 const ( 1199 maxBlock = 64 << 10 // VM reservation granularity is 64K on windows 1200 ) 1201 1202 if size == 0 { 1203 throw("persistentalloc: size == 0") 1204 } 1205 if align != 0 { 1206 if align&(align-1) != 0 { 1207 throw("persistentalloc: align is not a power of 2") 1208 } 1209 if align > _PageSize { 1210 throw("persistentalloc: align is too large") 1211 } 1212 } else { 1213 align = 8 1214 } 1215 1216 if size >= maxBlock { 1217 return (*notInHeap)(sysAlloc(size, sysStat)) 1218 } 1219 1220 mp := acquirem() 1221 var persistent *persistentAlloc 1222 if mp != nil && mp.p != 0 { 1223 persistent = &mp.p.ptr().palloc 1224 } else { 1225 lock(&globalAlloc.mutex) 1226 persistent = &globalAlloc.persistentAlloc 1227 } 1228 persistent.off = round(persistent.off, align) 1229 if persistent.off+size > persistentChunkSize || persistent.base == nil { 1230 persistent.base = (*notInHeap)(sysAlloc(persistentChunkSize, &memstats.other_sys)) 1231 if persistent.base == nil { 1232 if persistent == &globalAlloc.persistentAlloc { 1233 unlock(&globalAlloc.mutex) 1234 } 1235 throw("runtime: cannot allocate memory") 1236 } 1237 1238 // Add the new chunk to the persistentChunks list. 1239 for { 1240 chunks := uintptr(unsafe.Pointer(persistentChunks)) 1241 *(*uintptr)(unsafe.Pointer(persistent.base)) = chunks 1242 if atomic.Casuintptr((*uintptr)(unsafe.Pointer(&persistentChunks)), chunks, uintptr(unsafe.Pointer(persistent.base))) { 1243 break 1244 } 1245 } 1246 persistent.off = sys.PtrSize 1247 } 1248 p := persistent.base.add(persistent.off) 1249 persistent.off += size 1250 releasem(mp) 1251 if persistent == &globalAlloc.persistentAlloc { 1252 unlock(&globalAlloc.mutex) 1253 } 1254 1255 if sysStat != &memstats.other_sys { 1256 mSysStatInc(sysStat, size) 1257 mSysStatDec(&memstats.other_sys, size) 1258 } 1259 return p 1260 } 1261 1262 // inPersistentAlloc reports whether p points to memory allocated by 1263 // persistentalloc. This must be nosplit because it is called by the 1264 // cgo checker code, which is called by the write barrier code. 1265 //go:nosplit 1266 func inPersistentAlloc(p uintptr) bool { 1267 chunk := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&persistentChunks))) 1268 for chunk != 0 { 1269 if p >= chunk && p < chunk+persistentChunkSize { 1270 return true 1271 } 1272 chunk = *(*uintptr)(unsafe.Pointer(chunk)) 1273 } 1274 return false 1275 } 1276 1277 // linearAlloc is a simple linear allocator that pre-reserves a region 1278 // of memory and then maps that region as needed. The caller is 1279 // responsible for locking. 1280 type linearAlloc struct { 1281 next uintptr // next free byte 1282 mapped uintptr // one byte past end of mapped space 1283 end uintptr // end of reserved space 1284 } 1285 1286 func (l *linearAlloc) init(base, size uintptr) { 1287 l.next, l.mapped = base, base 1288 l.end = base + size 1289 } 1290 1291 func (l *linearAlloc) alloc(size, align uintptr, sysStat *uint64) unsafe.Pointer { 1292 p := round(l.next, align) 1293 if p+size > l.end { 1294 return nil 1295 } 1296 l.next = p + size 1297 if pEnd := round(l.next-1, physPageSize); pEnd > l.mapped { 1298 // We need to map more of the reserved space. 1299 sysMap(unsafe.Pointer(l.mapped), pEnd-l.mapped, sysStat) 1300 l.mapped = pEnd 1301 } 1302 return unsafe.Pointer(p) 1303 } 1304 1305 // notInHeap is off-heap memory allocated by a lower-level allocator 1306 // like sysAlloc or persistentAlloc. 1307 // 1308 // In general, it's better to use real types marked as go:notinheap, 1309 // but this serves as a generic type for situations where that isn't 1310 // possible (like in the allocators). 1311 // 1312 // TODO: Use this as the return type of sysAlloc, persistentAlloc, etc? 1313 // 1314 //go:notinheap 1315 type notInHeap struct{} 1316 1317 func (p *notInHeap) add(bytes uintptr) *notInHeap { 1318 return (*notInHeap)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + bytes)) 1319 }