github.com/metaprov/modela-operator@v0.0.0-20240118193048-f378be8b74d2/manifests/modela-catalog/algorithms/regressors.yaml (about) 1 apiVersion: catalog.modela.ai/v1alpha1 2 kind: Algorithm 3 metadata: 4 labels: 5 app.kubernetes.io/part-of: modela 6 name: ada-boost-regressor 7 namespace: modela-catalog 8 spec: 9 frameworkName: scikit-learn 10 ranges: 11 - high: 500 12 low: 50 13 name: ada_n_estimators 14 type: int 15 - high: 1.0 16 log: true 17 low: 0.01 18 name: ada_learning_rate 19 type: float 20 tasks: 21 - regression 22 23 --- 24 apiVersion: catalog.modela.ai/v1alpha1 25 kind: Algorithm 26 metadata: 27 labels: 28 app.kubernetes.io/part-of: modela 29 name: decision-tree-regressor 30 namespace: modela-catalog 31 spec: 32 frameworkName: scikit-learn 33 ranges: 34 - choices: 35 - mse 36 - mae 37 name: dt_criterion 38 type: categorical 39 - choices: 40 - best 41 - random 42 name: dt_splitter 43 type: categorical 44 - high: 20 45 low: 2 46 name: dt_min_samples_split 47 type: int 48 - high: 20 49 low: 1 50 name: dt_min_samples_leaf 51 type: int 52 tasks: 53 - regression 54 55 --- 56 apiVersion: catalog.modela.ai/v1alpha1 57 kind: Algorithm 58 metadata: 59 labels: 60 app.kubernetes.io/part-of: modela 61 name: elasticnet-regressor 62 namespace: modela-catalog 63 spec: 64 frameworkName: scikit-learn 65 ranges: 66 - high: 100.0 67 log: true 68 low: 1.0e-05 69 name: en_alpha 70 type: float 71 - high: 1 72 log: true 73 low: 0.01 74 name: en_l1_ratio 75 type: float 76 tasks: 77 - regression 78 79 --- 80 apiVersion: catalog.modela.ai/v1alpha1 81 kind: Algorithm 82 metadata: 83 labels: 84 app.kubernetes.io/part-of: modela 85 name: extra-tree-regressor 86 namespace: modela-catalog 87 spec: 88 frameworkName: scikit-learn 89 ranges: 90 - high: 1.0 91 log: true 92 low: 0.1 93 name: et_max_features 94 type: float 95 - high: 20 96 low: 2 97 name: et_min_samples_split 98 type: int 99 - high: 20 100 low: 1 101 name: et_min_samples_leaf 102 type: int 103 tasks: 104 - regression 105 106 --- 107 apiVersion: catalog.modela.ai/v1alpha1 108 kind: Algorithm 109 metadata: 110 labels: 111 app.kubernetes.io/part-of: modela 112 name: gradient-boosting-regressor 113 namespace: modela-catalog 114 spec: 115 frameworkName: scikit-learn 116 ranges: 117 - high: 0.2 118 log: true 119 low: 0.001 120 name: gb_learning_rate 121 type: float 122 - high: 200 123 low: 100 124 name: gb_n_estimators 125 type: int 126 - high: 7 127 low: 2 128 name: gb_max_leaf_nodes 129 type: int 130 - high: 9 131 low: 1 132 name: gb_min_samples_leaf 133 type: int 134 - high: 10 135 low: 1 136 name: gb_max_depth 137 type: int 138 - high: 10 139 low: 2 140 name: gb_min_samples_split 141 type: int 142 tasks: 143 - regression 144 145 --- 146 apiVersion: catalog.modela.ai/v1alpha1 147 kind: Algorithm 148 metadata: 149 labels: 150 app.kubernetes.io/part-of: modela 151 name: hist-regressor 152 namespace: modela-catalog 153 spec: 154 frameworkName: scikit-learn 155 ranges: 156 - high: 0.2 157 log: true 158 low: 0.001 159 name: hist_learning_rate 160 type: float 161 - high: 2000 162 low: 100 163 name: hist_max_iter 164 type: int 165 - high: 7 166 low: 2 167 name: hist_max_leaf_nodes 168 type: int 169 - high: 9 170 low: 1 171 name: hist_min_samples_leaf 172 type: int 173 tasks: 174 - regression 175 176 --- 177 apiVersion: catalog.modela.ai/v1alpha1 178 kind: Algorithm 179 metadata: 180 labels: 181 app.kubernetes.io/part-of: modela 182 name: huber-regressor 183 namespace: modela-catalog 184 spec: 185 frameworkName: scikit-learn 186 ranges: [] 187 tasks: 188 - regression 189 190 --- 191 apiVersion: catalog.modela.ai/v1alpha1 192 kind: Algorithm 193 metadata: 194 labels: 195 app.kubernetes.io/part-of: modela 196 name: knn-regressor 197 namespace: modela-catalog 198 spec: 199 frameworkName: scikit-learn 200 ranges: 201 - high: 20 202 low: 1 203 name: knn_n_neighbors 204 type: int 205 - choices: 206 - uniform 207 - distance 208 name: knn_weights 209 type: categorical 210 tasks: 211 - regression 212 213 --- 214 apiVersion: catalog.modela.ai/v1alpha1 215 kind: Algorithm 216 metadata: 217 labels: 218 app.kubernetes.io/part-of: modela 219 name: lasso-regressor 220 namespace: modela-catalog 221 spec: 222 frameworkName: scikit-learn 223 ranges: 224 - choices: 225 - cyclic 226 - random 227 name: lasso_selection 228 type: categorical 229 tasks: 230 - regression 231 232 --- 233 apiVersion: catalog.modela.ai/v1alpha1 234 kind: Algorithm 235 metadata: 236 labels: 237 app.kubernetes.io/part-of: modela 238 name: lightgbm-regressor 239 namespace: modela-catalog 240 spec: 241 frameworkName: scikit-learn 242 ranges: 243 - choices: 244 - gbdt 245 - dart 246 name: lgbm_boosting_type 247 type: categorical 248 - high: 10 249 low: 1 250 name: lgbm_max_depth 251 type: int 252 - high: 1.0 253 log: true 254 low: 0.02 255 name: lgbm_learning_rate 256 type: float 257 - high: 1000 258 low: 50 259 name: lgbm_n_estimators 260 type: int 261 - high: 0.01 262 low: 0.001 263 name: lgbm_min_child_weight 264 type: float 265 - high: 30 266 low: 5 267 name: lgbm_min_child_samples 268 type: int 269 - high: 1 270 log: true 271 low: 0.01 272 name: lgbm_subsample 273 type: float 274 - high: 5 275 low: 0 276 name: lgbm_subsample_freq 277 type: int 278 - high: 1.0 279 log: true 280 low: 0.01 281 name: lgbm_colsample_bytree 282 type: float 283 - high: 1.0 284 log: true 285 low: 0.0 286 name: lgbm_reg_alpha 287 type: float 288 - high: 1.0 289 log: true 290 low: 0.0 291 name: lgbm_reg_lambda 292 type: float 293 tasks: 294 - regression 295 296 --- 297 apiVersion: catalog.modela.ai/v1alpha1 298 kind: Algorithm 299 metadata: 300 labels: 301 app.kubernetes.io/part-of: modela 302 name: linear-regression 303 namespace: modela-catalog 304 spec: 305 frameworkName: scikit-learn 306 ranges: 307 - choices: 308 - 'True' 309 - 'False' 310 name: lreg_fit_intercept 311 type: categorical 312 - choices: 313 - 'True' 314 - 'False' 315 name: lreg_copy_X 316 type: categorical 317 tasks: 318 - regression 319 320 --- 321 apiVersion: catalog.modela.ai/v1alpha1 322 kind: Algorithm 323 metadata: 324 labels: 325 app.kubernetes.io/part-of: modela 326 name: linear-svr 327 namespace: modela-catalog 328 spec: 329 frameworkName: scikit-learn 330 ranges: 331 - high: 32768 332 log: true 333 low: 0.03125 334 name: svr_C 335 type: float 336 - high: 5 337 low: 2 338 name: svr_degree 339 type: int 340 - high: 8 341 log: true 342 low: 3.0517578125e-05 343 name: svr_gamma 344 type: float 345 - high: 1 346 log: true 347 low: -1 348 name: svr_coef0 349 type: float 350 tasks: 351 - regression 352 353 --- 354 apiVersion: catalog.modela.ai/v1alpha1 355 kind: Algorithm 356 metadata: 357 labels: 358 app.kubernetes.io/part-of: modela 359 name: passive-aggressive-regressor 360 namespace: modela-catalog 361 spec: 362 frameworkName: scikit-learn 363 ranges: 364 - high: 10 365 log: true 366 low: 0.03125 367 name: pa_C 368 type: float 369 - choices: 370 - epsilon_insensitive 371 - squared_epsilon_insensitive 372 name: pa_loss 373 type: categorical 374 - choices: 375 - 'False' 376 - 'True' 377 name: pa_average 378 type: categorical 379 - high: 0.1 380 log: true 381 low: 1.0e-05 382 name: pa_tol 383 type: float 384 tasks: 385 - regression 386 387 --- 388 apiVersion: catalog.modela.ai/v1alpha1 389 kind: Algorithm 390 metadata: 391 labels: 392 app.kubernetes.io/part-of: modela 393 name: runsac-regressor 394 namespace: modela-catalog 395 spec: 396 frameworkName: scikit-learn 397 ranges: [] 398 tasks: 399 - regression 400 401 --- 402 apiVersion: catalog.modela.ai/v1alpha1 403 kind: Algorithm 404 metadata: 405 labels: 406 app.kubernetes.io/part-of: modela 407 name: random-forest-regressor 408 namespace: modela-catalog 409 spec: 410 frameworkName: scikit-learn 411 ranges: 412 - high: 2000 413 low: 200 414 name: rf_n_estimators 415 type: int 416 - high: 20 417 low: 2 418 name: rf_min_samples_split 419 type: int 420 - high: 1.0 421 log: true 422 low: 0.1 423 name: rf_max_features 424 type: float 425 - high: 20 426 low: 1 427 name: rf_min_samples_leaf 428 type: int 429 tasks: 430 - regression 431 432 --- 433 apiVersion: catalog.modela.ai/v1alpha1 434 kind: Algorithm 435 metadata: 436 labels: 437 app.kubernetes.io/part-of: modela 438 name: ridge-regressor 439 namespace: modela-catalog 440 spec: 441 frameworkName: scikit-learn 442 ranges: 443 - high: 10.0 444 log: true 445 low: 1.0e-05 446 name: ridge_alpha 447 type: float 448 - high: 0.1 449 log: true 450 low: 1.0e-05 451 name: ridge_tol 452 type: float 453 tasks: 454 - regression 455 456 --- 457 apiVersion: catalog.modela.ai/v1alpha1 458 kind: Algorithm 459 metadata: 460 labels: 461 app.kubernetes.io/part-of: modela 462 name: sgd-regressor 463 namespace: modela-catalog 464 spec: 465 frameworkName: scikit-learn 466 ranges: 467 - high: 0.1 468 log: true 469 low: 1.0e-07 470 name: sgd_alpha 471 type: float 472 - choices: 473 - squared_loss 474 - huber 475 - epsilon_insensitive 476 - squared_epsilon_insensitive 477 name: sgd_loss 478 type: categorical 479 - choices: 480 - l1 481 - l2 482 - elasticnet 483 name: sgd_penalty 484 type: categorical 485 - choices: 486 - optimal 487 - invscaling 488 - constant 489 name: sgd_learning_rate 490 type: categorical 491 - high: 1 492 log: true 493 low: 1.0e-09 494 name: sgd_l1_ratio 495 type: float 496 - high: 0.1 497 log: true 498 low: 1.0e-07 499 name: sgd_eta0 500 type: float 501 - high: 1 502 log: true 503 low: 1.0e-05 504 name: sgd_power_t 505 type: float 506 tasks: 507 - regression 508 509 --- 510 apiVersion: catalog.modela.ai/v1alpha1 511 kind: Algorithm 512 metadata: 513 labels: 514 app.kubernetes.io/part-of: modela 515 name: tailsen-regressor 516 namespace: modela-catalog 517 spec: 518 frameworkName: scikit-learn 519 ranges: [] 520 tasks: 521 - regression 522 523 --- 524 apiVersion: catalog.modela.ai/v1alpha1 525 kind: Algorithm 526 metadata: 527 labels: 528 app.kubernetes.io/part-of: modela 529 name: xgb-regressor 530 namespace: modela-catalog 531 spec: 532 frameworkName: xgboost 533 ranges: 534 - high: 1 535 log: true 536 low: 0 537 name: xgb_learning_rate 538 type: float 539 - high: 10 540 low: 1 541 name: xgb_max_depth 542 type: int 543 - high: 1 544 log: true 545 low: 0.5 546 name: xgb_subsample 547 type: float 548 - high: 0.8 549 low: 0.3 550 name: xgb_colsample_bytree 551 type: float 552 - high: 500 553 low: 50 554 name: xgb_n_estimators 555 type: int 556 - high: 0.1 557 log: true 558 low: 1.0e-07 559 name: xgb_alpha 560 type: float 561 tasks: 562 - regression