github.com/megatontech/mynoteforgo@v0.0.0-20200507084910-5d0c6ea6e890/源码/runtime/mbitmap.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Garbage collector: type and heap bitmaps. 6 // 7 // Stack, data, and bss bitmaps 8 // 9 // Stack frames and global variables in the data and bss sections are described 10 // by 1-bit bitmaps in which 0 means uninteresting and 1 means live pointer 11 // to be visited during GC. The bits in each byte are consumed starting with 12 // the low bit: 1<<0, 1<<1, and so on. 13 // 14 // Heap bitmap 15 // 16 // The heap bitmap comprises 2 bits for each pointer-sized word in the heap, 17 // stored in the heapArena metadata backing each heap arena. 18 // That is, if ha is the heapArena for the arena starting a start, 19 // then ha.bitmap[0] holds the 2-bit entries for the four words start 20 // through start+3*ptrSize, ha.bitmap[1] holds the entries for 21 // start+4*ptrSize through start+7*ptrSize, and so on. 22 // 23 // In each 2-bit entry, the lower bit holds the same information as in the 1-bit 24 // bitmaps: 0 means uninteresting and 1 means live pointer to be visited during GC. 25 // The meaning of the high bit depends on the position of the word being described 26 // in its allocated object. In all words *except* the second word, the 27 // high bit indicates that the object is still being described. In 28 // these words, if a bit pair with a high bit 0 is encountered, the 29 // low bit can also be assumed to be 0, and the object description is 30 // over. This 00 is called the ``dead'' encoding: it signals that the 31 // rest of the words in the object are uninteresting to the garbage 32 // collector. 33 // 34 // In the second word, the high bit is the GC ``checkmarked'' bit (see below). 35 // 36 // The 2-bit entries are split when written into the byte, so that the top half 37 // of the byte contains 4 high bits and the bottom half contains 4 low (pointer) 38 // bits. 39 // This form allows a copy from the 1-bit to the 4-bit form to keep the 40 // pointer bits contiguous, instead of having to space them out. 41 // 42 // The code makes use of the fact that the zero value for a heap bitmap 43 // has no live pointer bit set and is (depending on position), not used, 44 // not checkmarked, and is the dead encoding. 45 // These properties must be preserved when modifying the encoding. 46 // 47 // The bitmap for noscan spans is not maintained. Code must ensure 48 // that an object is scannable before consulting its bitmap by 49 // checking either the noscan bit in the span or by consulting its 50 // type's information. 51 // 52 // Checkmarks 53 // 54 // In a concurrent garbage collector, one worries about failing to mark 55 // a live object due to mutations without write barriers or bugs in the 56 // collector implementation. As a sanity check, the GC has a 'checkmark' 57 // mode that retraverses the object graph with the world stopped, to make 58 // sure that everything that should be marked is marked. 59 // In checkmark mode, in the heap bitmap, the high bit of the 2-bit entry 60 // for the second word of the object holds the checkmark bit. 61 // When not in checkmark mode, this bit is set to 1. 62 // 63 // The smallest possible allocation is 8 bytes. On a 32-bit machine, that 64 // means every allocated object has two words, so there is room for the 65 // checkmark bit. On a 64-bit machine, however, the 8-byte allocation is 66 // just one word, so the second bit pair is not available for encoding the 67 // checkmark. However, because non-pointer allocations are combined 68 // into larger 16-byte (maxTinySize) allocations, a plain 8-byte allocation 69 // must be a pointer, so the type bit in the first word is not actually needed. 70 // It is still used in general, except in checkmark the type bit is repurposed 71 // as the checkmark bit and then reinitialized (to 1) as the type bit when 72 // finished. 73 // 74 75 package runtime 76 77 import ( 78 "runtime/internal/atomic" 79 "runtime/internal/sys" 80 "unsafe" 81 ) 82 83 const ( 84 bitPointer = 1 << 0 85 bitScan = 1 << 4 86 87 heapBitsShift = 1 // shift offset between successive bitPointer or bitScan entries 88 wordsPerBitmapByte = 8 / 2 // heap words described by one bitmap byte 89 90 // all scan/pointer bits in a byte 91 bitScanAll = bitScan | bitScan<<heapBitsShift | bitScan<<(2*heapBitsShift) | bitScan<<(3*heapBitsShift) 92 bitPointerAll = bitPointer | bitPointer<<heapBitsShift | bitPointer<<(2*heapBitsShift) | bitPointer<<(3*heapBitsShift) 93 ) 94 95 // addb returns the byte pointer p+n. 96 //go:nowritebarrier 97 //go:nosplit 98 func addb(p *byte, n uintptr) *byte { 99 // Note: wrote out full expression instead of calling add(p, n) 100 // to reduce the number of temporaries generated by the 101 // compiler for this trivial expression during inlining. 102 return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + n)) 103 } 104 105 // subtractb returns the byte pointer p-n. 106 //go:nowritebarrier 107 //go:nosplit 108 func subtractb(p *byte, n uintptr) *byte { 109 // Note: wrote out full expression instead of calling add(p, -n) 110 // to reduce the number of temporaries generated by the 111 // compiler for this trivial expression during inlining. 112 return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - n)) 113 } 114 115 // add1 returns the byte pointer p+1. 116 //go:nowritebarrier 117 //go:nosplit 118 func add1(p *byte) *byte { 119 // Note: wrote out full expression instead of calling addb(p, 1) 120 // to reduce the number of temporaries generated by the 121 // compiler for this trivial expression during inlining. 122 return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + 1)) 123 } 124 125 // subtract1 returns the byte pointer p-1. 126 //go:nowritebarrier 127 // 128 // nosplit because it is used during write barriers and must not be preempted. 129 //go:nosplit 130 func subtract1(p *byte) *byte { 131 // Note: wrote out full expression instead of calling subtractb(p, 1) 132 // to reduce the number of temporaries generated by the 133 // compiler for this trivial expression during inlining. 134 return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - 1)) 135 } 136 137 // heapBits provides access to the bitmap bits for a single heap word. 138 // The methods on heapBits take value receivers so that the compiler 139 // can more easily inline calls to those methods and registerize the 140 // struct fields independently. 141 type heapBits struct { 142 bitp *uint8 143 shift uint32 144 arena uint32 // Index of heap arena containing bitp 145 last *uint8 // Last byte arena's bitmap 146 } 147 148 // Make the compiler check that heapBits.arena is large enough to hold 149 // the maximum arena frame number. 150 var _ = heapBits{arena: (1<<heapAddrBits)/heapArenaBytes - 1} 151 152 // markBits provides access to the mark bit for an object in the heap. 153 // bytep points to the byte holding the mark bit. 154 // mask is a byte with a single bit set that can be &ed with *bytep 155 // to see if the bit has been set. 156 // *m.byte&m.mask != 0 indicates the mark bit is set. 157 // index can be used along with span information to generate 158 // the address of the object in the heap. 159 // We maintain one set of mark bits for allocation and one for 160 // marking purposes. 161 type markBits struct { 162 bytep *uint8 163 mask uint8 164 index uintptr 165 } 166 167 //go:nosplit 168 func (s *mspan) allocBitsForIndex(allocBitIndex uintptr) markBits { 169 bytep, mask := s.allocBits.bitp(allocBitIndex) 170 return markBits{bytep, mask, allocBitIndex} 171 } 172 173 // refillAllocCache takes 8 bytes s.allocBits starting at whichByte 174 // and negates them so that ctz (count trailing zeros) instructions 175 // can be used. It then places these 8 bytes into the cached 64 bit 176 // s.allocCache. 177 func (s *mspan) refillAllocCache(whichByte uintptr) { 178 bytes := (*[8]uint8)(unsafe.Pointer(s.allocBits.bytep(whichByte))) 179 aCache := uint64(0) 180 aCache |= uint64(bytes[0]) 181 aCache |= uint64(bytes[1]) << (1 * 8) 182 aCache |= uint64(bytes[2]) << (2 * 8) 183 aCache |= uint64(bytes[3]) << (3 * 8) 184 aCache |= uint64(bytes[4]) << (4 * 8) 185 aCache |= uint64(bytes[5]) << (5 * 8) 186 aCache |= uint64(bytes[6]) << (6 * 8) 187 aCache |= uint64(bytes[7]) << (7 * 8) 188 s.allocCache = ^aCache 189 } 190 191 // nextFreeIndex returns the index of the next free object in s at 192 // or after s.freeindex. 193 // There are hardware instructions that can be used to make this 194 // faster if profiling warrants it. 195 func (s *mspan) nextFreeIndex() uintptr { 196 sfreeindex := s.freeindex 197 snelems := s.nelems 198 if sfreeindex == snelems { 199 return sfreeindex 200 } 201 if sfreeindex > snelems { 202 throw("s.freeindex > s.nelems") 203 } 204 205 aCache := s.allocCache 206 207 bitIndex := sys.Ctz64(aCache) 208 for bitIndex == 64 { 209 // Move index to start of next cached bits. 210 sfreeindex = (sfreeindex + 64) &^ (64 - 1) 211 if sfreeindex >= snelems { 212 s.freeindex = snelems 213 return snelems 214 } 215 whichByte := sfreeindex / 8 216 // Refill s.allocCache with the next 64 alloc bits. 217 s.refillAllocCache(whichByte) 218 aCache = s.allocCache 219 bitIndex = sys.Ctz64(aCache) 220 // nothing available in cached bits 221 // grab the next 8 bytes and try again. 222 } 223 result := sfreeindex + uintptr(bitIndex) 224 if result >= snelems { 225 s.freeindex = snelems 226 return snelems 227 } 228 229 s.allocCache >>= uint(bitIndex + 1) 230 sfreeindex = result + 1 231 232 if sfreeindex%64 == 0 && sfreeindex != snelems { 233 // We just incremented s.freeindex so it isn't 0. 234 // As each 1 in s.allocCache was encountered and used for allocation 235 // it was shifted away. At this point s.allocCache contains all 0s. 236 // Refill s.allocCache so that it corresponds 237 // to the bits at s.allocBits starting at s.freeindex. 238 whichByte := sfreeindex / 8 239 s.refillAllocCache(whichByte) 240 } 241 s.freeindex = sfreeindex 242 return result 243 } 244 245 // isFree reports whether the index'th object in s is unallocated. 246 func (s *mspan) isFree(index uintptr) bool { 247 if index < s.freeindex { 248 return false 249 } 250 bytep, mask := s.allocBits.bitp(index) 251 return *bytep&mask == 0 252 } 253 254 func (s *mspan) objIndex(p uintptr) uintptr { 255 byteOffset := p - s.base() 256 if byteOffset == 0 { 257 return 0 258 } 259 if s.baseMask != 0 { 260 // s.baseMask is non-0, elemsize is a power of two, so shift by s.divShift 261 return byteOffset >> s.divShift 262 } 263 return uintptr(((uint64(byteOffset) >> s.divShift) * uint64(s.divMul)) >> s.divShift2) 264 } 265 266 func markBitsForAddr(p uintptr) markBits { 267 s := spanOf(p) 268 objIndex := s.objIndex(p) 269 return s.markBitsForIndex(objIndex) 270 } 271 272 func (s *mspan) markBitsForIndex(objIndex uintptr) markBits { 273 bytep, mask := s.gcmarkBits.bitp(objIndex) 274 return markBits{bytep, mask, objIndex} 275 } 276 277 func (s *mspan) markBitsForBase() markBits { 278 return markBits{(*uint8)(s.gcmarkBits), uint8(1), 0} 279 } 280 281 // isMarked reports whether mark bit m is set. 282 func (m markBits) isMarked() bool { 283 return *m.bytep&m.mask != 0 284 } 285 286 // setMarked sets the marked bit in the markbits, atomically. 287 func (m markBits) setMarked() { 288 // Might be racing with other updates, so use atomic update always. 289 // We used to be clever here and use a non-atomic update in certain 290 // cases, but it's not worth the risk. 291 atomic.Or8(m.bytep, m.mask) 292 } 293 294 // setMarkedNonAtomic sets the marked bit in the markbits, non-atomically. 295 func (m markBits) setMarkedNonAtomic() { 296 *m.bytep |= m.mask 297 } 298 299 // clearMarked clears the marked bit in the markbits, atomically. 300 func (m markBits) clearMarked() { 301 // Might be racing with other updates, so use atomic update always. 302 // We used to be clever here and use a non-atomic update in certain 303 // cases, but it's not worth the risk. 304 atomic.And8(m.bytep, ^m.mask) 305 } 306 307 // markBitsForSpan returns the markBits for the span base address base. 308 func markBitsForSpan(base uintptr) (mbits markBits) { 309 mbits = markBitsForAddr(base) 310 if mbits.mask != 1 { 311 throw("markBitsForSpan: unaligned start") 312 } 313 return mbits 314 } 315 316 // advance advances the markBits to the next object in the span. 317 func (m *markBits) advance() { 318 if m.mask == 1<<7 { 319 m.bytep = (*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(m.bytep)) + 1)) 320 m.mask = 1 321 } else { 322 m.mask = m.mask << 1 323 } 324 m.index++ 325 } 326 327 // heapBitsForAddr returns the heapBits for the address addr. 328 // The caller must ensure addr is in an allocated span. 329 // In particular, be careful not to point past the end of an object. 330 // 331 // nosplit because it is used during write barriers and must not be preempted. 332 //go:nosplit 333 func heapBitsForAddr(addr uintptr) (h heapBits) { 334 // 2 bits per word, 4 pairs per byte, and a mask is hard coded. 335 arena := arenaIndex(addr) 336 ha := mheap_.arenas[arena.l1()][arena.l2()] 337 // The compiler uses a load for nil checking ha, but in this 338 // case we'll almost never hit that cache line again, so it 339 // makes more sense to do a value check. 340 if ha == nil { 341 // addr is not in the heap. Return nil heapBits, which 342 // we expect to crash in the caller. 343 return 344 } 345 h.bitp = &ha.bitmap[(addr/(sys.PtrSize*4))%heapArenaBitmapBytes] 346 h.shift = uint32((addr / sys.PtrSize) & 3) 347 h.arena = uint32(arena) 348 h.last = &ha.bitmap[len(ha.bitmap)-1] 349 return 350 } 351 352 // findObject returns the base address for the heap object containing 353 // the address p, the object's span, and the index of the object in s. 354 // If p does not point into a heap object, it returns base == 0. 355 // 356 // If p points is an invalid heap pointer and debug.invalidptr != 0, 357 // findObject panics. 358 // 359 // refBase and refOff optionally give the base address of the object 360 // in which the pointer p was found and the byte offset at which it 361 // was found. These are used for error reporting. 362 func findObject(p, refBase, refOff uintptr) (base uintptr, s *mspan, objIndex uintptr) { 363 s = spanOf(p) 364 // If p is a bad pointer, it may not be in s's bounds. 365 if s == nil || p < s.base() || p >= s.limit || s.state != mSpanInUse { 366 if s == nil || s.state == mSpanManual { 367 // If s is nil, the virtual address has never been part of the heap. 368 // This pointer may be to some mmap'd region, so we allow it. 369 // Pointers into stacks are also ok, the runtime manages these explicitly. 370 return 371 } 372 373 // The following ensures that we are rigorous about what data 374 // structures hold valid pointers. 375 if debug.invalidptr != 0 { 376 // Typically this indicates an incorrect use 377 // of unsafe or cgo to store a bad pointer in 378 // the Go heap. It may also indicate a runtime 379 // bug. 380 // 381 // TODO(austin): We could be more aggressive 382 // and detect pointers to unallocated objects 383 // in allocated spans. 384 printlock() 385 print("runtime: pointer ", hex(p)) 386 if s.state != mSpanInUse { 387 print(" to unallocated span") 388 } else { 389 print(" to unused region of span") 390 } 391 print(" span.base()=", hex(s.base()), " span.limit=", hex(s.limit), " span.state=", s.state, "\n") 392 if refBase != 0 { 393 print("runtime: found in object at *(", hex(refBase), "+", hex(refOff), ")\n") 394 gcDumpObject("object", refBase, refOff) 395 } 396 getg().m.traceback = 2 397 throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)") 398 } 399 return 400 } 401 // If this span holds object of a power of 2 size, just mask off the bits to 402 // the interior of the object. Otherwise use the size to get the base. 403 if s.baseMask != 0 { 404 // optimize for power of 2 sized objects. 405 base = s.base() 406 base = base + (p-base)&uintptr(s.baseMask) 407 objIndex = (base - s.base()) >> s.divShift 408 // base = p & s.baseMask is faster for small spans, 409 // but doesn't work for large spans. 410 // Overall, it's faster to use the more general computation above. 411 } else { 412 base = s.base() 413 if p-base >= s.elemsize { 414 // n := (p - base) / s.elemsize, using division by multiplication 415 objIndex = uintptr(p-base) >> s.divShift * uintptr(s.divMul) >> s.divShift2 416 base += objIndex * s.elemsize 417 } 418 } 419 return 420 } 421 422 // next returns the heapBits describing the next pointer-sized word in memory. 423 // That is, if h describes address p, h.next() describes p+ptrSize. 424 // Note that next does not modify h. The caller must record the result. 425 // 426 // nosplit because it is used during write barriers and must not be preempted. 427 //go:nosplit 428 func (h heapBits) next() heapBits { 429 if h.shift < 3*heapBitsShift { 430 h.shift += heapBitsShift 431 } else if h.bitp != h.last { 432 h.bitp, h.shift = add1(h.bitp), 0 433 } else { 434 // Move to the next arena. 435 return h.nextArena() 436 } 437 return h 438 } 439 440 // nextArena advances h to the beginning of the next heap arena. 441 // 442 // This is a slow-path helper to next. gc's inliner knows that 443 // heapBits.next can be inlined even though it calls this. This is 444 // marked noinline so it doesn't get inlined into next and cause next 445 // to be too big to inline. 446 // 447 //go:nosplit 448 //go:noinline 449 func (h heapBits) nextArena() heapBits { 450 h.arena++ 451 ai := arenaIdx(h.arena) 452 l2 := mheap_.arenas[ai.l1()] 453 if l2 == nil { 454 // We just passed the end of the object, which 455 // was also the end of the heap. Poison h. It 456 // should never be dereferenced at this point. 457 return heapBits{} 458 } 459 ha := l2[ai.l2()] 460 if ha == nil { 461 return heapBits{} 462 } 463 h.bitp, h.shift = &ha.bitmap[0], 0 464 h.last = &ha.bitmap[len(ha.bitmap)-1] 465 return h 466 } 467 468 // forward returns the heapBits describing n pointer-sized words ahead of h in memory. 469 // That is, if h describes address p, h.forward(n) describes p+n*ptrSize. 470 // h.forward(1) is equivalent to h.next(), just slower. 471 // Note that forward does not modify h. The caller must record the result. 472 // bits returns the heap bits for the current word. 473 //go:nosplit 474 func (h heapBits) forward(n uintptr) heapBits { 475 n += uintptr(h.shift) / heapBitsShift 476 nbitp := uintptr(unsafe.Pointer(h.bitp)) + n/4 477 h.shift = uint32(n%4) * heapBitsShift 478 if nbitp <= uintptr(unsafe.Pointer(h.last)) { 479 h.bitp = (*uint8)(unsafe.Pointer(nbitp)) 480 return h 481 } 482 483 // We're in a new heap arena. 484 past := nbitp - (uintptr(unsafe.Pointer(h.last)) + 1) 485 h.arena += 1 + uint32(past/heapArenaBitmapBytes) 486 ai := arenaIdx(h.arena) 487 if l2 := mheap_.arenas[ai.l1()]; l2 != nil && l2[ai.l2()] != nil { 488 a := l2[ai.l2()] 489 h.bitp = &a.bitmap[past%heapArenaBitmapBytes] 490 h.last = &a.bitmap[len(a.bitmap)-1] 491 } else { 492 h.bitp, h.last = nil, nil 493 } 494 return h 495 } 496 497 // forwardOrBoundary is like forward, but stops at boundaries between 498 // contiguous sections of the bitmap. It returns the number of words 499 // advanced over, which will be <= n. 500 func (h heapBits) forwardOrBoundary(n uintptr) (heapBits, uintptr) { 501 maxn := 4 * ((uintptr(unsafe.Pointer(h.last)) + 1) - uintptr(unsafe.Pointer(h.bitp))) 502 if n > maxn { 503 n = maxn 504 } 505 return h.forward(n), n 506 } 507 508 // The caller can test morePointers and isPointer by &-ing with bitScan and bitPointer. 509 // The result includes in its higher bits the bits for subsequent words 510 // described by the same bitmap byte. 511 // 512 // nosplit because it is used during write barriers and must not be preempted. 513 //go:nosplit 514 func (h heapBits) bits() uint32 { 515 // The (shift & 31) eliminates a test and conditional branch 516 // from the generated code. 517 return uint32(*h.bitp) >> (h.shift & 31) 518 } 519 520 // morePointers reports whether this word and all remaining words in this object 521 // are scalars. 522 // h must not describe the second word of the object. 523 func (h heapBits) morePointers() bool { 524 return h.bits()&bitScan != 0 525 } 526 527 // isPointer reports whether the heap bits describe a pointer word. 528 // 529 // nosplit because it is used during write barriers and must not be preempted. 530 //go:nosplit 531 func (h heapBits) isPointer() bool { 532 return h.bits()&bitPointer != 0 533 } 534 535 // isCheckmarked reports whether the heap bits have the checkmarked bit set. 536 // It must be told how large the object at h is, because the encoding of the 537 // checkmark bit varies by size. 538 // h must describe the initial word of the object. 539 func (h heapBits) isCheckmarked(size uintptr) bool { 540 if size == sys.PtrSize { 541 return (*h.bitp>>h.shift)&bitPointer != 0 542 } 543 // All multiword objects are 2-word aligned, 544 // so we know that the initial word's 2-bit pair 545 // and the second word's 2-bit pair are in the 546 // same heap bitmap byte, *h.bitp. 547 return (*h.bitp>>(heapBitsShift+h.shift))&bitScan != 0 548 } 549 550 // setCheckmarked sets the checkmarked bit. 551 // It must be told how large the object at h is, because the encoding of the 552 // checkmark bit varies by size. 553 // h must describe the initial word of the object. 554 func (h heapBits) setCheckmarked(size uintptr) { 555 if size == sys.PtrSize { 556 atomic.Or8(h.bitp, bitPointer<<h.shift) 557 return 558 } 559 atomic.Or8(h.bitp, bitScan<<(heapBitsShift+h.shift)) 560 } 561 562 // bulkBarrierPreWrite executes a write barrier 563 // for every pointer slot in the memory range [src, src+size), 564 // using pointer/scalar information from [dst, dst+size). 565 // This executes the write barriers necessary before a memmove. 566 // src, dst, and size must be pointer-aligned. 567 // The range [dst, dst+size) must lie within a single object. 568 // It does not perform the actual writes. 569 // 570 // As a special case, src == 0 indicates that this is being used for a 571 // memclr. bulkBarrierPreWrite will pass 0 for the src of each write 572 // barrier. 573 // 574 // Callers should call bulkBarrierPreWrite immediately before 575 // calling memmove(dst, src, size). This function is marked nosplit 576 // to avoid being preempted; the GC must not stop the goroutine 577 // between the memmove and the execution of the barriers. 578 // The caller is also responsible for cgo pointer checks if this 579 // may be writing Go pointers into non-Go memory. 580 // 581 // The pointer bitmap is not maintained for allocations containing 582 // no pointers at all; any caller of bulkBarrierPreWrite must first 583 // make sure the underlying allocation contains pointers, usually 584 // by checking typ.kind&kindNoPointers. 585 // 586 // Callers must perform cgo checks if writeBarrier.cgo. 587 // 588 //go:nosplit 589 func bulkBarrierPreWrite(dst, src, size uintptr) { 590 if (dst|src|size)&(sys.PtrSize-1) != 0 { 591 throw("bulkBarrierPreWrite: unaligned arguments") 592 } 593 if !writeBarrier.needed { 594 return 595 } 596 if s := spanOf(dst); s == nil { 597 // If dst is a global, use the data or BSS bitmaps to 598 // execute write barriers. 599 for _, datap := range activeModules() { 600 if datap.data <= dst && dst < datap.edata { 601 bulkBarrierBitmap(dst, src, size, dst-datap.data, datap.gcdatamask.bytedata) 602 return 603 } 604 } 605 for _, datap := range activeModules() { 606 if datap.bss <= dst && dst < datap.ebss { 607 bulkBarrierBitmap(dst, src, size, dst-datap.bss, datap.gcbssmask.bytedata) 608 return 609 } 610 } 611 return 612 } else if s.state != mSpanInUse || dst < s.base() || s.limit <= dst { 613 // dst was heap memory at some point, but isn't now. 614 // It can't be a global. It must be either our stack, 615 // or in the case of direct channel sends, it could be 616 // another stack. Either way, no need for barriers. 617 // This will also catch if dst is in a freed span, 618 // though that should never have. 619 return 620 } 621 622 buf := &getg().m.p.ptr().wbBuf 623 h := heapBitsForAddr(dst) 624 if src == 0 { 625 for i := uintptr(0); i < size; i += sys.PtrSize { 626 if h.isPointer() { 627 dstx := (*uintptr)(unsafe.Pointer(dst + i)) 628 if !buf.putFast(*dstx, 0) { 629 wbBufFlush(nil, 0) 630 } 631 } 632 h = h.next() 633 } 634 } else { 635 for i := uintptr(0); i < size; i += sys.PtrSize { 636 if h.isPointer() { 637 dstx := (*uintptr)(unsafe.Pointer(dst + i)) 638 srcx := (*uintptr)(unsafe.Pointer(src + i)) 639 if !buf.putFast(*dstx, *srcx) { 640 wbBufFlush(nil, 0) 641 } 642 } 643 h = h.next() 644 } 645 } 646 } 647 648 // bulkBarrierPreWriteSrcOnly is like bulkBarrierPreWrite but 649 // does not execute write barriers for [dst, dst+size). 650 // 651 // In addition to the requirements of bulkBarrierPreWrite 652 // callers need to ensure [dst, dst+size) is zeroed. 653 // 654 // This is used for special cases where e.g. dst was just 655 // created and zeroed with malloc. 656 //go:nosplit 657 func bulkBarrierPreWriteSrcOnly(dst, src, size uintptr) { 658 if (dst|src|size)&(sys.PtrSize-1) != 0 { 659 throw("bulkBarrierPreWrite: unaligned arguments") 660 } 661 if !writeBarrier.needed { 662 return 663 } 664 buf := &getg().m.p.ptr().wbBuf 665 h := heapBitsForAddr(dst) 666 for i := uintptr(0); i < size; i += sys.PtrSize { 667 if h.isPointer() { 668 srcx := (*uintptr)(unsafe.Pointer(src + i)) 669 if !buf.putFast(0, *srcx) { 670 wbBufFlush(nil, 0) 671 } 672 } 673 h = h.next() 674 } 675 } 676 677 // bulkBarrierBitmap executes write barriers for copying from [src, 678 // src+size) to [dst, dst+size) using a 1-bit pointer bitmap. src is 679 // assumed to start maskOffset bytes into the data covered by the 680 // bitmap in bits (which may not be a multiple of 8). 681 // 682 // This is used by bulkBarrierPreWrite for writes to data and BSS. 683 // 684 //go:nosplit 685 func bulkBarrierBitmap(dst, src, size, maskOffset uintptr, bits *uint8) { 686 word := maskOffset / sys.PtrSize 687 bits = addb(bits, word/8) 688 mask := uint8(1) << (word % 8) 689 690 buf := &getg().m.p.ptr().wbBuf 691 for i := uintptr(0); i < size; i += sys.PtrSize { 692 if mask == 0 { 693 bits = addb(bits, 1) 694 if *bits == 0 { 695 // Skip 8 words. 696 i += 7 * sys.PtrSize 697 continue 698 } 699 mask = 1 700 } 701 if *bits&mask != 0 { 702 dstx := (*uintptr)(unsafe.Pointer(dst + i)) 703 if src == 0 { 704 if !buf.putFast(*dstx, 0) { 705 wbBufFlush(nil, 0) 706 } 707 } else { 708 srcx := (*uintptr)(unsafe.Pointer(src + i)) 709 if !buf.putFast(*dstx, *srcx) { 710 wbBufFlush(nil, 0) 711 } 712 } 713 } 714 mask <<= 1 715 } 716 } 717 718 // typeBitsBulkBarrier executes a write barrier for every 719 // pointer that would be copied from [src, src+size) to [dst, 720 // dst+size) by a memmove using the type bitmap to locate those 721 // pointer slots. 722 // 723 // The type typ must correspond exactly to [src, src+size) and [dst, dst+size). 724 // dst, src, and size must be pointer-aligned. 725 // The type typ must have a plain bitmap, not a GC program. 726 // The only use of this function is in channel sends, and the 727 // 64 kB channel element limit takes care of this for us. 728 // 729 // Must not be preempted because it typically runs right before memmove, 730 // and the GC must observe them as an atomic action. 731 // 732 // Callers must perform cgo checks if writeBarrier.cgo. 733 // 734 //go:nosplit 735 func typeBitsBulkBarrier(typ *_type, dst, src, size uintptr) { 736 if typ == nil { 737 throw("runtime: typeBitsBulkBarrier without type") 738 } 739 if typ.size != size { 740 println("runtime: typeBitsBulkBarrier with type ", typ.string(), " of size ", typ.size, " but memory size", size) 741 throw("runtime: invalid typeBitsBulkBarrier") 742 } 743 if typ.kind&kindGCProg != 0 { 744 println("runtime: typeBitsBulkBarrier with type ", typ.string(), " with GC prog") 745 throw("runtime: invalid typeBitsBulkBarrier") 746 } 747 if !writeBarrier.needed { 748 return 749 } 750 ptrmask := typ.gcdata 751 buf := &getg().m.p.ptr().wbBuf 752 var bits uint32 753 for i := uintptr(0); i < typ.ptrdata; i += sys.PtrSize { 754 if i&(sys.PtrSize*8-1) == 0 { 755 bits = uint32(*ptrmask) 756 ptrmask = addb(ptrmask, 1) 757 } else { 758 bits = bits >> 1 759 } 760 if bits&1 != 0 { 761 dstx := (*uintptr)(unsafe.Pointer(dst + i)) 762 srcx := (*uintptr)(unsafe.Pointer(src + i)) 763 if !buf.putFast(*dstx, *srcx) { 764 wbBufFlush(nil, 0) 765 } 766 } 767 } 768 } 769 770 // The methods operating on spans all require that h has been returned 771 // by heapBitsForSpan and that size, n, total are the span layout description 772 // returned by the mspan's layout method. 773 // If total > size*n, it means that there is extra leftover memory in the span, 774 // usually due to rounding. 775 // 776 // TODO(rsc): Perhaps introduce a different heapBitsSpan type. 777 778 // initSpan initializes the heap bitmap for a span. 779 // It clears all checkmark bits. 780 // If this is a span of pointer-sized objects, it initializes all 781 // words to pointer/scan. 782 // Otherwise, it initializes all words to scalar/dead. 783 func (h heapBits) initSpan(s *mspan) { 784 size, n, total := s.layout() 785 786 // Init the markbit structures 787 s.freeindex = 0 788 s.allocCache = ^uint64(0) // all 1s indicating all free. 789 s.nelems = n 790 s.allocBits = nil 791 s.gcmarkBits = nil 792 s.gcmarkBits = newMarkBits(s.nelems) 793 s.allocBits = newAllocBits(s.nelems) 794 795 // Clear bits corresponding to objects. 796 nw := total / sys.PtrSize 797 if nw%wordsPerBitmapByte != 0 { 798 throw("initSpan: unaligned length") 799 } 800 if h.shift != 0 { 801 throw("initSpan: unaligned base") 802 } 803 for nw > 0 { 804 hNext, anw := h.forwardOrBoundary(nw) 805 nbyte := anw / wordsPerBitmapByte 806 if sys.PtrSize == 8 && size == sys.PtrSize { 807 bitp := h.bitp 808 for i := uintptr(0); i < nbyte; i++ { 809 *bitp = bitPointerAll | bitScanAll 810 bitp = add1(bitp) 811 } 812 } else { 813 memclrNoHeapPointers(unsafe.Pointer(h.bitp), nbyte) 814 } 815 h = hNext 816 nw -= anw 817 } 818 } 819 820 // initCheckmarkSpan initializes a span for being checkmarked. 821 // It clears the checkmark bits, which are set to 1 in normal operation. 822 func (h heapBits) initCheckmarkSpan(size, n, total uintptr) { 823 // The ptrSize == 8 is a compile-time constant false on 32-bit and eliminates this code entirely. 824 if sys.PtrSize == 8 && size == sys.PtrSize { 825 // Checkmark bit is type bit, bottom bit of every 2-bit entry. 826 // Only possible on 64-bit system, since minimum size is 8. 827 // Must clear type bit (checkmark bit) of every word. 828 // The type bit is the lower of every two-bit pair. 829 for i := uintptr(0); i < n; i += wordsPerBitmapByte { 830 *h.bitp &^= bitPointerAll 831 h = h.forward(wordsPerBitmapByte) 832 } 833 return 834 } 835 for i := uintptr(0); i < n; i++ { 836 *h.bitp &^= bitScan << (heapBitsShift + h.shift) 837 h = h.forward(size / sys.PtrSize) 838 } 839 } 840 841 // clearCheckmarkSpan undoes all the checkmarking in a span. 842 // The actual checkmark bits are ignored, so the only work to do 843 // is to fix the pointer bits. (Pointer bits are ignored by scanobject 844 // but consulted by typedmemmove.) 845 func (h heapBits) clearCheckmarkSpan(size, n, total uintptr) { 846 // The ptrSize == 8 is a compile-time constant false on 32-bit and eliminates this code entirely. 847 if sys.PtrSize == 8 && size == sys.PtrSize { 848 // Checkmark bit is type bit, bottom bit of every 2-bit entry. 849 // Only possible on 64-bit system, since minimum size is 8. 850 // Must clear type bit (checkmark bit) of every word. 851 // The type bit is the lower of every two-bit pair. 852 for i := uintptr(0); i < n; i += wordsPerBitmapByte { 853 *h.bitp |= bitPointerAll 854 h = h.forward(wordsPerBitmapByte) 855 } 856 } 857 } 858 859 // oneBitCount is indexed by byte and produces the 860 // number of 1 bits in that byte. For example 128 has 1 bit set 861 // and oneBitCount[128] will holds 1. 862 var oneBitCount = [256]uint8{ 863 0, 1, 1, 2, 1, 2, 2, 3, 864 1, 2, 2, 3, 2, 3, 3, 4, 865 1, 2, 2, 3, 2, 3, 3, 4, 866 2, 3, 3, 4, 3, 4, 4, 5, 867 1, 2, 2, 3, 2, 3, 3, 4, 868 2, 3, 3, 4, 3, 4, 4, 5, 869 2, 3, 3, 4, 3, 4, 4, 5, 870 3, 4, 4, 5, 4, 5, 5, 6, 871 1, 2, 2, 3, 2, 3, 3, 4, 872 2, 3, 3, 4, 3, 4, 4, 5, 873 2, 3, 3, 4, 3, 4, 4, 5, 874 3, 4, 4, 5, 4, 5, 5, 6, 875 2, 3, 3, 4, 3, 4, 4, 5, 876 3, 4, 4, 5, 4, 5, 5, 6, 877 3, 4, 4, 5, 4, 5, 5, 6, 878 4, 5, 5, 6, 5, 6, 6, 7, 879 1, 2, 2, 3, 2, 3, 3, 4, 880 2, 3, 3, 4, 3, 4, 4, 5, 881 2, 3, 3, 4, 3, 4, 4, 5, 882 3, 4, 4, 5, 4, 5, 5, 6, 883 2, 3, 3, 4, 3, 4, 4, 5, 884 3, 4, 4, 5, 4, 5, 5, 6, 885 3, 4, 4, 5, 4, 5, 5, 6, 886 4, 5, 5, 6, 5, 6, 6, 7, 887 2, 3, 3, 4, 3, 4, 4, 5, 888 3, 4, 4, 5, 4, 5, 5, 6, 889 3, 4, 4, 5, 4, 5, 5, 6, 890 4, 5, 5, 6, 5, 6, 6, 7, 891 3, 4, 4, 5, 4, 5, 5, 6, 892 4, 5, 5, 6, 5, 6, 6, 7, 893 4, 5, 5, 6, 5, 6, 6, 7, 894 5, 6, 6, 7, 6, 7, 7, 8} 895 896 // countAlloc returns the number of objects allocated in span s by 897 // scanning the allocation bitmap. 898 // TODO:(rlh) Use popcount intrinsic. 899 func (s *mspan) countAlloc() int { 900 count := 0 901 maxIndex := s.nelems / 8 902 for i := uintptr(0); i < maxIndex; i++ { 903 mrkBits := *s.gcmarkBits.bytep(i) 904 count += int(oneBitCount[mrkBits]) 905 } 906 if bitsInLastByte := s.nelems % 8; bitsInLastByte != 0 { 907 mrkBits := *s.gcmarkBits.bytep(maxIndex) 908 mask := uint8((1 << bitsInLastByte) - 1) 909 bits := mrkBits & mask 910 count += int(oneBitCount[bits]) 911 } 912 return count 913 } 914 915 // heapBitsSetType records that the new allocation [x, x+size) 916 // holds in [x, x+dataSize) one or more values of type typ. 917 // (The number of values is given by dataSize / typ.size.) 918 // If dataSize < size, the fragment [x+dataSize, x+size) is 919 // recorded as non-pointer data. 920 // It is known that the type has pointers somewhere; 921 // malloc does not call heapBitsSetType when there are no pointers, 922 // because all free objects are marked as noscan during 923 // heapBitsSweepSpan. 924 // 925 // There can only be one allocation from a given span active at a time, 926 // and the bitmap for a span always falls on byte boundaries, 927 // so there are no write-write races for access to the heap bitmap. 928 // Hence, heapBitsSetType can access the bitmap without atomics. 929 // 930 // There can be read-write races between heapBitsSetType and things 931 // that read the heap bitmap like scanobject. However, since 932 // heapBitsSetType is only used for objects that have not yet been 933 // made reachable, readers will ignore bits being modified by this 934 // function. This does mean this function cannot transiently modify 935 // bits that belong to neighboring objects. Also, on weakly-ordered 936 // machines, callers must execute a store/store (publication) barrier 937 // between calling this function and making the object reachable. 938 func heapBitsSetType(x, size, dataSize uintptr, typ *_type) { 939 const doubleCheck = false // slow but helpful; enable to test modifications to this code 940 941 // dataSize is always size rounded up to the next malloc size class, 942 // except in the case of allocating a defer block, in which case 943 // size is sizeof(_defer{}) (at least 6 words) and dataSize may be 944 // arbitrarily larger. 945 // 946 // The checks for size == sys.PtrSize and size == 2*sys.PtrSize can therefore 947 // assume that dataSize == size without checking it explicitly. 948 949 if sys.PtrSize == 8 && size == sys.PtrSize { 950 // It's one word and it has pointers, it must be a pointer. 951 // Since all allocated one-word objects are pointers 952 // (non-pointers are aggregated into tinySize allocations), 953 // initSpan sets the pointer bits for us. Nothing to do here. 954 if doubleCheck { 955 h := heapBitsForAddr(x) 956 if !h.isPointer() { 957 throw("heapBitsSetType: pointer bit missing") 958 } 959 if !h.morePointers() { 960 throw("heapBitsSetType: scan bit missing") 961 } 962 } 963 return 964 } 965 966 h := heapBitsForAddr(x) 967 ptrmask := typ.gcdata // start of 1-bit pointer mask (or GC program, handled below) 968 969 // Heap bitmap bits for 2-word object are only 4 bits, 970 // so also shared with objects next to it. 971 // This is called out as a special case primarily for 32-bit systems, 972 // so that on 32-bit systems the code below can assume all objects 973 // are 4-word aligned (because they're all 16-byte aligned). 974 if size == 2*sys.PtrSize { 975 if typ.size == sys.PtrSize { 976 // We're allocating a block big enough to hold two pointers. 977 // On 64-bit, that means the actual object must be two pointers, 978 // or else we'd have used the one-pointer-sized block. 979 // On 32-bit, however, this is the 8-byte block, the smallest one. 980 // So it could be that we're allocating one pointer and this was 981 // just the smallest block available. Distinguish by checking dataSize. 982 // (In general the number of instances of typ being allocated is 983 // dataSize/typ.size.) 984 if sys.PtrSize == 4 && dataSize == sys.PtrSize { 985 // 1 pointer object. On 32-bit machines clear the bit for the 986 // unused second word. 987 *h.bitp &^= (bitPointer | bitScan | ((bitPointer | bitScan) << heapBitsShift)) << h.shift 988 *h.bitp |= (bitPointer | bitScan) << h.shift 989 } else { 990 // 2-element slice of pointer. 991 *h.bitp |= (bitPointer | bitScan | bitPointer<<heapBitsShift) << h.shift 992 } 993 return 994 } 995 // Otherwise typ.size must be 2*sys.PtrSize, 996 // and typ.kind&kindGCProg == 0. 997 if doubleCheck { 998 if typ.size != 2*sys.PtrSize || typ.kind&kindGCProg != 0 { 999 print("runtime: heapBitsSetType size=", size, " but typ.size=", typ.size, " gcprog=", typ.kind&kindGCProg != 0, "\n") 1000 throw("heapBitsSetType") 1001 } 1002 } 1003 b := uint32(*ptrmask) 1004 hb := (b & 3) | bitScan 1005 // bitPointer == 1, bitScan is 1 << 4, heapBitsShift is 1. 1006 // 110011 is shifted h.shift and complemented. 1007 // This clears out the bits that are about to be 1008 // ored into *h.hbitp in the next instructions. 1009 *h.bitp &^= (bitPointer | bitScan | ((bitPointer | bitScan) << heapBitsShift)) << h.shift 1010 *h.bitp |= uint8(hb << h.shift) 1011 return 1012 } 1013 1014 // Copy from 1-bit ptrmask into 2-bit bitmap. 1015 // The basic approach is to use a single uintptr as a bit buffer, 1016 // alternating between reloading the buffer and writing bitmap bytes. 1017 // In general, one load can supply two bitmap byte writes. 1018 // This is a lot of lines of code, but it compiles into relatively few 1019 // machine instructions. 1020 1021 outOfPlace := false 1022 if arenaIndex(x+size-1) != arenaIdx(h.arena) || (doubleCheck && fastrand()%2 == 0) { 1023 // This object spans heap arenas, so the bitmap may be 1024 // discontiguous. Unroll it into the object instead 1025 // and then copy it out. 1026 // 1027 // In doubleCheck mode, we randomly do this anyway to 1028 // stress test the bitmap copying path. 1029 outOfPlace = true 1030 h.bitp = (*uint8)(unsafe.Pointer(x)) 1031 h.last = nil 1032 } 1033 1034 var ( 1035 // Ptrmask input. 1036 p *byte // last ptrmask byte read 1037 b uintptr // ptrmask bits already loaded 1038 nb uintptr // number of bits in b at next read 1039 endp *byte // final ptrmask byte to read (then repeat) 1040 endnb uintptr // number of valid bits in *endp 1041 pbits uintptr // alternate source of bits 1042 1043 // Heap bitmap output. 1044 w uintptr // words processed 1045 nw uintptr // number of words to process 1046 hbitp *byte // next heap bitmap byte to write 1047 hb uintptr // bits being prepared for *hbitp 1048 ) 1049 1050 hbitp = h.bitp 1051 1052 // Handle GC program. Delayed until this part of the code 1053 // so that we can use the same double-checking mechanism 1054 // as the 1-bit case. Nothing above could have encountered 1055 // GC programs: the cases were all too small. 1056 if typ.kind&kindGCProg != 0 { 1057 heapBitsSetTypeGCProg(h, typ.ptrdata, typ.size, dataSize, size, addb(typ.gcdata, 4)) 1058 if doubleCheck { 1059 // Double-check the heap bits written by GC program 1060 // by running the GC program to create a 1-bit pointer mask 1061 // and then jumping to the double-check code below. 1062 // This doesn't catch bugs shared between the 1-bit and 4-bit 1063 // GC program execution, but it does catch mistakes specific 1064 // to just one of those and bugs in heapBitsSetTypeGCProg's 1065 // implementation of arrays. 1066 lock(&debugPtrmask.lock) 1067 if debugPtrmask.data == nil { 1068 debugPtrmask.data = (*byte)(persistentalloc(1<<20, 1, &memstats.other_sys)) 1069 } 1070 ptrmask = debugPtrmask.data 1071 runGCProg(addb(typ.gcdata, 4), nil, ptrmask, 1) 1072 } 1073 goto Phase4 1074 } 1075 1076 // Note about sizes: 1077 // 1078 // typ.size is the number of words in the object, 1079 // and typ.ptrdata is the number of words in the prefix 1080 // of the object that contains pointers. That is, the final 1081 // typ.size - typ.ptrdata words contain no pointers. 1082 // This allows optimization of a common pattern where 1083 // an object has a small header followed by a large scalar 1084 // buffer. If we know the pointers are over, we don't have 1085 // to scan the buffer's heap bitmap at all. 1086 // The 1-bit ptrmasks are sized to contain only bits for 1087 // the typ.ptrdata prefix, zero padded out to a full byte 1088 // of bitmap. This code sets nw (below) so that heap bitmap 1089 // bits are only written for the typ.ptrdata prefix; if there is 1090 // more room in the allocated object, the next heap bitmap 1091 // entry is a 00, indicating that there are no more pointers 1092 // to scan. So only the ptrmask for the ptrdata bytes is needed. 1093 // 1094 // Replicated copies are not as nice: if there is an array of 1095 // objects with scalar tails, all but the last tail does have to 1096 // be initialized, because there is no way to say "skip forward". 1097 // However, because of the possibility of a repeated type with 1098 // size not a multiple of 4 pointers (one heap bitmap byte), 1099 // the code already must handle the last ptrmask byte specially 1100 // by treating it as containing only the bits for endnb pointers, 1101 // where endnb <= 4. We represent large scalar tails that must 1102 // be expanded in the replication by setting endnb larger than 4. 1103 // This will have the effect of reading many bits out of b, 1104 // but once the real bits are shifted out, b will supply as many 1105 // zero bits as we try to read, which is exactly what we need. 1106 1107 p = ptrmask 1108 if typ.size < dataSize { 1109 // Filling in bits for an array of typ. 1110 // Set up for repetition of ptrmask during main loop. 1111 // Note that ptrmask describes only a prefix of 1112 const maxBits = sys.PtrSize*8 - 7 1113 if typ.ptrdata/sys.PtrSize <= maxBits { 1114 // Entire ptrmask fits in uintptr with room for a byte fragment. 1115 // Load into pbits and never read from ptrmask again. 1116 // This is especially important when the ptrmask has 1117 // fewer than 8 bits in it; otherwise the reload in the middle 1118 // of the Phase 2 loop would itself need to loop to gather 1119 // at least 8 bits. 1120 1121 // Accumulate ptrmask into b. 1122 // ptrmask is sized to describe only typ.ptrdata, but we record 1123 // it as describing typ.size bytes, since all the high bits are zero. 1124 nb = typ.ptrdata / sys.PtrSize 1125 for i := uintptr(0); i < nb; i += 8 { 1126 b |= uintptr(*p) << i 1127 p = add1(p) 1128 } 1129 nb = typ.size / sys.PtrSize 1130 1131 // Replicate ptrmask to fill entire pbits uintptr. 1132 // Doubling and truncating is fewer steps than 1133 // iterating by nb each time. (nb could be 1.) 1134 // Since we loaded typ.ptrdata/sys.PtrSize bits 1135 // but are pretending to have typ.size/sys.PtrSize, 1136 // there might be no replication necessary/possible. 1137 pbits = b 1138 endnb = nb 1139 if nb+nb <= maxBits { 1140 for endnb <= sys.PtrSize*8 { 1141 pbits |= pbits << endnb 1142 endnb += endnb 1143 } 1144 // Truncate to a multiple of original ptrmask. 1145 // Because nb+nb <= maxBits, nb fits in a byte. 1146 // Byte division is cheaper than uintptr division. 1147 endnb = uintptr(maxBits/byte(nb)) * nb 1148 pbits &= 1<<endnb - 1 1149 b = pbits 1150 nb = endnb 1151 } 1152 1153 // Clear p and endp as sentinel for using pbits. 1154 // Checked during Phase 2 loop. 1155 p = nil 1156 endp = nil 1157 } else { 1158 // Ptrmask is larger. Read it multiple times. 1159 n := (typ.ptrdata/sys.PtrSize+7)/8 - 1 1160 endp = addb(ptrmask, n) 1161 endnb = typ.size/sys.PtrSize - n*8 1162 } 1163 } 1164 if p != nil { 1165 b = uintptr(*p) 1166 p = add1(p) 1167 nb = 8 1168 } 1169 1170 if typ.size == dataSize { 1171 // Single entry: can stop once we reach the non-pointer data. 1172 nw = typ.ptrdata / sys.PtrSize 1173 } else { 1174 // Repeated instances of typ in an array. 1175 // Have to process first N-1 entries in full, but can stop 1176 // once we reach the non-pointer data in the final entry. 1177 nw = ((dataSize/typ.size-1)*typ.size + typ.ptrdata) / sys.PtrSize 1178 } 1179 if nw == 0 { 1180 // No pointers! Caller was supposed to check. 1181 println("runtime: invalid type ", typ.string()) 1182 throw("heapBitsSetType: called with non-pointer type") 1183 return 1184 } 1185 if nw < 2 { 1186 // Must write at least 2 words, because the "no scan" 1187 // encoding doesn't take effect until the third word. 1188 nw = 2 1189 } 1190 1191 // Phase 1: Special case for leading byte (shift==0) or half-byte (shift==2). 1192 // The leading byte is special because it contains the bits for word 1, 1193 // which does not have the scan bit set. 1194 // The leading half-byte is special because it's a half a byte, 1195 // so we have to be careful with the bits already there. 1196 switch { 1197 default: 1198 throw("heapBitsSetType: unexpected shift") 1199 1200 case h.shift == 0: 1201 // Ptrmask and heap bitmap are aligned. 1202 // Handle first byte of bitmap specially. 1203 // 1204 // The first byte we write out covers the first four 1205 // words of the object. The scan/dead bit on the first 1206 // word must be set to scan since there are pointers 1207 // somewhere in the object. The scan/dead bit on the 1208 // second word is the checkmark, so we don't set it. 1209 // In all following words, we set the scan/dead 1210 // appropriately to indicate that the object contains 1211 // to the next 2-bit entry in the bitmap. 1212 // 1213 // TODO: It doesn't matter if we set the checkmark, so 1214 // maybe this case isn't needed any more. 1215 hb = b & bitPointerAll 1216 hb |= bitScan | bitScan<<(2*heapBitsShift) | bitScan<<(3*heapBitsShift) 1217 if w += 4; w >= nw { 1218 goto Phase3 1219 } 1220 *hbitp = uint8(hb) 1221 hbitp = add1(hbitp) 1222 b >>= 4 1223 nb -= 4 1224 1225 case sys.PtrSize == 8 && h.shift == 2: 1226 // Ptrmask and heap bitmap are misaligned. 1227 // The bits for the first two words are in a byte shared 1228 // with another object, so we must be careful with the bits 1229 // already there. 1230 // We took care of 1-word and 2-word objects above, 1231 // so this is at least a 6-word object. 1232 hb = (b & (bitPointer | bitPointer<<heapBitsShift)) << (2 * heapBitsShift) 1233 // This is not noscan, so set the scan bit in the 1234 // first word. 1235 hb |= bitScan << (2 * heapBitsShift) 1236 b >>= 2 1237 nb -= 2 1238 // Note: no bitScan for second word because that's 1239 // the checkmark. 1240 *hbitp &^= uint8((bitPointer | bitScan | (bitPointer << heapBitsShift)) << (2 * heapBitsShift)) 1241 *hbitp |= uint8(hb) 1242 hbitp = add1(hbitp) 1243 if w += 2; w >= nw { 1244 // We know that there is more data, because we handled 2-word objects above. 1245 // This must be at least a 6-word object. If we're out of pointer words, 1246 // mark no scan in next bitmap byte and finish. 1247 hb = 0 1248 w += 4 1249 goto Phase3 1250 } 1251 } 1252 1253 // Phase 2: Full bytes in bitmap, up to but not including write to last byte (full or partial) in bitmap. 1254 // The loop computes the bits for that last write but does not execute the write; 1255 // it leaves the bits in hb for processing by phase 3. 1256 // To avoid repeated adjustment of nb, we subtract out the 4 bits we're going to 1257 // use in the first half of the loop right now, and then we only adjust nb explicitly 1258 // if the 8 bits used by each iteration isn't balanced by 8 bits loaded mid-loop. 1259 nb -= 4 1260 for { 1261 // Emit bitmap byte. 1262 // b has at least nb+4 bits, with one exception: 1263 // if w+4 >= nw, then b has only nw-w bits, 1264 // but we'll stop at the break and then truncate 1265 // appropriately in Phase 3. 1266 hb = b & bitPointerAll 1267 hb |= bitScanAll 1268 if w += 4; w >= nw { 1269 break 1270 } 1271 *hbitp = uint8(hb) 1272 hbitp = add1(hbitp) 1273 b >>= 4 1274 1275 // Load more bits. b has nb right now. 1276 if p != endp { 1277 // Fast path: keep reading from ptrmask. 1278 // nb unmodified: we just loaded 8 bits, 1279 // and the next iteration will consume 8 bits, 1280 // leaving us with the same nb the next time we're here. 1281 if nb < 8 { 1282 b |= uintptr(*p) << nb 1283 p = add1(p) 1284 } else { 1285 // Reduce the number of bits in b. 1286 // This is important if we skipped 1287 // over a scalar tail, since nb could 1288 // be larger than the bit width of b. 1289 nb -= 8 1290 } 1291 } else if p == nil { 1292 // Almost as fast path: track bit count and refill from pbits. 1293 // For short repetitions. 1294 if nb < 8 { 1295 b |= pbits << nb 1296 nb += endnb 1297 } 1298 nb -= 8 // for next iteration 1299 } else { 1300 // Slow path: reached end of ptrmask. 1301 // Process final partial byte and rewind to start. 1302 b |= uintptr(*p) << nb 1303 nb += endnb 1304 if nb < 8 { 1305 b |= uintptr(*ptrmask) << nb 1306 p = add1(ptrmask) 1307 } else { 1308 nb -= 8 1309 p = ptrmask 1310 } 1311 } 1312 1313 // Emit bitmap byte. 1314 hb = b & bitPointerAll 1315 hb |= bitScanAll 1316 if w += 4; w >= nw { 1317 break 1318 } 1319 *hbitp = uint8(hb) 1320 hbitp = add1(hbitp) 1321 b >>= 4 1322 } 1323 1324 Phase3: 1325 // Phase 3: Write last byte or partial byte and zero the rest of the bitmap entries. 1326 if w > nw { 1327 // Counting the 4 entries in hb not yet written to memory, 1328 // there are more entries than possible pointer slots. 1329 // Discard the excess entries (can't be more than 3). 1330 mask := uintptr(1)<<(4-(w-nw)) - 1 1331 hb &= mask | mask<<4 // apply mask to both pointer bits and scan bits 1332 } 1333 1334 // Change nw from counting possibly-pointer words to total words in allocation. 1335 nw = size / sys.PtrSize 1336 1337 // Write whole bitmap bytes. 1338 // The first is hb, the rest are zero. 1339 if w <= nw { 1340 *hbitp = uint8(hb) 1341 hbitp = add1(hbitp) 1342 hb = 0 // for possible final half-byte below 1343 for w += 4; w <= nw; w += 4 { 1344 *hbitp = 0 1345 hbitp = add1(hbitp) 1346 } 1347 } 1348 1349 // Write final partial bitmap byte if any. 1350 // We know w > nw, or else we'd still be in the loop above. 1351 // It can be bigger only due to the 4 entries in hb that it counts. 1352 // If w == nw+4 then there's nothing left to do: we wrote all nw entries 1353 // and can discard the 4 sitting in hb. 1354 // But if w == nw+2, we need to write first two in hb. 1355 // The byte is shared with the next object, so be careful with 1356 // existing bits. 1357 if w == nw+2 { 1358 *hbitp = *hbitp&^(bitPointer|bitScan|(bitPointer|bitScan)<<heapBitsShift) | uint8(hb) 1359 } 1360 1361 Phase4: 1362 // Phase 4: Copy unrolled bitmap to per-arena bitmaps, if necessary. 1363 if outOfPlace { 1364 // TODO: We could probably make this faster by 1365 // handling [x+dataSize, x+size) specially. 1366 h := heapBitsForAddr(x) 1367 // cnw is the number of heap words, or bit pairs 1368 // remaining (like nw above). 1369 cnw := size / sys.PtrSize 1370 src := (*uint8)(unsafe.Pointer(x)) 1371 // We know the first and last byte of the bitmap are 1372 // not the same, but it's still possible for small 1373 // objects span arenas, so it may share bitmap bytes 1374 // with neighboring objects. 1375 // 1376 // Handle the first byte specially if it's shared. See 1377 // Phase 1 for why this is the only special case we need. 1378 if doubleCheck { 1379 if !(h.shift == 0 || (sys.PtrSize == 8 && h.shift == 2)) { 1380 print("x=", x, " size=", size, " cnw=", h.shift, "\n") 1381 throw("bad start shift") 1382 } 1383 } 1384 if sys.PtrSize == 8 && h.shift == 2 { 1385 *h.bitp = *h.bitp&^((bitPointer|bitScan|(bitPointer|bitScan)<<heapBitsShift)<<(2*heapBitsShift)) | *src 1386 h = h.next().next() 1387 cnw -= 2 1388 src = addb(src, 1) 1389 } 1390 // We're now byte aligned. Copy out to per-arena 1391 // bitmaps until the last byte (which may again be 1392 // partial). 1393 for cnw >= 4 { 1394 // This loop processes four words at a time, 1395 // so round cnw down accordingly. 1396 hNext, words := h.forwardOrBoundary(cnw / 4 * 4) 1397 1398 // n is the number of bitmap bytes to copy. 1399 n := words / 4 1400 memmove(unsafe.Pointer(h.bitp), unsafe.Pointer(src), n) 1401 cnw -= words 1402 h = hNext 1403 src = addb(src, n) 1404 } 1405 if doubleCheck && h.shift != 0 { 1406 print("cnw=", cnw, " h.shift=", h.shift, "\n") 1407 throw("bad shift after block copy") 1408 } 1409 // Handle the last byte if it's shared. 1410 if cnw == 2 { 1411 *h.bitp = *h.bitp&^(bitPointer|bitScan|(bitPointer|bitScan)<<heapBitsShift) | *src 1412 src = addb(src, 1) 1413 h = h.next().next() 1414 } 1415 if doubleCheck { 1416 if uintptr(unsafe.Pointer(src)) > x+size { 1417 throw("copy exceeded object size") 1418 } 1419 if !(cnw == 0 || cnw == 2) { 1420 print("x=", x, " size=", size, " cnw=", cnw, "\n") 1421 throw("bad number of remaining words") 1422 } 1423 // Set up hbitp so doubleCheck code below can check it. 1424 hbitp = h.bitp 1425 } 1426 // Zero the object where we wrote the bitmap. 1427 memclrNoHeapPointers(unsafe.Pointer(x), uintptr(unsafe.Pointer(src))-x) 1428 } 1429 1430 // Double check the whole bitmap. 1431 if doubleCheck { 1432 // x+size may not point to the heap, so back up one 1433 // word and then call next(). 1434 end := heapBitsForAddr(x + size - sys.PtrSize).next() 1435 endAI := arenaIdx(end.arena) 1436 if !outOfPlace && (end.bitp == nil || (end.shift == 0 && end.bitp == &mheap_.arenas[endAI.l1()][endAI.l2()].bitmap[0])) { 1437 // The unrolling code above walks hbitp just 1438 // past the bitmap without moving to the next 1439 // arena. Synthesize this for end.bitp. 1440 end.arena-- 1441 endAI = arenaIdx(end.arena) 1442 end.bitp = addb(&mheap_.arenas[endAI.l1()][endAI.l2()].bitmap[0], heapArenaBitmapBytes) 1443 end.last = nil 1444 } 1445 if typ.kind&kindGCProg == 0 && (hbitp != end.bitp || (w == nw+2) != (end.shift == 2)) { 1446 println("ended at wrong bitmap byte for", typ.string(), "x", dataSize/typ.size) 1447 print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n") 1448 print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n") 1449 h0 := heapBitsForAddr(x) 1450 print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n") 1451 print("ended at hbitp=", hbitp, " but next starts at bitp=", end.bitp, " shift=", end.shift, "\n") 1452 throw("bad heapBitsSetType") 1453 } 1454 1455 // Double-check that bits to be written were written correctly. 1456 // Does not check that other bits were not written, unfortunately. 1457 h := heapBitsForAddr(x) 1458 nptr := typ.ptrdata / sys.PtrSize 1459 ndata := typ.size / sys.PtrSize 1460 count := dataSize / typ.size 1461 totalptr := ((count-1)*typ.size + typ.ptrdata) / sys.PtrSize 1462 for i := uintptr(0); i < size/sys.PtrSize; i++ { 1463 j := i % ndata 1464 var have, want uint8 1465 have = (*h.bitp >> h.shift) & (bitPointer | bitScan) 1466 if i >= totalptr { 1467 want = 0 // deadmarker 1468 if typ.kind&kindGCProg != 0 && i < (totalptr+3)/4*4 { 1469 want = bitScan 1470 } 1471 } else { 1472 if j < nptr && (*addb(ptrmask, j/8)>>(j%8))&1 != 0 { 1473 want |= bitPointer 1474 } 1475 if i != 1 { 1476 want |= bitScan 1477 } else { 1478 have &^= bitScan 1479 } 1480 } 1481 if have != want { 1482 println("mismatch writing bits for", typ.string(), "x", dataSize/typ.size) 1483 print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n") 1484 print("kindGCProg=", typ.kind&kindGCProg != 0, " outOfPlace=", outOfPlace, "\n") 1485 print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n") 1486 h0 := heapBitsForAddr(x) 1487 print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n") 1488 print("current bits h.bitp=", h.bitp, " h.shift=", h.shift, " *h.bitp=", hex(*h.bitp), "\n") 1489 print("ptrmask=", ptrmask, " p=", p, " endp=", endp, " endnb=", endnb, " pbits=", hex(pbits), " b=", hex(b), " nb=", nb, "\n") 1490 println("at word", i, "offset", i*sys.PtrSize, "have", hex(have), "want", hex(want)) 1491 if typ.kind&kindGCProg != 0 { 1492 println("GC program:") 1493 dumpGCProg(addb(typ.gcdata, 4)) 1494 } 1495 throw("bad heapBitsSetType") 1496 } 1497 h = h.next() 1498 } 1499 if ptrmask == debugPtrmask.data { 1500 unlock(&debugPtrmask.lock) 1501 } 1502 } 1503 } 1504 1505 var debugPtrmask struct { 1506 lock mutex 1507 data *byte 1508 } 1509 1510 // heapBitsSetTypeGCProg implements heapBitsSetType using a GC program. 1511 // progSize is the size of the memory described by the program. 1512 // elemSize is the size of the element that the GC program describes (a prefix of). 1513 // dataSize is the total size of the intended data, a multiple of elemSize. 1514 // allocSize is the total size of the allocated memory. 1515 // 1516 // GC programs are only used for large allocations. 1517 // heapBitsSetType requires that allocSize is a multiple of 4 words, 1518 // so that the relevant bitmap bytes are not shared with surrounding 1519 // objects. 1520 func heapBitsSetTypeGCProg(h heapBits, progSize, elemSize, dataSize, allocSize uintptr, prog *byte) { 1521 if sys.PtrSize == 8 && allocSize%(4*sys.PtrSize) != 0 { 1522 // Alignment will be wrong. 1523 throw("heapBitsSetTypeGCProg: small allocation") 1524 } 1525 var totalBits uintptr 1526 if elemSize == dataSize { 1527 totalBits = runGCProg(prog, nil, h.bitp, 2) 1528 if totalBits*sys.PtrSize != progSize { 1529 println("runtime: heapBitsSetTypeGCProg: total bits", totalBits, "but progSize", progSize) 1530 throw("heapBitsSetTypeGCProg: unexpected bit count") 1531 } 1532 } else { 1533 count := dataSize / elemSize 1534 1535 // Piece together program trailer to run after prog that does: 1536 // literal(0) 1537 // repeat(1, elemSize-progSize-1) // zeros to fill element size 1538 // repeat(elemSize, count-1) // repeat that element for count 1539 // This zero-pads the data remaining in the first element and then 1540 // repeats that first element to fill the array. 1541 var trailer [40]byte // 3 varints (max 10 each) + some bytes 1542 i := 0 1543 if n := elemSize/sys.PtrSize - progSize/sys.PtrSize; n > 0 { 1544 // literal(0) 1545 trailer[i] = 0x01 1546 i++ 1547 trailer[i] = 0 1548 i++ 1549 if n > 1 { 1550 // repeat(1, n-1) 1551 trailer[i] = 0x81 1552 i++ 1553 n-- 1554 for ; n >= 0x80; n >>= 7 { 1555 trailer[i] = byte(n | 0x80) 1556 i++ 1557 } 1558 trailer[i] = byte(n) 1559 i++ 1560 } 1561 } 1562 // repeat(elemSize/ptrSize, count-1) 1563 trailer[i] = 0x80 1564 i++ 1565 n := elemSize / sys.PtrSize 1566 for ; n >= 0x80; n >>= 7 { 1567 trailer[i] = byte(n | 0x80) 1568 i++ 1569 } 1570 trailer[i] = byte(n) 1571 i++ 1572 n = count - 1 1573 for ; n >= 0x80; n >>= 7 { 1574 trailer[i] = byte(n | 0x80) 1575 i++ 1576 } 1577 trailer[i] = byte(n) 1578 i++ 1579 trailer[i] = 0 1580 i++ 1581 1582 runGCProg(prog, &trailer[0], h.bitp, 2) 1583 1584 // Even though we filled in the full array just now, 1585 // record that we only filled in up to the ptrdata of the 1586 // last element. This will cause the code below to 1587 // memclr the dead section of the final array element, 1588 // so that scanobject can stop early in the final element. 1589 totalBits = (elemSize*(count-1) + progSize) / sys.PtrSize 1590 } 1591 endProg := unsafe.Pointer(addb(h.bitp, (totalBits+3)/4)) 1592 endAlloc := unsafe.Pointer(addb(h.bitp, allocSize/sys.PtrSize/wordsPerBitmapByte)) 1593 memclrNoHeapPointers(endProg, uintptr(endAlloc)-uintptr(endProg)) 1594 } 1595 1596 // progToPointerMask returns the 1-bit pointer mask output by the GC program prog. 1597 // size the size of the region described by prog, in bytes. 1598 // The resulting bitvector will have no more than size/sys.PtrSize bits. 1599 func progToPointerMask(prog *byte, size uintptr) bitvector { 1600 n := (size/sys.PtrSize + 7) / 8 1601 x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1] 1602 x[len(x)-1] = 0xa1 // overflow check sentinel 1603 n = runGCProg(prog, nil, &x[0], 1) 1604 if x[len(x)-1] != 0xa1 { 1605 throw("progToPointerMask: overflow") 1606 } 1607 return bitvector{int32(n), &x[0]} 1608 } 1609 1610 // Packed GC pointer bitmaps, aka GC programs. 1611 // 1612 // For large types containing arrays, the type information has a 1613 // natural repetition that can be encoded to save space in the 1614 // binary and in the memory representation of the type information. 1615 // 1616 // The encoding is a simple Lempel-Ziv style bytecode machine 1617 // with the following instructions: 1618 // 1619 // 00000000: stop 1620 // 0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes 1621 // 10000000 n c: repeat the previous n bits c times; n, c are varints 1622 // 1nnnnnnn c: repeat the previous n bits c times; c is a varint 1623 1624 // runGCProg executes the GC program prog, and then trailer if non-nil, 1625 // writing to dst with entries of the given size. 1626 // If size == 1, dst is a 1-bit pointer mask laid out moving forward from dst. 1627 // If size == 2, dst is the 2-bit heap bitmap, and writes move backward 1628 // starting at dst (because the heap bitmap does). In this case, the caller guarantees 1629 // that only whole bytes in dst need to be written. 1630 // 1631 // runGCProg returns the number of 1- or 2-bit entries written to memory. 1632 func runGCProg(prog, trailer, dst *byte, size int) uintptr { 1633 dstStart := dst 1634 1635 // Bits waiting to be written to memory. 1636 var bits uintptr 1637 var nbits uintptr 1638 1639 p := prog 1640 Run: 1641 for { 1642 // Flush accumulated full bytes. 1643 // The rest of the loop assumes that nbits <= 7. 1644 for ; nbits >= 8; nbits -= 8 { 1645 if size == 1 { 1646 *dst = uint8(bits) 1647 dst = add1(dst) 1648 bits >>= 8 1649 } else { 1650 v := bits&bitPointerAll | bitScanAll 1651 *dst = uint8(v) 1652 dst = add1(dst) 1653 bits >>= 4 1654 v = bits&bitPointerAll | bitScanAll 1655 *dst = uint8(v) 1656 dst = add1(dst) 1657 bits >>= 4 1658 } 1659 } 1660 1661 // Process one instruction. 1662 inst := uintptr(*p) 1663 p = add1(p) 1664 n := inst & 0x7F 1665 if inst&0x80 == 0 { 1666 // Literal bits; n == 0 means end of program. 1667 if n == 0 { 1668 // Program is over; continue in trailer if present. 1669 if trailer != nil { 1670 //println("trailer") 1671 p = trailer 1672 trailer = nil 1673 continue 1674 } 1675 //println("done") 1676 break Run 1677 } 1678 //println("lit", n, dst) 1679 nbyte := n / 8 1680 for i := uintptr(0); i < nbyte; i++ { 1681 bits |= uintptr(*p) << nbits 1682 p = add1(p) 1683 if size == 1 { 1684 *dst = uint8(bits) 1685 dst = add1(dst) 1686 bits >>= 8 1687 } else { 1688 v := bits&0xf | bitScanAll 1689 *dst = uint8(v) 1690 dst = add1(dst) 1691 bits >>= 4 1692 v = bits&0xf | bitScanAll 1693 *dst = uint8(v) 1694 dst = add1(dst) 1695 bits >>= 4 1696 } 1697 } 1698 if n %= 8; n > 0 { 1699 bits |= uintptr(*p) << nbits 1700 p = add1(p) 1701 nbits += n 1702 } 1703 continue Run 1704 } 1705 1706 // Repeat. If n == 0, it is encoded in a varint in the next bytes. 1707 if n == 0 { 1708 for off := uint(0); ; off += 7 { 1709 x := uintptr(*p) 1710 p = add1(p) 1711 n |= (x & 0x7F) << off 1712 if x&0x80 == 0 { 1713 break 1714 } 1715 } 1716 } 1717 1718 // Count is encoded in a varint in the next bytes. 1719 c := uintptr(0) 1720 for off := uint(0); ; off += 7 { 1721 x := uintptr(*p) 1722 p = add1(p) 1723 c |= (x & 0x7F) << off 1724 if x&0x80 == 0 { 1725 break 1726 } 1727 } 1728 c *= n // now total number of bits to copy 1729 1730 // If the number of bits being repeated is small, load them 1731 // into a register and use that register for the entire loop 1732 // instead of repeatedly reading from memory. 1733 // Handling fewer than 8 bits here makes the general loop simpler. 1734 // The cutoff is sys.PtrSize*8 - 7 to guarantee that when we add 1735 // the pattern to a bit buffer holding at most 7 bits (a partial byte) 1736 // it will not overflow. 1737 src := dst 1738 const maxBits = sys.PtrSize*8 - 7 1739 if n <= maxBits { 1740 // Start with bits in output buffer. 1741 pattern := bits 1742 npattern := nbits 1743 1744 // If we need more bits, fetch them from memory. 1745 if size == 1 { 1746 src = subtract1(src) 1747 for npattern < n { 1748 pattern <<= 8 1749 pattern |= uintptr(*src) 1750 src = subtract1(src) 1751 npattern += 8 1752 } 1753 } else { 1754 src = subtract1(src) 1755 for npattern < n { 1756 pattern <<= 4 1757 pattern |= uintptr(*src) & 0xf 1758 src = subtract1(src) 1759 npattern += 4 1760 } 1761 } 1762 1763 // We started with the whole bit output buffer, 1764 // and then we loaded bits from whole bytes. 1765 // Either way, we might now have too many instead of too few. 1766 // Discard the extra. 1767 if npattern > n { 1768 pattern >>= npattern - n 1769 npattern = n 1770 } 1771 1772 // Replicate pattern to at most maxBits. 1773 if npattern == 1 { 1774 // One bit being repeated. 1775 // If the bit is 1, make the pattern all 1s. 1776 // If the bit is 0, the pattern is already all 0s, 1777 // but we can claim that the number of bits 1778 // in the word is equal to the number we need (c), 1779 // because right shift of bits will zero fill. 1780 if pattern == 1 { 1781 pattern = 1<<maxBits - 1 1782 npattern = maxBits 1783 } else { 1784 npattern = c 1785 } 1786 } else { 1787 b := pattern 1788 nb := npattern 1789 if nb+nb <= maxBits { 1790 // Double pattern until the whole uintptr is filled. 1791 for nb <= sys.PtrSize*8 { 1792 b |= b << nb 1793 nb += nb 1794 } 1795 // Trim away incomplete copy of original pattern in high bits. 1796 // TODO(rsc): Replace with table lookup or loop on systems without divide? 1797 nb = maxBits / npattern * npattern 1798 b &= 1<<nb - 1 1799 pattern = b 1800 npattern = nb 1801 } 1802 } 1803 1804 // Add pattern to bit buffer and flush bit buffer, c/npattern times. 1805 // Since pattern contains >8 bits, there will be full bytes to flush 1806 // on each iteration. 1807 for ; c >= npattern; c -= npattern { 1808 bits |= pattern << nbits 1809 nbits += npattern 1810 if size == 1 { 1811 for nbits >= 8 { 1812 *dst = uint8(bits) 1813 dst = add1(dst) 1814 bits >>= 8 1815 nbits -= 8 1816 } 1817 } else { 1818 for nbits >= 4 { 1819 *dst = uint8(bits&0xf | bitScanAll) 1820 dst = add1(dst) 1821 bits >>= 4 1822 nbits -= 4 1823 } 1824 } 1825 } 1826 1827 // Add final fragment to bit buffer. 1828 if c > 0 { 1829 pattern &= 1<<c - 1 1830 bits |= pattern << nbits 1831 nbits += c 1832 } 1833 continue Run 1834 } 1835 1836 // Repeat; n too large to fit in a register. 1837 // Since nbits <= 7, we know the first few bytes of repeated data 1838 // are already written to memory. 1839 off := n - nbits // n > nbits because n > maxBits and nbits <= 7 1840 if size == 1 { 1841 // Leading src fragment. 1842 src = subtractb(src, (off+7)/8) 1843 if frag := off & 7; frag != 0 { 1844 bits |= uintptr(*src) >> (8 - frag) << nbits 1845 src = add1(src) 1846 nbits += frag 1847 c -= frag 1848 } 1849 // Main loop: load one byte, write another. 1850 // The bits are rotating through the bit buffer. 1851 for i := c / 8; i > 0; i-- { 1852 bits |= uintptr(*src) << nbits 1853 src = add1(src) 1854 *dst = uint8(bits) 1855 dst = add1(dst) 1856 bits >>= 8 1857 } 1858 // Final src fragment. 1859 if c %= 8; c > 0 { 1860 bits |= (uintptr(*src) & (1<<c - 1)) << nbits 1861 nbits += c 1862 } 1863 } else { 1864 // Leading src fragment. 1865 src = subtractb(src, (off+3)/4) 1866 if frag := off & 3; frag != 0 { 1867 bits |= (uintptr(*src) & 0xf) >> (4 - frag) << nbits 1868 src = add1(src) 1869 nbits += frag 1870 c -= frag 1871 } 1872 // Main loop: load one byte, write another. 1873 // The bits are rotating through the bit buffer. 1874 for i := c / 4; i > 0; i-- { 1875 bits |= (uintptr(*src) & 0xf) << nbits 1876 src = add1(src) 1877 *dst = uint8(bits&0xf | bitScanAll) 1878 dst = add1(dst) 1879 bits >>= 4 1880 } 1881 // Final src fragment. 1882 if c %= 4; c > 0 { 1883 bits |= (uintptr(*src) & (1<<c - 1)) << nbits 1884 nbits += c 1885 } 1886 } 1887 } 1888 1889 // Write any final bits out, using full-byte writes, even for the final byte. 1890 var totalBits uintptr 1891 if size == 1 { 1892 totalBits = (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*8 + nbits 1893 nbits += -nbits & 7 1894 for ; nbits > 0; nbits -= 8 { 1895 *dst = uint8(bits) 1896 dst = add1(dst) 1897 bits >>= 8 1898 } 1899 } else { 1900 totalBits = (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*4 + nbits 1901 nbits += -nbits & 3 1902 for ; nbits > 0; nbits -= 4 { 1903 v := bits&0xf | bitScanAll 1904 *dst = uint8(v) 1905 dst = add1(dst) 1906 bits >>= 4 1907 } 1908 } 1909 return totalBits 1910 } 1911 1912 // materializeGCProg allocates space for the (1-bit) pointer bitmask 1913 // for an object of size ptrdata. Then it fills that space with the 1914 // pointer bitmask specified by the program prog. 1915 // The bitmask starts at s.startAddr. 1916 // The result must be deallocated with dematerializeGCProg. 1917 func materializeGCProg(ptrdata uintptr, prog *byte) *mspan { 1918 s := mheap_.allocManual((ptrdata/(8*sys.PtrSize)+pageSize-1)/pageSize, &memstats.gc_sys) 1919 runGCProg(addb(prog, 4), nil, (*byte)(unsafe.Pointer(s.startAddr)), 1) 1920 return s 1921 } 1922 func dematerializeGCProg(s *mspan) { 1923 mheap_.freeManual(s, &memstats.gc_sys) 1924 } 1925 1926 func dumpGCProg(p *byte) { 1927 nptr := 0 1928 for { 1929 x := *p 1930 p = add1(p) 1931 if x == 0 { 1932 print("\t", nptr, " end\n") 1933 break 1934 } 1935 if x&0x80 == 0 { 1936 print("\t", nptr, " lit ", x, ":") 1937 n := int(x+7) / 8 1938 for i := 0; i < n; i++ { 1939 print(" ", hex(*p)) 1940 p = add1(p) 1941 } 1942 print("\n") 1943 nptr += int(x) 1944 } else { 1945 nbit := int(x &^ 0x80) 1946 if nbit == 0 { 1947 for nb := uint(0); ; nb += 7 { 1948 x := *p 1949 p = add1(p) 1950 nbit |= int(x&0x7f) << nb 1951 if x&0x80 == 0 { 1952 break 1953 } 1954 } 1955 } 1956 count := 0 1957 for nb := uint(0); ; nb += 7 { 1958 x := *p 1959 p = add1(p) 1960 count |= int(x&0x7f) << nb 1961 if x&0x80 == 0 { 1962 break 1963 } 1964 } 1965 print("\t", nptr, " repeat ", nbit, " × ", count, "\n") 1966 nptr += nbit * count 1967 } 1968 } 1969 } 1970 1971 // Testing. 1972 1973 func getgcmaskcb(frame *stkframe, ctxt unsafe.Pointer) bool { 1974 target := (*stkframe)(ctxt) 1975 if frame.sp <= target.sp && target.sp < frame.varp { 1976 *target = *frame 1977 return false 1978 } 1979 return true 1980 } 1981 1982 // gcbits returns the GC type info for x, for testing. 1983 // The result is the bitmap entries (0 or 1), one entry per byte. 1984 //go:linkname reflect_gcbits reflect.gcbits 1985 func reflect_gcbits(x interface{}) []byte { 1986 ret := getgcmask(x) 1987 typ := (*ptrtype)(unsafe.Pointer(efaceOf(&x)._type)).elem 1988 nptr := typ.ptrdata / sys.PtrSize 1989 for uintptr(len(ret)) > nptr && ret[len(ret)-1] == 0 { 1990 ret = ret[:len(ret)-1] 1991 } 1992 return ret 1993 } 1994 1995 // Returns GC type info for the pointer stored in ep for testing. 1996 // If ep points to the stack, only static live information will be returned 1997 // (i.e. not for objects which are only dynamically live stack objects). 1998 func getgcmask(ep interface{}) (mask []byte) { 1999 e := *efaceOf(&ep) 2000 p := e.data 2001 t := e._type 2002 // data or bss 2003 for _, datap := range activeModules() { 2004 // data 2005 if datap.data <= uintptr(p) && uintptr(p) < datap.edata { 2006 bitmap := datap.gcdatamask.bytedata 2007 n := (*ptrtype)(unsafe.Pointer(t)).elem.size 2008 mask = make([]byte, n/sys.PtrSize) 2009 for i := uintptr(0); i < n; i += sys.PtrSize { 2010 off := (uintptr(p) + i - datap.data) / sys.PtrSize 2011 mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 2012 } 2013 return 2014 } 2015 2016 // bss 2017 if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss { 2018 bitmap := datap.gcbssmask.bytedata 2019 n := (*ptrtype)(unsafe.Pointer(t)).elem.size 2020 mask = make([]byte, n/sys.PtrSize) 2021 for i := uintptr(0); i < n; i += sys.PtrSize { 2022 off := (uintptr(p) + i - datap.bss) / sys.PtrSize 2023 mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 2024 } 2025 return 2026 } 2027 } 2028 2029 // heap 2030 if base, s, _ := findObject(uintptr(p), 0, 0); base != 0 { 2031 hbits := heapBitsForAddr(base) 2032 n := s.elemsize 2033 mask = make([]byte, n/sys.PtrSize) 2034 for i := uintptr(0); i < n; i += sys.PtrSize { 2035 if hbits.isPointer() { 2036 mask[i/sys.PtrSize] = 1 2037 } 2038 if i != 1*sys.PtrSize && !hbits.morePointers() { 2039 mask = mask[:i/sys.PtrSize] 2040 break 2041 } 2042 hbits = hbits.next() 2043 } 2044 return 2045 } 2046 2047 // stack 2048 if _g_ := getg(); _g_.m.curg.stack.lo <= uintptr(p) && uintptr(p) < _g_.m.curg.stack.hi { 2049 var frame stkframe 2050 frame.sp = uintptr(p) 2051 _g_ := getg() 2052 gentraceback(_g_.m.curg.sched.pc, _g_.m.curg.sched.sp, 0, _g_.m.curg, 0, nil, 1000, getgcmaskcb, noescape(unsafe.Pointer(&frame)), 0) 2053 if frame.fn.valid() { 2054 locals, _, _ := getStackMap(&frame, nil, false) 2055 if locals.n == 0 { 2056 return 2057 } 2058 size := uintptr(locals.n) * sys.PtrSize 2059 n := (*ptrtype)(unsafe.Pointer(t)).elem.size 2060 mask = make([]byte, n/sys.PtrSize) 2061 for i := uintptr(0); i < n; i += sys.PtrSize { 2062 off := (uintptr(p) + i - frame.varp + size) / sys.PtrSize 2063 mask[i/sys.PtrSize] = locals.ptrbit(off) 2064 } 2065 } 2066 return 2067 } 2068 2069 // otherwise, not something the GC knows about. 2070 // possibly read-only data, like malloc(0). 2071 // must not have pointers 2072 return 2073 }