github.com/mh-cbon/go@v0.0.0-20160603070303-9e112a3fe4c0/src/net/http/server.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // HTTP server. See RFC 2616.
     6  
     7  package http
     8  
     9  import (
    10  	"bufio"
    11  	"bytes"
    12  	"context"
    13  	"crypto/tls"
    14  	"errors"
    15  	"fmt"
    16  	"io"
    17  	"io/ioutil"
    18  	"log"
    19  	"net"
    20  	"net/textproto"
    21  	"net/url"
    22  	"os"
    23  	"path"
    24  	"runtime"
    25  	"strconv"
    26  	"strings"
    27  	"sync"
    28  	"sync/atomic"
    29  	"time"
    30  
    31  	"golang.org/x/net/lex/httplex"
    32  )
    33  
    34  // Errors used by the HTTP server.
    35  var (
    36  	// ErrBodyNotAllowed is returned by ResponseWriter.Write calls
    37  	// when the HTTP method or response code does not permit a
    38  	// body.
    39  	ErrBodyNotAllowed = errors.New("http: request method or response status code does not allow body")
    40  
    41  	// ErrHijacked is returned by ResponseWriter.Write calls when
    42  	// the underlying connection has been hijacked using the
    43  	// Hijacker interfaced.
    44  	ErrHijacked = errors.New("http: connection has been hijacked")
    45  
    46  	// ErrContentLength is returned by ResponseWriter.Write calls
    47  	// when a Handler set a Content-Length response header with a
    48  	// declared size and then attempted to write more bytes than
    49  	// declared.
    50  	ErrContentLength = errors.New("http: wrote more than the declared Content-Length")
    51  
    52  	// Deprecated: ErrWriteAfterFlush is no longer used.
    53  	ErrWriteAfterFlush = errors.New("unused")
    54  )
    55  
    56  // A Handler responds to an HTTP request.
    57  //
    58  // ServeHTTP should write reply headers and data to the ResponseWriter
    59  // and then return. Returning signals that the request is finished; it
    60  // is not valid to use the ResponseWriter or read from the
    61  // Request.Body after or concurrently with the completion of the
    62  // ServeHTTP call.
    63  //
    64  // Depending on the HTTP client software, HTTP protocol version, and
    65  // any intermediaries between the client and the Go server, it may not
    66  // be possible to read from the Request.Body after writing to the
    67  // ResponseWriter. Cautious handlers should read the Request.Body
    68  // first, and then reply.
    69  //
    70  // Except for reading the body, handlers should not modify the
    71  // provided Request.
    72  //
    73  // If ServeHTTP panics, the server (the caller of ServeHTTP) assumes
    74  // that the effect of the panic was isolated to the active request.
    75  // It recovers the panic, logs a stack trace to the server error log,
    76  // and hangs up the connection.
    77  type Handler interface {
    78  	ServeHTTP(ResponseWriter, *Request)
    79  }
    80  
    81  // A ResponseWriter interface is used by an HTTP handler to
    82  // construct an HTTP response.
    83  //
    84  // A ResponseWriter may not be used after the Handler.ServeHTTP method
    85  // has returned.
    86  type ResponseWriter interface {
    87  	// Header returns the header map that will be sent by
    88  	// WriteHeader. Changing the header after a call to
    89  	// WriteHeader (or Write) has no effect unless the modified
    90  	// headers were declared as trailers by setting the
    91  	// "Trailer" header before the call to WriteHeader (see example).
    92  	// To suppress implicit response headers, set their value to nil.
    93  	Header() Header
    94  
    95  	// Write writes the data to the connection as part of an HTTP reply.
    96  	//
    97  	// If WriteHeader has not yet been called, Write calls
    98  	// WriteHeader(http.StatusOK) before writing the data. If the Header
    99  	// does not contain a Content-Type line, Write adds a Content-Type set
   100  	// to the result of passing the initial 512 bytes of written data to
   101  	// DetectContentType.
   102  	//
   103  	// Depending on the HTTP protocol version and the client, calling
   104  	// Write or WriteHeader may prevent future reads on the
   105  	// Request.Body. For HTTP/1.x requests, handlers should read any
   106  	// needed request body data before writing the response. Once the
   107  	// headers have been flushed (due to either an explicit Flusher.Flush
   108  	// call or writing enough data to trigger a flush), the request body
   109  	// may be unavailable. For HTTP/2 requests, the Go HTTP server permits
   110  	// handlers to continue to read the request body while concurrently
   111  	// writing the response. However, such behavior may not be supported
   112  	// by all HTTP/2 clients. Handlers should read before writing if
   113  	// possible to maximize compatibility.
   114  	Write([]byte) (int, error)
   115  
   116  	// WriteHeader sends an HTTP response header with status code.
   117  	// If WriteHeader is not called explicitly, the first call to Write
   118  	// will trigger an implicit WriteHeader(http.StatusOK).
   119  	// Thus explicit calls to WriteHeader are mainly used to
   120  	// send error codes.
   121  	WriteHeader(int)
   122  }
   123  
   124  // The Flusher interface is implemented by ResponseWriters that allow
   125  // an HTTP handler to flush buffered data to the client.
   126  //
   127  // The default HTTP/1.x and HTTP/2 ResponseWriter implementations
   128  // support Flusher, but ResponseWriter wrappers may not. Handlers
   129  // should always test for this ability at runtime.
   130  //
   131  // Note that even for ResponseWriters that support Flush,
   132  // if the client is connected through an HTTP proxy,
   133  // the buffered data may not reach the client until the response
   134  // completes.
   135  type Flusher interface {
   136  	// Flush sends any buffered data to the client.
   137  	Flush()
   138  }
   139  
   140  // The Hijacker interface is implemented by ResponseWriters that allow
   141  // an HTTP handler to take over the connection.
   142  //
   143  // The default ResponseWriter for HTTP/1.x connections supports
   144  // Hijacker, but HTTP/2 connections intentionally do not.
   145  // ResponseWriter wrappers may also not support Hijacker. Handlers
   146  // should always test for this ability at runtime.
   147  type Hijacker interface {
   148  	// Hijack lets the caller take over the connection.
   149  	// After a call to Hijack(), the HTTP server library
   150  	// will not do anything else with the connection.
   151  	//
   152  	// It becomes the caller's responsibility to manage
   153  	// and close the connection.
   154  	//
   155  	// The returned net.Conn may have read or write deadlines
   156  	// already set, depending on the configuration of the
   157  	// Server. It is the caller's responsibility to set
   158  	// or clear those deadlines as needed.
   159  	Hijack() (net.Conn, *bufio.ReadWriter, error)
   160  }
   161  
   162  // The CloseNotifier interface is implemented by ResponseWriters which
   163  // allow detecting when the underlying connection has gone away.
   164  //
   165  // This mechanism can be used to cancel long operations on the server
   166  // if the client has disconnected before the response is ready.
   167  type CloseNotifier interface {
   168  	// CloseNotify returns a channel that receives at most a
   169  	// single value (true) when the client connection has gone
   170  	// away.
   171  	//
   172  	// CloseNotify may wait to notify until Request.Body has been
   173  	// fully read.
   174  	//
   175  	// After the Handler has returned, there is no guarantee
   176  	// that the channel receives a value.
   177  	//
   178  	// If the protocol is HTTP/1.1 and CloseNotify is called while
   179  	// processing an idempotent request (such a GET) while
   180  	// HTTP/1.1 pipelining is in use, the arrival of a subsequent
   181  	// pipelined request may cause a value to be sent on the
   182  	// returned channel. In practice HTTP/1.1 pipelining is not
   183  	// enabled in browsers and not seen often in the wild. If this
   184  	// is a problem, use HTTP/2 or only use CloseNotify on methods
   185  	// such as POST.
   186  	CloseNotify() <-chan bool
   187  }
   188  
   189  var (
   190  	// ServerContextKey is a context key. It can be used in HTTP
   191  	// handlers with context.WithValue to access the server that
   192  	// started the handler. The associated value will be of
   193  	// type *Server.
   194  	ServerContextKey = &contextKey{"http-server"}
   195  
   196  	// LocalAddrContextKey is a context key. It can be used in
   197  	// HTTP handlers with context.WithValue to access the address
   198  	// the local address the connection arrived on.
   199  	// The associated value will be of type net.Addr.
   200  	LocalAddrContextKey = &contextKey{"local-addr"}
   201  )
   202  
   203  // A conn represents the server side of an HTTP connection.
   204  type conn struct {
   205  	// server is the server on which the connection arrived.
   206  	// Immutable; never nil.
   207  	server *Server
   208  
   209  	// rwc is the underlying network connection.
   210  	// This is never wrapped by other types and is the value given out
   211  	// to CloseNotifier callers. It is usually of type *net.TCPConn or
   212  	// *tls.Conn.
   213  	rwc net.Conn
   214  
   215  	// remoteAddr is rwc.RemoteAddr().String(). It is not populated synchronously
   216  	// inside the Listener's Accept goroutine, as some implementations block.
   217  	// It is populated immediately inside the (*conn).serve goroutine.
   218  	// This is the value of a Handler's (*Request).RemoteAddr.
   219  	remoteAddr string
   220  
   221  	// tlsState is the TLS connection state when using TLS.
   222  	// nil means not TLS.
   223  	tlsState *tls.ConnectionState
   224  
   225  	// werr is set to the first write error to rwc.
   226  	// It is set via checkConnErrorWriter{w}, where bufw writes.
   227  	werr error
   228  
   229  	// r is bufr's read source. It's a wrapper around rwc that provides
   230  	// io.LimitedReader-style limiting (while reading request headers)
   231  	// and functionality to support CloseNotifier. See *connReader docs.
   232  	r *connReader
   233  
   234  	// bufr reads from r.
   235  	// Users of bufr must hold mu.
   236  	bufr *bufio.Reader
   237  
   238  	// bufw writes to checkConnErrorWriter{c}, which populates werr on error.
   239  	bufw *bufio.Writer
   240  
   241  	// lastMethod is the method of the most recent request
   242  	// on this connection, if any.
   243  	lastMethod string
   244  
   245  	// mu guards hijackedv, use of bufr, (*response).closeNotifyCh.
   246  	mu sync.Mutex
   247  
   248  	// hijackedv is whether this connection has been hijacked
   249  	// by a Handler with the Hijacker interface.
   250  	// It is guarded by mu.
   251  	hijackedv bool
   252  }
   253  
   254  func (c *conn) hijacked() bool {
   255  	c.mu.Lock()
   256  	defer c.mu.Unlock()
   257  	return c.hijackedv
   258  }
   259  
   260  // c.mu must be held.
   261  func (c *conn) hijackLocked() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
   262  	if c.hijackedv {
   263  		return nil, nil, ErrHijacked
   264  	}
   265  	c.hijackedv = true
   266  	rwc = c.rwc
   267  	buf = bufio.NewReadWriter(c.bufr, bufio.NewWriter(rwc))
   268  	c.setState(rwc, StateHijacked)
   269  	return
   270  }
   271  
   272  // This should be >= 512 bytes for DetectContentType,
   273  // but otherwise it's somewhat arbitrary.
   274  const bufferBeforeChunkingSize = 2048
   275  
   276  // chunkWriter writes to a response's conn buffer, and is the writer
   277  // wrapped by the response.bufw buffered writer.
   278  //
   279  // chunkWriter also is responsible for finalizing the Header, including
   280  // conditionally setting the Content-Type and setting a Content-Length
   281  // in cases where the handler's final output is smaller than the buffer
   282  // size. It also conditionally adds chunk headers, when in chunking mode.
   283  //
   284  // See the comment above (*response).Write for the entire write flow.
   285  type chunkWriter struct {
   286  	res *response
   287  
   288  	// header is either nil or a deep clone of res.handlerHeader
   289  	// at the time of res.WriteHeader, if res.WriteHeader is
   290  	// called and extra buffering is being done to calculate
   291  	// Content-Type and/or Content-Length.
   292  	header Header
   293  
   294  	// wroteHeader tells whether the header's been written to "the
   295  	// wire" (or rather: w.conn.buf). this is unlike
   296  	// (*response).wroteHeader, which tells only whether it was
   297  	// logically written.
   298  	wroteHeader bool
   299  
   300  	// set by the writeHeader method:
   301  	chunking bool // using chunked transfer encoding for reply body
   302  }
   303  
   304  var (
   305  	crlf       = []byte("\r\n")
   306  	colonSpace = []byte(": ")
   307  )
   308  
   309  func (cw *chunkWriter) Write(p []byte) (n int, err error) {
   310  	if !cw.wroteHeader {
   311  		cw.writeHeader(p)
   312  	}
   313  	if cw.res.req.Method == "HEAD" {
   314  		// Eat writes.
   315  		return len(p), nil
   316  	}
   317  	if cw.chunking {
   318  		_, err = fmt.Fprintf(cw.res.conn.bufw, "%x\r\n", len(p))
   319  		if err != nil {
   320  			cw.res.conn.rwc.Close()
   321  			return
   322  		}
   323  	}
   324  	n, err = cw.res.conn.bufw.Write(p)
   325  	if cw.chunking && err == nil {
   326  		_, err = cw.res.conn.bufw.Write(crlf)
   327  	}
   328  	if err != nil {
   329  		cw.res.conn.rwc.Close()
   330  	}
   331  	return
   332  }
   333  
   334  func (cw *chunkWriter) flush() {
   335  	if !cw.wroteHeader {
   336  		cw.writeHeader(nil)
   337  	}
   338  	cw.res.conn.bufw.Flush()
   339  }
   340  
   341  func (cw *chunkWriter) close() {
   342  	if !cw.wroteHeader {
   343  		cw.writeHeader(nil)
   344  	}
   345  	if cw.chunking {
   346  		bw := cw.res.conn.bufw // conn's bufio writer
   347  		// zero chunk to mark EOF
   348  		bw.WriteString("0\r\n")
   349  		if len(cw.res.trailers) > 0 {
   350  			trailers := make(Header)
   351  			for _, h := range cw.res.trailers {
   352  				if vv := cw.res.handlerHeader[h]; len(vv) > 0 {
   353  					trailers[h] = vv
   354  				}
   355  			}
   356  			trailers.Write(bw) // the writer handles noting errors
   357  		}
   358  		// final blank line after the trailers (whether
   359  		// present or not)
   360  		bw.WriteString("\r\n")
   361  	}
   362  }
   363  
   364  // A response represents the server side of an HTTP response.
   365  type response struct {
   366  	conn             *conn
   367  	req              *Request // request for this response
   368  	reqBody          io.ReadCloser
   369  	cancelCtx        context.CancelFunc // when ServeHTTP exits
   370  	wroteHeader      bool               // reply header has been (logically) written
   371  	wroteContinue    bool               // 100 Continue response was written
   372  	wants10KeepAlive bool               // HTTP/1.0 w/ Connection "keep-alive"
   373  	wantsClose       bool               // HTTP request has Connection "close"
   374  
   375  	w  *bufio.Writer // buffers output in chunks to chunkWriter
   376  	cw chunkWriter
   377  
   378  	// handlerHeader is the Header that Handlers get access to,
   379  	// which may be retained and mutated even after WriteHeader.
   380  	// handlerHeader is copied into cw.header at WriteHeader
   381  	// time, and privately mutated thereafter.
   382  	handlerHeader Header
   383  	calledHeader  bool // handler accessed handlerHeader via Header
   384  
   385  	written       int64 // number of bytes written in body
   386  	contentLength int64 // explicitly-declared Content-Length; or -1
   387  	status        int   // status code passed to WriteHeader
   388  
   389  	// close connection after this reply.  set on request and
   390  	// updated after response from handler if there's a
   391  	// "Connection: keep-alive" response header and a
   392  	// Content-Length.
   393  	closeAfterReply bool
   394  
   395  	// requestBodyLimitHit is set by requestTooLarge when
   396  	// maxBytesReader hits its max size. It is checked in
   397  	// WriteHeader, to make sure we don't consume the
   398  	// remaining request body to try to advance to the next HTTP
   399  	// request. Instead, when this is set, we stop reading
   400  	// subsequent requests on this connection and stop reading
   401  	// input from it.
   402  	requestBodyLimitHit bool
   403  
   404  	// trailers are the headers to be sent after the handler
   405  	// finishes writing the body. This field is initialized from
   406  	// the Trailer response header when the response header is
   407  	// written.
   408  	trailers []string
   409  
   410  	handlerDone atomicBool // set true when the handler exits
   411  
   412  	// Buffers for Date and Content-Length
   413  	dateBuf [len(TimeFormat)]byte
   414  	clenBuf [10]byte
   415  
   416  	// closeNotifyCh is non-nil once CloseNotify is called.
   417  	// Guarded by conn.mu
   418  	closeNotifyCh <-chan bool
   419  }
   420  
   421  type atomicBool int32
   422  
   423  func (b *atomicBool) isSet() bool { return atomic.LoadInt32((*int32)(b)) != 0 }
   424  func (b *atomicBool) setTrue()    { atomic.StoreInt32((*int32)(b), 1) }
   425  
   426  // declareTrailer is called for each Trailer header when the
   427  // response header is written. It notes that a header will need to be
   428  // written in the trailers at the end of the response.
   429  func (w *response) declareTrailer(k string) {
   430  	k = CanonicalHeaderKey(k)
   431  	switch k {
   432  	case "Transfer-Encoding", "Content-Length", "Trailer":
   433  		// Forbidden by RFC 2616 14.40.
   434  		return
   435  	}
   436  	w.trailers = append(w.trailers, k)
   437  }
   438  
   439  // requestTooLarge is called by maxBytesReader when too much input has
   440  // been read from the client.
   441  func (w *response) requestTooLarge() {
   442  	w.closeAfterReply = true
   443  	w.requestBodyLimitHit = true
   444  	if !w.wroteHeader {
   445  		w.Header().Set("Connection", "close")
   446  	}
   447  }
   448  
   449  // needsSniff reports whether a Content-Type still needs to be sniffed.
   450  func (w *response) needsSniff() bool {
   451  	_, haveType := w.handlerHeader["Content-Type"]
   452  	return !w.cw.wroteHeader && !haveType && w.written < sniffLen
   453  }
   454  
   455  // writerOnly hides an io.Writer value's optional ReadFrom method
   456  // from io.Copy.
   457  type writerOnly struct {
   458  	io.Writer
   459  }
   460  
   461  func srcIsRegularFile(src io.Reader) (isRegular bool, err error) {
   462  	switch v := src.(type) {
   463  	case *os.File:
   464  		fi, err := v.Stat()
   465  		if err != nil {
   466  			return false, err
   467  		}
   468  		return fi.Mode().IsRegular(), nil
   469  	case *io.LimitedReader:
   470  		return srcIsRegularFile(v.R)
   471  	default:
   472  		return
   473  	}
   474  }
   475  
   476  // ReadFrom is here to optimize copying from an *os.File regular file
   477  // to a *net.TCPConn with sendfile.
   478  func (w *response) ReadFrom(src io.Reader) (n int64, err error) {
   479  	// Our underlying w.conn.rwc is usually a *TCPConn (with its
   480  	// own ReadFrom method). If not, or if our src isn't a regular
   481  	// file, just fall back to the normal copy method.
   482  	rf, ok := w.conn.rwc.(io.ReaderFrom)
   483  	regFile, err := srcIsRegularFile(src)
   484  	if err != nil {
   485  		return 0, err
   486  	}
   487  	if !ok || !regFile {
   488  		bufp := copyBufPool.Get().(*[]byte)
   489  		defer copyBufPool.Put(bufp)
   490  		return io.CopyBuffer(writerOnly{w}, src, *bufp)
   491  	}
   492  
   493  	// sendfile path:
   494  
   495  	if !w.wroteHeader {
   496  		w.WriteHeader(StatusOK)
   497  	}
   498  
   499  	if w.needsSniff() {
   500  		n0, err := io.Copy(writerOnly{w}, io.LimitReader(src, sniffLen))
   501  		n += n0
   502  		if err != nil {
   503  			return n, err
   504  		}
   505  	}
   506  
   507  	w.w.Flush()  // get rid of any previous writes
   508  	w.cw.flush() // make sure Header is written; flush data to rwc
   509  
   510  	// Now that cw has been flushed, its chunking field is guaranteed initialized.
   511  	if !w.cw.chunking && w.bodyAllowed() {
   512  		n0, err := rf.ReadFrom(src)
   513  		n += n0
   514  		w.written += n0
   515  		return n, err
   516  	}
   517  
   518  	n0, err := io.Copy(writerOnly{w}, src)
   519  	n += n0
   520  	return n, err
   521  }
   522  
   523  // debugServerConnections controls whether all server connections are wrapped
   524  // with a verbose logging wrapper.
   525  const debugServerConnections = false
   526  
   527  // Create new connection from rwc.
   528  func (srv *Server) newConn(rwc net.Conn) *conn {
   529  	c := &conn{
   530  		server: srv,
   531  		rwc:    rwc,
   532  	}
   533  	if debugServerConnections {
   534  		c.rwc = newLoggingConn("server", c.rwc)
   535  	}
   536  	return c
   537  }
   538  
   539  type readResult struct {
   540  	n   int
   541  	err error
   542  	b   byte // byte read, if n == 1
   543  }
   544  
   545  // connReader is the io.Reader wrapper used by *conn. It combines a
   546  // selectively-activated io.LimitedReader (to bound request header
   547  // read sizes) with support for selectively keeping an io.Reader.Read
   548  // call blocked in a background goroutine to wait for activity and
   549  // trigger a CloseNotifier channel.
   550  type connReader struct {
   551  	r      io.Reader
   552  	remain int64 // bytes remaining
   553  
   554  	// ch is non-nil if a background read is in progress.
   555  	// It is guarded by conn.mu.
   556  	ch chan readResult
   557  }
   558  
   559  func (cr *connReader) setReadLimit(remain int64) { cr.remain = remain }
   560  func (cr *connReader) setInfiniteReadLimit()     { cr.remain = maxInt64 }
   561  func (cr *connReader) hitReadLimit() bool        { return cr.remain <= 0 }
   562  
   563  func (cr *connReader) Read(p []byte) (n int, err error) {
   564  	if cr.hitReadLimit() {
   565  		return 0, io.EOF
   566  	}
   567  	if len(p) == 0 {
   568  		return
   569  	}
   570  	if int64(len(p)) > cr.remain {
   571  		p = p[:cr.remain]
   572  	}
   573  
   574  	// Is a background read (started by CloseNotifier) already in
   575  	// flight? If so, wait for it and use its result.
   576  	ch := cr.ch
   577  	if ch != nil {
   578  		cr.ch = nil
   579  		res := <-ch
   580  		if res.n == 1 {
   581  			p[0] = res.b
   582  			cr.remain -= 1
   583  		}
   584  		return res.n, res.err
   585  	}
   586  	n, err = cr.r.Read(p)
   587  	cr.remain -= int64(n)
   588  	return
   589  }
   590  
   591  func (cr *connReader) startBackgroundRead(onReadComplete func()) {
   592  	if cr.ch != nil {
   593  		// Background read already started.
   594  		return
   595  	}
   596  	cr.ch = make(chan readResult, 1)
   597  	go cr.closeNotifyAwaitActivityRead(cr.ch, onReadComplete)
   598  }
   599  
   600  func (cr *connReader) closeNotifyAwaitActivityRead(ch chan<- readResult, onReadComplete func()) {
   601  	var buf [1]byte
   602  	n, err := cr.r.Read(buf[:1])
   603  	onReadComplete()
   604  	ch <- readResult{n, err, buf[0]}
   605  }
   606  
   607  var (
   608  	bufioReaderPool   sync.Pool
   609  	bufioWriter2kPool sync.Pool
   610  	bufioWriter4kPool sync.Pool
   611  )
   612  
   613  var copyBufPool = sync.Pool{
   614  	New: func() interface{} {
   615  		b := make([]byte, 32*1024)
   616  		return &b
   617  	},
   618  }
   619  
   620  func bufioWriterPool(size int) *sync.Pool {
   621  	switch size {
   622  	case 2 << 10:
   623  		return &bufioWriter2kPool
   624  	case 4 << 10:
   625  		return &bufioWriter4kPool
   626  	}
   627  	return nil
   628  }
   629  
   630  func newBufioReader(r io.Reader) *bufio.Reader {
   631  	if v := bufioReaderPool.Get(); v != nil {
   632  		br := v.(*bufio.Reader)
   633  		br.Reset(r)
   634  		return br
   635  	}
   636  	// Note: if this reader size is every changed, update
   637  	// TestHandlerBodyClose's assumptions.
   638  	return bufio.NewReader(r)
   639  }
   640  
   641  func putBufioReader(br *bufio.Reader) {
   642  	br.Reset(nil)
   643  	bufioReaderPool.Put(br)
   644  }
   645  
   646  func newBufioWriterSize(w io.Writer, size int) *bufio.Writer {
   647  	pool := bufioWriterPool(size)
   648  	if pool != nil {
   649  		if v := pool.Get(); v != nil {
   650  			bw := v.(*bufio.Writer)
   651  			bw.Reset(w)
   652  			return bw
   653  		}
   654  	}
   655  	return bufio.NewWriterSize(w, size)
   656  }
   657  
   658  func putBufioWriter(bw *bufio.Writer) {
   659  	bw.Reset(nil)
   660  	if pool := bufioWriterPool(bw.Available()); pool != nil {
   661  		pool.Put(bw)
   662  	}
   663  }
   664  
   665  // DefaultMaxHeaderBytes is the maximum permitted size of the headers
   666  // in an HTTP request.
   667  // This can be overridden by setting Server.MaxHeaderBytes.
   668  const DefaultMaxHeaderBytes = 1 << 20 // 1 MB
   669  
   670  func (srv *Server) maxHeaderBytes() int {
   671  	if srv.MaxHeaderBytes > 0 {
   672  		return srv.MaxHeaderBytes
   673  	}
   674  	return DefaultMaxHeaderBytes
   675  }
   676  
   677  func (srv *Server) initialReadLimitSize() int64 {
   678  	return int64(srv.maxHeaderBytes()) + 4096 // bufio slop
   679  }
   680  
   681  // wrapper around io.ReaderCloser which on first read, sends an
   682  // HTTP/1.1 100 Continue header
   683  type expectContinueReader struct {
   684  	resp       *response
   685  	readCloser io.ReadCloser
   686  	closed     bool
   687  	sawEOF     bool
   688  }
   689  
   690  func (ecr *expectContinueReader) Read(p []byte) (n int, err error) {
   691  	if ecr.closed {
   692  		return 0, ErrBodyReadAfterClose
   693  	}
   694  	if !ecr.resp.wroteContinue && !ecr.resp.conn.hijacked() {
   695  		ecr.resp.wroteContinue = true
   696  		ecr.resp.conn.bufw.WriteString("HTTP/1.1 100 Continue\r\n\r\n")
   697  		ecr.resp.conn.bufw.Flush()
   698  	}
   699  	n, err = ecr.readCloser.Read(p)
   700  	if err == io.EOF {
   701  		ecr.sawEOF = true
   702  	}
   703  	return
   704  }
   705  
   706  func (ecr *expectContinueReader) Close() error {
   707  	ecr.closed = true
   708  	return ecr.readCloser.Close()
   709  }
   710  
   711  // TimeFormat is the time format to use when generating times in HTTP
   712  // headers. It is like time.RFC1123 but hard-codes GMT as the time
   713  // zone. The time being formatted must be in UTC for Format to
   714  // generate the correct format.
   715  //
   716  // For parsing this time format, see ParseTime.
   717  const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT"
   718  
   719  // appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat))
   720  func appendTime(b []byte, t time.Time) []byte {
   721  	const days = "SunMonTueWedThuFriSat"
   722  	const months = "JanFebMarAprMayJunJulAugSepOctNovDec"
   723  
   724  	t = t.UTC()
   725  	yy, mm, dd := t.Date()
   726  	hh, mn, ss := t.Clock()
   727  	day := days[3*t.Weekday():]
   728  	mon := months[3*(mm-1):]
   729  
   730  	return append(b,
   731  		day[0], day[1], day[2], ',', ' ',
   732  		byte('0'+dd/10), byte('0'+dd%10), ' ',
   733  		mon[0], mon[1], mon[2], ' ',
   734  		byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ',
   735  		byte('0'+hh/10), byte('0'+hh%10), ':',
   736  		byte('0'+mn/10), byte('0'+mn%10), ':',
   737  		byte('0'+ss/10), byte('0'+ss%10), ' ',
   738  		'G', 'M', 'T')
   739  }
   740  
   741  var errTooLarge = errors.New("http: request too large")
   742  
   743  // Read next request from connection.
   744  func (c *conn) readRequest(ctx context.Context) (w *response, err error) {
   745  	if c.hijacked() {
   746  		return nil, ErrHijacked
   747  	}
   748  
   749  	if d := c.server.ReadTimeout; d != 0 {
   750  		c.rwc.SetReadDeadline(time.Now().Add(d))
   751  	}
   752  	if d := c.server.WriteTimeout; d != 0 {
   753  		defer func() {
   754  			c.rwc.SetWriteDeadline(time.Now().Add(d))
   755  		}()
   756  	}
   757  
   758  	c.r.setReadLimit(c.server.initialReadLimitSize())
   759  	c.mu.Lock() // while using bufr
   760  	if c.lastMethod == "POST" {
   761  		// RFC 2616 section 4.1 tolerance for old buggy clients.
   762  		peek, _ := c.bufr.Peek(4) // ReadRequest will get err below
   763  		c.bufr.Discard(numLeadingCRorLF(peek))
   764  	}
   765  	req, err := readRequest(c.bufr, keepHostHeader)
   766  	c.mu.Unlock()
   767  	if err != nil {
   768  		if c.r.hitReadLimit() {
   769  			return nil, errTooLarge
   770  		}
   771  		return nil, err
   772  	}
   773  
   774  	ctx, cancelCtx := context.WithCancel(ctx)
   775  	req.ctx = ctx
   776  
   777  	c.lastMethod = req.Method
   778  	c.r.setInfiniteReadLimit()
   779  
   780  	hosts, haveHost := req.Header["Host"]
   781  	isH2Upgrade := req.isH2Upgrade()
   782  	if req.ProtoAtLeast(1, 1) && (!haveHost || len(hosts) == 0) && !isH2Upgrade {
   783  		return nil, badRequestError("missing required Host header")
   784  	}
   785  	if len(hosts) > 1 {
   786  		return nil, badRequestError("too many Host headers")
   787  	}
   788  	if len(hosts) == 1 && !httplex.ValidHostHeader(hosts[0]) {
   789  		return nil, badRequestError("malformed Host header")
   790  	}
   791  	for k, vv := range req.Header {
   792  		if !httplex.ValidHeaderFieldName(k) {
   793  			return nil, badRequestError("invalid header name")
   794  		}
   795  		for _, v := range vv {
   796  			if !httplex.ValidHeaderFieldValue(v) {
   797  				return nil, badRequestError("invalid header value")
   798  			}
   799  		}
   800  	}
   801  	delete(req.Header, "Host")
   802  
   803  	req.RemoteAddr = c.remoteAddr
   804  	req.TLS = c.tlsState
   805  	if body, ok := req.Body.(*body); ok {
   806  		body.doEarlyClose = true
   807  	}
   808  
   809  	w = &response{
   810  		conn:          c,
   811  		cancelCtx:     cancelCtx,
   812  		req:           req,
   813  		reqBody:       req.Body,
   814  		handlerHeader: make(Header),
   815  		contentLength: -1,
   816  
   817  		// We populate these ahead of time so we're not
   818  		// reading from req.Header after their Handler starts
   819  		// and maybe mutates it (Issue 14940)
   820  		wants10KeepAlive: req.wantsHttp10KeepAlive(),
   821  		wantsClose:       req.wantsClose(),
   822  	}
   823  	if isH2Upgrade {
   824  		w.closeAfterReply = true
   825  	}
   826  	w.cw.res = w
   827  	w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize)
   828  	return w, nil
   829  }
   830  
   831  func (w *response) Header() Header {
   832  	if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader {
   833  		// Accessing the header between logically writing it
   834  		// and physically writing it means we need to allocate
   835  		// a clone to snapshot the logically written state.
   836  		w.cw.header = w.handlerHeader.clone()
   837  	}
   838  	w.calledHeader = true
   839  	return w.handlerHeader
   840  }
   841  
   842  // maxPostHandlerReadBytes is the max number of Request.Body bytes not
   843  // consumed by a handler that the server will read from the client
   844  // in order to keep a connection alive. If there are more bytes than
   845  // this then the server to be paranoid instead sends a "Connection:
   846  // close" response.
   847  //
   848  // This number is approximately what a typical machine's TCP buffer
   849  // size is anyway.  (if we have the bytes on the machine, we might as
   850  // well read them)
   851  const maxPostHandlerReadBytes = 256 << 10
   852  
   853  func (w *response) WriteHeader(code int) {
   854  	if w.conn.hijacked() {
   855  		w.conn.server.logf("http: response.WriteHeader on hijacked connection")
   856  		return
   857  	}
   858  	if w.wroteHeader {
   859  		w.conn.server.logf("http: multiple response.WriteHeader calls")
   860  		return
   861  	}
   862  	w.wroteHeader = true
   863  	w.status = code
   864  
   865  	if w.calledHeader && w.cw.header == nil {
   866  		w.cw.header = w.handlerHeader.clone()
   867  	}
   868  
   869  	if cl := w.handlerHeader.get("Content-Length"); cl != "" {
   870  		v, err := strconv.ParseInt(cl, 10, 64)
   871  		if err == nil && v >= 0 {
   872  			w.contentLength = v
   873  		} else {
   874  			w.conn.server.logf("http: invalid Content-Length of %q", cl)
   875  			w.handlerHeader.Del("Content-Length")
   876  		}
   877  	}
   878  }
   879  
   880  // extraHeader is the set of headers sometimes added by chunkWriter.writeHeader.
   881  // This type is used to avoid extra allocations from cloning and/or populating
   882  // the response Header map and all its 1-element slices.
   883  type extraHeader struct {
   884  	contentType      string
   885  	connection       string
   886  	transferEncoding string
   887  	date             []byte // written if not nil
   888  	contentLength    []byte // written if not nil
   889  }
   890  
   891  // Sorted the same as extraHeader.Write's loop.
   892  var extraHeaderKeys = [][]byte{
   893  	[]byte("Content-Type"),
   894  	[]byte("Connection"),
   895  	[]byte("Transfer-Encoding"),
   896  }
   897  
   898  var (
   899  	headerContentLength = []byte("Content-Length: ")
   900  	headerDate          = []byte("Date: ")
   901  )
   902  
   903  // Write writes the headers described in h to w.
   904  //
   905  // This method has a value receiver, despite the somewhat large size
   906  // of h, because it prevents an allocation. The escape analysis isn't
   907  // smart enough to realize this function doesn't mutate h.
   908  func (h extraHeader) Write(w *bufio.Writer) {
   909  	if h.date != nil {
   910  		w.Write(headerDate)
   911  		w.Write(h.date)
   912  		w.Write(crlf)
   913  	}
   914  	if h.contentLength != nil {
   915  		w.Write(headerContentLength)
   916  		w.Write(h.contentLength)
   917  		w.Write(crlf)
   918  	}
   919  	for i, v := range []string{h.contentType, h.connection, h.transferEncoding} {
   920  		if v != "" {
   921  			w.Write(extraHeaderKeys[i])
   922  			w.Write(colonSpace)
   923  			w.WriteString(v)
   924  			w.Write(crlf)
   925  		}
   926  	}
   927  }
   928  
   929  // writeHeader finalizes the header sent to the client and writes it
   930  // to cw.res.conn.bufw.
   931  //
   932  // p is not written by writeHeader, but is the first chunk of the body
   933  // that will be written. It is sniffed for a Content-Type if none is
   934  // set explicitly. It's also used to set the Content-Length, if the
   935  // total body size was small and the handler has already finished
   936  // running.
   937  func (cw *chunkWriter) writeHeader(p []byte) {
   938  	if cw.wroteHeader {
   939  		return
   940  	}
   941  	cw.wroteHeader = true
   942  
   943  	w := cw.res
   944  	keepAlivesEnabled := w.conn.server.doKeepAlives()
   945  	isHEAD := w.req.Method == "HEAD"
   946  
   947  	// header is written out to w.conn.buf below. Depending on the
   948  	// state of the handler, we either own the map or not. If we
   949  	// don't own it, the exclude map is created lazily for
   950  	// WriteSubset to remove headers. The setHeader struct holds
   951  	// headers we need to add.
   952  	header := cw.header
   953  	owned := header != nil
   954  	if !owned {
   955  		header = w.handlerHeader
   956  	}
   957  	var excludeHeader map[string]bool
   958  	delHeader := func(key string) {
   959  		if owned {
   960  			header.Del(key)
   961  			return
   962  		}
   963  		if _, ok := header[key]; !ok {
   964  			return
   965  		}
   966  		if excludeHeader == nil {
   967  			excludeHeader = make(map[string]bool)
   968  		}
   969  		excludeHeader[key] = true
   970  	}
   971  	var setHeader extraHeader
   972  
   973  	trailers := false
   974  	for _, v := range cw.header["Trailer"] {
   975  		trailers = true
   976  		foreachHeaderElement(v, cw.res.declareTrailer)
   977  	}
   978  
   979  	te := header.get("Transfer-Encoding")
   980  	hasTE := te != ""
   981  
   982  	// If the handler is done but never sent a Content-Length
   983  	// response header and this is our first (and last) write, set
   984  	// it, even to zero. This helps HTTP/1.0 clients keep their
   985  	// "keep-alive" connections alive.
   986  	// Exceptions: 304/204/1xx responses never get Content-Length, and if
   987  	// it was a HEAD request, we don't know the difference between
   988  	// 0 actual bytes and 0 bytes because the handler noticed it
   989  	// was a HEAD request and chose not to write anything. So for
   990  	// HEAD, the handler should either write the Content-Length or
   991  	// write non-zero bytes. If it's actually 0 bytes and the
   992  	// handler never looked at the Request.Method, we just don't
   993  	// send a Content-Length header.
   994  	// Further, we don't send an automatic Content-Length if they
   995  	// set a Transfer-Encoding, because they're generally incompatible.
   996  	if w.handlerDone.isSet() && !trailers && !hasTE && bodyAllowedForStatus(w.status) && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) {
   997  		w.contentLength = int64(len(p))
   998  		setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10)
   999  	}
  1000  
  1001  	// If this was an HTTP/1.0 request with keep-alive and we sent a
  1002  	// Content-Length back, we can make this a keep-alive response ...
  1003  	if w.wants10KeepAlive && keepAlivesEnabled {
  1004  		sentLength := header.get("Content-Length") != ""
  1005  		if sentLength && header.get("Connection") == "keep-alive" {
  1006  			w.closeAfterReply = false
  1007  		}
  1008  	}
  1009  
  1010  	// Check for a explicit (and valid) Content-Length header.
  1011  	hasCL := w.contentLength != -1
  1012  
  1013  	if w.wants10KeepAlive && (isHEAD || hasCL || !bodyAllowedForStatus(w.status)) {
  1014  		_, connectionHeaderSet := header["Connection"]
  1015  		if !connectionHeaderSet {
  1016  			setHeader.connection = "keep-alive"
  1017  		}
  1018  	} else if !w.req.ProtoAtLeast(1, 1) || w.wantsClose {
  1019  		w.closeAfterReply = true
  1020  	}
  1021  
  1022  	if header.get("Connection") == "close" || !keepAlivesEnabled {
  1023  		w.closeAfterReply = true
  1024  	}
  1025  
  1026  	// If the client wanted a 100-continue but we never sent it to
  1027  	// them (or, more strictly: we never finished reading their
  1028  	// request body), don't reuse this connection because it's now
  1029  	// in an unknown state: we might be sending this response at
  1030  	// the same time the client is now sending its request body
  1031  	// after a timeout.  (Some HTTP clients send Expect:
  1032  	// 100-continue but knowing that some servers don't support
  1033  	// it, the clients set a timer and send the body later anyway)
  1034  	// If we haven't seen EOF, we can't skip over the unread body
  1035  	// because we don't know if the next bytes on the wire will be
  1036  	// the body-following-the-timer or the subsequent request.
  1037  	// See Issue 11549.
  1038  	if ecr, ok := w.req.Body.(*expectContinueReader); ok && !ecr.sawEOF {
  1039  		w.closeAfterReply = true
  1040  	}
  1041  
  1042  	// Per RFC 2616, we should consume the request body before
  1043  	// replying, if the handler hasn't already done so. But we
  1044  	// don't want to do an unbounded amount of reading here for
  1045  	// DoS reasons, so we only try up to a threshold.
  1046  	// TODO(bradfitz): where does RFC 2616 say that? See Issue 15527
  1047  	// about HTTP/1.x Handlers concurrently reading and writing, like
  1048  	// HTTP/2 handlers can do. Maybe this code should be relaxed?
  1049  	if w.req.ContentLength != 0 && !w.closeAfterReply {
  1050  		var discard, tooBig bool
  1051  
  1052  		switch bdy := w.req.Body.(type) {
  1053  		case *expectContinueReader:
  1054  			if bdy.resp.wroteContinue {
  1055  				discard = true
  1056  			}
  1057  		case *body:
  1058  			bdy.mu.Lock()
  1059  			switch {
  1060  			case bdy.closed:
  1061  				if !bdy.sawEOF {
  1062  					// Body was closed in handler with non-EOF error.
  1063  					w.closeAfterReply = true
  1064  				}
  1065  			case bdy.unreadDataSizeLocked() >= maxPostHandlerReadBytes:
  1066  				tooBig = true
  1067  			default:
  1068  				discard = true
  1069  			}
  1070  			bdy.mu.Unlock()
  1071  		default:
  1072  			discard = true
  1073  		}
  1074  
  1075  		if discard {
  1076  			_, err := io.CopyN(ioutil.Discard, w.reqBody, maxPostHandlerReadBytes+1)
  1077  			switch err {
  1078  			case nil:
  1079  				// There must be even more data left over.
  1080  				tooBig = true
  1081  			case ErrBodyReadAfterClose:
  1082  				// Body was already consumed and closed.
  1083  			case io.EOF:
  1084  				// The remaining body was just consumed, close it.
  1085  				err = w.reqBody.Close()
  1086  				if err != nil {
  1087  					w.closeAfterReply = true
  1088  				}
  1089  			default:
  1090  				// Some other kind of error occurred, like a read timeout, or
  1091  				// corrupt chunked encoding. In any case, whatever remains
  1092  				// on the wire must not be parsed as another HTTP request.
  1093  				w.closeAfterReply = true
  1094  			}
  1095  		}
  1096  
  1097  		if tooBig {
  1098  			w.requestTooLarge()
  1099  			delHeader("Connection")
  1100  			setHeader.connection = "close"
  1101  		}
  1102  	}
  1103  
  1104  	code := w.status
  1105  	if bodyAllowedForStatus(code) {
  1106  		// If no content type, apply sniffing algorithm to body.
  1107  		_, haveType := header["Content-Type"]
  1108  		if !haveType && !hasTE {
  1109  			setHeader.contentType = DetectContentType(p)
  1110  		}
  1111  	} else {
  1112  		for _, k := range suppressedHeaders(code) {
  1113  			delHeader(k)
  1114  		}
  1115  	}
  1116  
  1117  	if _, ok := header["Date"]; !ok {
  1118  		setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now())
  1119  	}
  1120  
  1121  	if hasCL && hasTE && te != "identity" {
  1122  		// TODO: return an error if WriteHeader gets a return parameter
  1123  		// For now just ignore the Content-Length.
  1124  		w.conn.server.logf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d",
  1125  			te, w.contentLength)
  1126  		delHeader("Content-Length")
  1127  		hasCL = false
  1128  	}
  1129  
  1130  	if w.req.Method == "HEAD" || !bodyAllowedForStatus(code) {
  1131  		// do nothing
  1132  	} else if code == StatusNoContent {
  1133  		delHeader("Transfer-Encoding")
  1134  	} else if hasCL {
  1135  		delHeader("Transfer-Encoding")
  1136  	} else if w.req.ProtoAtLeast(1, 1) {
  1137  		// HTTP/1.1 or greater: Transfer-Encoding has been set to identity,  and no
  1138  		// content-length has been provided. The connection must be closed after the
  1139  		// reply is written, and no chunking is to be done. This is the setup
  1140  		// recommended in the Server-Sent Events candidate recommendation 11,
  1141  		// section 8.
  1142  		if hasTE && te == "identity" {
  1143  			cw.chunking = false
  1144  			w.closeAfterReply = true
  1145  		} else {
  1146  			// HTTP/1.1 or greater: use chunked transfer encoding
  1147  			// to avoid closing the connection at EOF.
  1148  			cw.chunking = true
  1149  			setHeader.transferEncoding = "chunked"
  1150  		}
  1151  	} else {
  1152  		// HTTP version < 1.1: cannot do chunked transfer
  1153  		// encoding and we don't know the Content-Length so
  1154  		// signal EOF by closing connection.
  1155  		w.closeAfterReply = true
  1156  		delHeader("Transfer-Encoding") // in case already set
  1157  	}
  1158  
  1159  	// Cannot use Content-Length with non-identity Transfer-Encoding.
  1160  	if cw.chunking {
  1161  		delHeader("Content-Length")
  1162  	}
  1163  	if !w.req.ProtoAtLeast(1, 0) {
  1164  		return
  1165  	}
  1166  
  1167  	if w.closeAfterReply && (!keepAlivesEnabled || !hasToken(cw.header.get("Connection"), "close")) {
  1168  		delHeader("Connection")
  1169  		if w.req.ProtoAtLeast(1, 1) {
  1170  			setHeader.connection = "close"
  1171  		}
  1172  	}
  1173  
  1174  	w.conn.bufw.WriteString(statusLine(w.req, code))
  1175  	cw.header.WriteSubset(w.conn.bufw, excludeHeader)
  1176  	setHeader.Write(w.conn.bufw)
  1177  	w.conn.bufw.Write(crlf)
  1178  }
  1179  
  1180  // foreachHeaderElement splits v according to the "#rule" construction
  1181  // in RFC 2616 section 2.1 and calls fn for each non-empty element.
  1182  func foreachHeaderElement(v string, fn func(string)) {
  1183  	v = textproto.TrimString(v)
  1184  	if v == "" {
  1185  		return
  1186  	}
  1187  	if !strings.Contains(v, ",") {
  1188  		fn(v)
  1189  		return
  1190  	}
  1191  	for _, f := range strings.Split(v, ",") {
  1192  		if f = textproto.TrimString(f); f != "" {
  1193  			fn(f)
  1194  		}
  1195  	}
  1196  }
  1197  
  1198  // statusLines is a cache of Status-Line strings, keyed by code (for
  1199  // HTTP/1.1) or negative code (for HTTP/1.0). This is faster than a
  1200  // map keyed by struct of two fields. This map's max size is bounded
  1201  // by 2*len(statusText), two protocol types for each known official
  1202  // status code in the statusText map.
  1203  var (
  1204  	statusMu    sync.RWMutex
  1205  	statusLines = make(map[int]string)
  1206  )
  1207  
  1208  // statusLine returns a response Status-Line (RFC 2616 Section 6.1)
  1209  // for the given request and response status code.
  1210  func statusLine(req *Request, code int) string {
  1211  	// Fast path:
  1212  	key := code
  1213  	proto11 := req.ProtoAtLeast(1, 1)
  1214  	if !proto11 {
  1215  		key = -key
  1216  	}
  1217  	statusMu.RLock()
  1218  	line, ok := statusLines[key]
  1219  	statusMu.RUnlock()
  1220  	if ok {
  1221  		return line
  1222  	}
  1223  
  1224  	// Slow path:
  1225  	proto := "HTTP/1.0"
  1226  	if proto11 {
  1227  		proto = "HTTP/1.1"
  1228  	}
  1229  	codestring := fmt.Sprintf("%03d", code)
  1230  	text, ok := statusText[code]
  1231  	if !ok {
  1232  		text = "status code " + codestring
  1233  	}
  1234  	line = proto + " " + codestring + " " + text + "\r\n"
  1235  	if ok {
  1236  		statusMu.Lock()
  1237  		defer statusMu.Unlock()
  1238  		statusLines[key] = line
  1239  	}
  1240  	return line
  1241  }
  1242  
  1243  // bodyAllowed reports whether a Write is allowed for this response type.
  1244  // It's illegal to call this before the header has been flushed.
  1245  func (w *response) bodyAllowed() bool {
  1246  	if !w.wroteHeader {
  1247  		panic("")
  1248  	}
  1249  	return bodyAllowedForStatus(w.status)
  1250  }
  1251  
  1252  // The Life Of A Write is like this:
  1253  //
  1254  // Handler starts. No header has been sent. The handler can either
  1255  // write a header, or just start writing. Writing before sending a header
  1256  // sends an implicitly empty 200 OK header.
  1257  //
  1258  // If the handler didn't declare a Content-Length up front, we either
  1259  // go into chunking mode or, if the handler finishes running before
  1260  // the chunking buffer size, we compute a Content-Length and send that
  1261  // in the header instead.
  1262  //
  1263  // Likewise, if the handler didn't set a Content-Type, we sniff that
  1264  // from the initial chunk of output.
  1265  //
  1266  // The Writers are wired together like:
  1267  //
  1268  // 1. *response (the ResponseWriter) ->
  1269  // 2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes
  1270  // 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type)
  1271  //    and which writes the chunk headers, if needed.
  1272  // 4. conn.buf, a bufio.Writer of default (4kB) bytes, writing to ->
  1273  // 5. checkConnErrorWriter{c}, which notes any non-nil error on Write
  1274  //    and populates c.werr with it if so. but otherwise writes to:
  1275  // 6. the rwc, the net.Conn.
  1276  //
  1277  // TODO(bradfitz): short-circuit some of the buffering when the
  1278  // initial header contains both a Content-Type and Content-Length.
  1279  // Also short-circuit in (1) when the header's been sent and not in
  1280  // chunking mode, writing directly to (4) instead, if (2) has no
  1281  // buffered data. More generally, we could short-circuit from (1) to
  1282  // (3) even in chunking mode if the write size from (1) is over some
  1283  // threshold and nothing is in (2).  The answer might be mostly making
  1284  // bufferBeforeChunkingSize smaller and having bufio's fast-paths deal
  1285  // with this instead.
  1286  func (w *response) Write(data []byte) (n int, err error) {
  1287  	return w.write(len(data), data, "")
  1288  }
  1289  
  1290  func (w *response) WriteString(data string) (n int, err error) {
  1291  	return w.write(len(data), nil, data)
  1292  }
  1293  
  1294  // either dataB or dataS is non-zero.
  1295  func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) {
  1296  	if w.conn.hijacked() {
  1297  		w.conn.server.logf("http: response.Write on hijacked connection")
  1298  		return 0, ErrHijacked
  1299  	}
  1300  	if !w.wroteHeader {
  1301  		w.WriteHeader(StatusOK)
  1302  	}
  1303  	if lenData == 0 {
  1304  		return 0, nil
  1305  	}
  1306  	if !w.bodyAllowed() {
  1307  		return 0, ErrBodyNotAllowed
  1308  	}
  1309  
  1310  	w.written += int64(lenData) // ignoring errors, for errorKludge
  1311  	if w.contentLength != -1 && w.written > w.contentLength {
  1312  		return 0, ErrContentLength
  1313  	}
  1314  	if dataB != nil {
  1315  		return w.w.Write(dataB)
  1316  	} else {
  1317  		return w.w.WriteString(dataS)
  1318  	}
  1319  }
  1320  
  1321  func (w *response) finishRequest() {
  1322  	w.handlerDone.setTrue()
  1323  
  1324  	if !w.wroteHeader {
  1325  		w.WriteHeader(StatusOK)
  1326  	}
  1327  
  1328  	w.w.Flush()
  1329  	putBufioWriter(w.w)
  1330  	w.cw.close()
  1331  	w.conn.bufw.Flush()
  1332  
  1333  	// Close the body (regardless of w.closeAfterReply) so we can
  1334  	// re-use its bufio.Reader later safely.
  1335  	w.reqBody.Close()
  1336  
  1337  	if w.req.MultipartForm != nil {
  1338  		w.req.MultipartForm.RemoveAll()
  1339  	}
  1340  }
  1341  
  1342  // shouldReuseConnection reports whether the underlying TCP connection can be reused.
  1343  // It must only be called after the handler is done executing.
  1344  func (w *response) shouldReuseConnection() bool {
  1345  	if w.closeAfterReply {
  1346  		// The request or something set while executing the
  1347  		// handler indicated we shouldn't reuse this
  1348  		// connection.
  1349  		return false
  1350  	}
  1351  
  1352  	if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written {
  1353  		// Did not write enough. Avoid getting out of sync.
  1354  		return false
  1355  	}
  1356  
  1357  	// There was some error writing to the underlying connection
  1358  	// during the request, so don't re-use this conn.
  1359  	if w.conn.werr != nil {
  1360  		return false
  1361  	}
  1362  
  1363  	if w.closedRequestBodyEarly() {
  1364  		return false
  1365  	}
  1366  
  1367  	return true
  1368  }
  1369  
  1370  func (w *response) closedRequestBodyEarly() bool {
  1371  	body, ok := w.req.Body.(*body)
  1372  	return ok && body.didEarlyClose()
  1373  }
  1374  
  1375  func (w *response) Flush() {
  1376  	if !w.wroteHeader {
  1377  		w.WriteHeader(StatusOK)
  1378  	}
  1379  	w.w.Flush()
  1380  	w.cw.flush()
  1381  }
  1382  
  1383  func (c *conn) finalFlush() {
  1384  	if c.bufr != nil {
  1385  		// Steal the bufio.Reader (~4KB worth of memory) and its associated
  1386  		// reader for a future connection.
  1387  		putBufioReader(c.bufr)
  1388  		c.bufr = nil
  1389  	}
  1390  
  1391  	if c.bufw != nil {
  1392  		c.bufw.Flush()
  1393  		// Steal the bufio.Writer (~4KB worth of memory) and its associated
  1394  		// writer for a future connection.
  1395  		putBufioWriter(c.bufw)
  1396  		c.bufw = nil
  1397  	}
  1398  }
  1399  
  1400  // Close the connection.
  1401  func (c *conn) close() {
  1402  	c.finalFlush()
  1403  	c.rwc.Close()
  1404  }
  1405  
  1406  // rstAvoidanceDelay is the amount of time we sleep after closing the
  1407  // write side of a TCP connection before closing the entire socket.
  1408  // By sleeping, we increase the chances that the client sees our FIN
  1409  // and processes its final data before they process the subsequent RST
  1410  // from closing a connection with known unread data.
  1411  // This RST seems to occur mostly on BSD systems. (And Windows?)
  1412  // This timeout is somewhat arbitrary (~latency around the planet).
  1413  const rstAvoidanceDelay = 500 * time.Millisecond
  1414  
  1415  type closeWriter interface {
  1416  	CloseWrite() error
  1417  }
  1418  
  1419  var _ closeWriter = (*net.TCPConn)(nil)
  1420  
  1421  // closeWrite flushes any outstanding data and sends a FIN packet (if
  1422  // client is connected via TCP), signalling that we're done. We then
  1423  // pause for a bit, hoping the client processes it before any
  1424  // subsequent RST.
  1425  //
  1426  // See https://golang.org/issue/3595
  1427  func (c *conn) closeWriteAndWait() {
  1428  	c.finalFlush()
  1429  	if tcp, ok := c.rwc.(closeWriter); ok {
  1430  		tcp.CloseWrite()
  1431  	}
  1432  	time.Sleep(rstAvoidanceDelay)
  1433  }
  1434  
  1435  // validNPN reports whether the proto is not a blacklisted Next
  1436  // Protocol Negotiation protocol. Empty and built-in protocol types
  1437  // are blacklisted and can't be overridden with alternate
  1438  // implementations.
  1439  func validNPN(proto string) bool {
  1440  	switch proto {
  1441  	case "", "http/1.1", "http/1.0":
  1442  		return false
  1443  	}
  1444  	return true
  1445  }
  1446  
  1447  func (c *conn) setState(nc net.Conn, state ConnState) {
  1448  	if hook := c.server.ConnState; hook != nil {
  1449  		hook(nc, state)
  1450  	}
  1451  }
  1452  
  1453  // badRequestError is a literal string (used by in the server in HTML,
  1454  // unescaped) to tell the user why their request was bad. It should
  1455  // be plain text without user info or other embedded errors.
  1456  type badRequestError string
  1457  
  1458  func (e badRequestError) Error() string { return "Bad Request: " + string(e) }
  1459  
  1460  // Serve a new connection.
  1461  func (c *conn) serve(ctx context.Context) {
  1462  	c.remoteAddr = c.rwc.RemoteAddr().String()
  1463  	defer func() {
  1464  		if err := recover(); err != nil {
  1465  			const size = 64 << 10
  1466  			buf := make([]byte, size)
  1467  			buf = buf[:runtime.Stack(buf, false)]
  1468  			c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
  1469  		}
  1470  		if !c.hijacked() {
  1471  			c.close()
  1472  			c.setState(c.rwc, StateClosed)
  1473  		}
  1474  	}()
  1475  
  1476  	if tlsConn, ok := c.rwc.(*tls.Conn); ok {
  1477  		if d := c.server.ReadTimeout; d != 0 {
  1478  			c.rwc.SetReadDeadline(time.Now().Add(d))
  1479  		}
  1480  		if d := c.server.WriteTimeout; d != 0 {
  1481  			c.rwc.SetWriteDeadline(time.Now().Add(d))
  1482  		}
  1483  		if err := tlsConn.Handshake(); err != nil {
  1484  			c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
  1485  			return
  1486  		}
  1487  		c.tlsState = new(tls.ConnectionState)
  1488  		*c.tlsState = tlsConn.ConnectionState()
  1489  		if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
  1490  			if fn := c.server.TLSNextProto[proto]; fn != nil {
  1491  				h := initNPNRequest{tlsConn, serverHandler{c.server}}
  1492  				fn(c.server, tlsConn, h)
  1493  			}
  1494  			return
  1495  		}
  1496  	}
  1497  
  1498  	// HTTP/1.x from here on.
  1499  
  1500  	c.r = &connReader{r: c.rwc}
  1501  	c.bufr = newBufioReader(c.r)
  1502  	c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
  1503  
  1504  	ctx, cancelCtx := context.WithCancel(ctx)
  1505  	defer cancelCtx()
  1506  
  1507  	for {
  1508  		w, err := c.readRequest(ctx)
  1509  		if c.r.remain != c.server.initialReadLimitSize() {
  1510  			// If we read any bytes off the wire, we're active.
  1511  			c.setState(c.rwc, StateActive)
  1512  		}
  1513  		if err != nil {
  1514  			if err == errTooLarge {
  1515  				// Their HTTP client may or may not be
  1516  				// able to read this if we're
  1517  				// responding to them and hanging up
  1518  				// while they're still writing their
  1519  				// request. Undefined behavior.
  1520  				io.WriteString(c.rwc, "HTTP/1.1 431 Request Header Fields Too Large\r\nContent-Type: text/plain\r\nConnection: close\r\n\r\n431 Request Header Fields Too Large")
  1521  				c.closeWriteAndWait()
  1522  				return
  1523  			}
  1524  			if err == io.EOF {
  1525  				return // don't reply
  1526  			}
  1527  			if neterr, ok := err.(net.Error); ok && neterr.Timeout() {
  1528  				return // don't reply
  1529  			}
  1530  			var publicErr string
  1531  			if v, ok := err.(badRequestError); ok {
  1532  				publicErr = ": " + string(v)
  1533  			}
  1534  			io.WriteString(c.rwc, "HTTP/1.1 400 Bad Request\r\nContent-Type: text/plain\r\nConnection: close\r\n\r\n400 Bad Request"+publicErr)
  1535  			return
  1536  		}
  1537  
  1538  		// Expect 100 Continue support
  1539  		req := w.req
  1540  		if req.expectsContinue() {
  1541  			if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
  1542  				// Wrap the Body reader with one that replies on the connection
  1543  				req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
  1544  			}
  1545  		} else if req.Header.get("Expect") != "" {
  1546  			w.sendExpectationFailed()
  1547  			return
  1548  		}
  1549  
  1550  		// HTTP cannot have multiple simultaneous active requests.[*]
  1551  		// Until the server replies to this request, it can't read another,
  1552  		// so we might as well run the handler in this goroutine.
  1553  		// [*] Not strictly true: HTTP pipelining. We could let them all process
  1554  		// in parallel even if their responses need to be serialized.
  1555  		serverHandler{c.server}.ServeHTTP(w, w.req)
  1556  		w.cancelCtx()
  1557  		if c.hijacked() {
  1558  			return
  1559  		}
  1560  		w.finishRequest()
  1561  		if !w.shouldReuseConnection() {
  1562  			if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
  1563  				c.closeWriteAndWait()
  1564  			}
  1565  			return
  1566  		}
  1567  		c.setState(c.rwc, StateIdle)
  1568  	}
  1569  }
  1570  
  1571  func (w *response) sendExpectationFailed() {
  1572  	// TODO(bradfitz): let ServeHTTP handlers handle
  1573  	// requests with non-standard expectation[s]? Seems
  1574  	// theoretical at best, and doesn't fit into the
  1575  	// current ServeHTTP model anyway. We'd need to
  1576  	// make the ResponseWriter an optional
  1577  	// "ExpectReplier" interface or something.
  1578  	//
  1579  	// For now we'll just obey RFC 2616 14.20 which says
  1580  	// "If a server receives a request containing an
  1581  	// Expect field that includes an expectation-
  1582  	// extension that it does not support, it MUST
  1583  	// respond with a 417 (Expectation Failed) status."
  1584  	w.Header().Set("Connection", "close")
  1585  	w.WriteHeader(StatusExpectationFailed)
  1586  	w.finishRequest()
  1587  }
  1588  
  1589  // Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter
  1590  // and a Hijacker.
  1591  func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
  1592  	if w.handlerDone.isSet() {
  1593  		panic("net/http: Hijack called after ServeHTTP finished")
  1594  	}
  1595  	if w.wroteHeader {
  1596  		w.cw.flush()
  1597  	}
  1598  
  1599  	c := w.conn
  1600  	c.mu.Lock()
  1601  	defer c.mu.Unlock()
  1602  
  1603  	if w.closeNotifyCh != nil {
  1604  		return nil, nil, errors.New("http: Hijack is incompatible with use of CloseNotifier in same ServeHTTP call")
  1605  	}
  1606  
  1607  	// Release the bufioWriter that writes to the chunk writer, it is not
  1608  	// used after a connection has been hijacked.
  1609  	rwc, buf, err = c.hijackLocked()
  1610  	if err == nil {
  1611  		putBufioWriter(w.w)
  1612  		w.w = nil
  1613  	}
  1614  	return rwc, buf, err
  1615  }
  1616  
  1617  func (w *response) CloseNotify() <-chan bool {
  1618  	if w.handlerDone.isSet() {
  1619  		panic("net/http: CloseNotify called after ServeHTTP finished")
  1620  	}
  1621  	c := w.conn
  1622  	c.mu.Lock()
  1623  	defer c.mu.Unlock()
  1624  
  1625  	if w.closeNotifyCh != nil {
  1626  		return w.closeNotifyCh
  1627  	}
  1628  	ch := make(chan bool, 1)
  1629  	w.closeNotifyCh = ch
  1630  
  1631  	if w.conn.hijackedv {
  1632  		// CloseNotify is undefined after a hijack, but we have
  1633  		// no place to return an error, so just return a channel,
  1634  		// even though it'll never receive a value.
  1635  		return ch
  1636  	}
  1637  
  1638  	var once sync.Once
  1639  	notify := func() { once.Do(func() { ch <- true }) }
  1640  
  1641  	if requestBodyRemains(w.reqBody) {
  1642  		// They're still consuming the request body, so we
  1643  		// shouldn't notify yet.
  1644  		registerOnHitEOF(w.reqBody, func() {
  1645  			c.mu.Lock()
  1646  			defer c.mu.Unlock()
  1647  			startCloseNotifyBackgroundRead(c, notify)
  1648  		})
  1649  	} else {
  1650  		startCloseNotifyBackgroundRead(c, notify)
  1651  	}
  1652  	return ch
  1653  }
  1654  
  1655  // c.mu must be held.
  1656  func startCloseNotifyBackgroundRead(c *conn, notify func()) {
  1657  	if c.bufr.Buffered() > 0 {
  1658  		// They've consumed the request body, so anything
  1659  		// remaining is a pipelined request, which we
  1660  		// document as firing on.
  1661  		notify()
  1662  	} else {
  1663  		c.r.startBackgroundRead(notify)
  1664  	}
  1665  }
  1666  
  1667  func registerOnHitEOF(rc io.ReadCloser, fn func()) {
  1668  	switch v := rc.(type) {
  1669  	case *expectContinueReader:
  1670  		registerOnHitEOF(v.readCloser, fn)
  1671  	case *body:
  1672  		v.registerOnHitEOF(fn)
  1673  	default:
  1674  		panic("unexpected type " + fmt.Sprintf("%T", rc))
  1675  	}
  1676  }
  1677  
  1678  // requestBodyRemains reports whether future calls to Read
  1679  // on rc might yield more data.
  1680  func requestBodyRemains(rc io.ReadCloser) bool {
  1681  	if rc == eofReader {
  1682  		return false
  1683  	}
  1684  	switch v := rc.(type) {
  1685  	case *expectContinueReader:
  1686  		return requestBodyRemains(v.readCloser)
  1687  	case *body:
  1688  		return v.bodyRemains()
  1689  	default:
  1690  		panic("unexpected type " + fmt.Sprintf("%T", rc))
  1691  	}
  1692  }
  1693  
  1694  // The HandlerFunc type is an adapter to allow the use of
  1695  // ordinary functions as HTTP handlers. If f is a function
  1696  // with the appropriate signature, HandlerFunc(f) is a
  1697  // Handler that calls f.
  1698  type HandlerFunc func(ResponseWriter, *Request)
  1699  
  1700  // ServeHTTP calls f(w, r).
  1701  func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
  1702  	f(w, r)
  1703  }
  1704  
  1705  // Helper handlers
  1706  
  1707  // Error replies to the request with the specified error message and HTTP code.
  1708  // It does not otherwise end the request; the caller should ensure no further
  1709  // writes are done to w.
  1710  // The error message should be plain text.
  1711  func Error(w ResponseWriter, error string, code int) {
  1712  	w.Header().Set("Content-Type", "text/plain; charset=utf-8")
  1713  	w.Header().Set("X-Content-Type-Options", "nosniff")
  1714  	w.WriteHeader(code)
  1715  	fmt.Fprintln(w, error)
  1716  }
  1717  
  1718  // NotFound replies to the request with an HTTP 404 not found error.
  1719  func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) }
  1720  
  1721  // NotFoundHandler returns a simple request handler
  1722  // that replies to each request with a ``404 page not found'' reply.
  1723  func NotFoundHandler() Handler { return HandlerFunc(NotFound) }
  1724  
  1725  // StripPrefix returns a handler that serves HTTP requests
  1726  // by removing the given prefix from the request URL's Path
  1727  // and invoking the handler h. StripPrefix handles a
  1728  // request for a path that doesn't begin with prefix by
  1729  // replying with an HTTP 404 not found error.
  1730  func StripPrefix(prefix string, h Handler) Handler {
  1731  	if prefix == "" {
  1732  		return h
  1733  	}
  1734  	return HandlerFunc(func(w ResponseWriter, r *Request) {
  1735  		if p := strings.TrimPrefix(r.URL.Path, prefix); len(p) < len(r.URL.Path) {
  1736  			r.URL.Path = p
  1737  			h.ServeHTTP(w, r)
  1738  		} else {
  1739  			NotFound(w, r)
  1740  		}
  1741  	})
  1742  }
  1743  
  1744  // Redirect replies to the request with a redirect to url,
  1745  // which may be a path relative to the request path.
  1746  //
  1747  // The provided code should be in the 3xx range and is usually
  1748  // StatusMovedPermanently, StatusFound or StatusSeeOther.
  1749  func Redirect(w ResponseWriter, r *Request, urlStr string, code int) {
  1750  	if u, err := url.Parse(urlStr); err == nil {
  1751  		// If url was relative, make absolute by
  1752  		// combining with request path.
  1753  		// The browser would probably do this for us,
  1754  		// but doing it ourselves is more reliable.
  1755  
  1756  		// NOTE(rsc): RFC 2616 says that the Location
  1757  		// line must be an absolute URI, like
  1758  		// "http://www.google.com/redirect/",
  1759  		// not a path like "/redirect/".
  1760  		// Unfortunately, we don't know what to
  1761  		// put in the host name section to get the
  1762  		// client to connect to us again, so we can't
  1763  		// know the right absolute URI to send back.
  1764  		// Because of this problem, no one pays attention
  1765  		// to the RFC; they all send back just a new path.
  1766  		// So do we.
  1767  		if u.Scheme == "" && u.Host == "" {
  1768  			oldpath := r.URL.Path
  1769  			if oldpath == "" { // should not happen, but avoid a crash if it does
  1770  				oldpath = "/"
  1771  			}
  1772  
  1773  			// no leading http://server
  1774  			if urlStr == "" || urlStr[0] != '/' {
  1775  				// make relative path absolute
  1776  				olddir, _ := path.Split(oldpath)
  1777  				urlStr = olddir + urlStr
  1778  			}
  1779  
  1780  			var query string
  1781  			if i := strings.Index(urlStr, "?"); i != -1 {
  1782  				urlStr, query = urlStr[:i], urlStr[i:]
  1783  			}
  1784  
  1785  			// clean up but preserve trailing slash
  1786  			trailing := strings.HasSuffix(urlStr, "/")
  1787  			urlStr = path.Clean(urlStr)
  1788  			if trailing && !strings.HasSuffix(urlStr, "/") {
  1789  				urlStr += "/"
  1790  			}
  1791  			urlStr += query
  1792  		}
  1793  	}
  1794  
  1795  	w.Header().Set("Location", urlStr)
  1796  	w.WriteHeader(code)
  1797  
  1798  	// RFC 2616 recommends that a short note "SHOULD" be included in the
  1799  	// response because older user agents may not understand 301/307.
  1800  	// Shouldn't send the response for POST or HEAD; that leaves GET.
  1801  	if r.Method == "GET" {
  1802  		note := "<a href=\"" + htmlEscape(urlStr) + "\">" + statusText[code] + "</a>.\n"
  1803  		fmt.Fprintln(w, note)
  1804  	}
  1805  }
  1806  
  1807  var htmlReplacer = strings.NewReplacer(
  1808  	"&", "&amp;",
  1809  	"<", "&lt;",
  1810  	">", "&gt;",
  1811  	// "&#34;" is shorter than "&quot;".
  1812  	`"`, "&#34;",
  1813  	// "&#39;" is shorter than "&apos;" and apos was not in HTML until HTML5.
  1814  	"'", "&#39;",
  1815  )
  1816  
  1817  func htmlEscape(s string) string {
  1818  	return htmlReplacer.Replace(s)
  1819  }
  1820  
  1821  // Redirect to a fixed URL
  1822  type redirectHandler struct {
  1823  	url  string
  1824  	code int
  1825  }
  1826  
  1827  func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) {
  1828  	Redirect(w, r, rh.url, rh.code)
  1829  }
  1830  
  1831  // RedirectHandler returns a request handler that redirects
  1832  // each request it receives to the given url using the given
  1833  // status code.
  1834  //
  1835  // The provided code should be in the 3xx range and is usually
  1836  // StatusMovedPermanently, StatusFound or StatusSeeOther.
  1837  func RedirectHandler(url string, code int) Handler {
  1838  	return &redirectHandler{url, code}
  1839  }
  1840  
  1841  // ServeMux is an HTTP request multiplexer.
  1842  // It matches the URL of each incoming request against a list of registered
  1843  // patterns and calls the handler for the pattern that
  1844  // most closely matches the URL.
  1845  //
  1846  // Patterns name fixed, rooted paths, like "/favicon.ico",
  1847  // or rooted subtrees, like "/images/" (note the trailing slash).
  1848  // Longer patterns take precedence over shorter ones, so that
  1849  // if there are handlers registered for both "/images/"
  1850  // and "/images/thumbnails/", the latter handler will be
  1851  // called for paths beginning "/images/thumbnails/" and the
  1852  // former will receive requests for any other paths in the
  1853  // "/images/" subtree.
  1854  //
  1855  // Note that since a pattern ending in a slash names a rooted subtree,
  1856  // the pattern "/" matches all paths not matched by other registered
  1857  // patterns, not just the URL with Path == "/".
  1858  //
  1859  // If a subtree has been registered and a request is received naming the
  1860  // subtree root without its trailing slash, ServeMux redirects that
  1861  // request to the subtree root (adding the trailing slash). This behavior can
  1862  // be overridden with a separate registration for the path without
  1863  // the trailing slash. For example, registering "/images/" causes ServeMux
  1864  // to redirect a request for "/images" to "/images/", unless "/images" has
  1865  // been registered separately.
  1866  //
  1867  // Patterns may optionally begin with a host name, restricting matches to
  1868  // URLs on that host only. Host-specific patterns take precedence over
  1869  // general patterns, so that a handler might register for the two patterns
  1870  // "/codesearch" and "codesearch.google.com/" without also taking over
  1871  // requests for "http://www.google.com/".
  1872  //
  1873  // ServeMux also takes care of sanitizing the URL request path,
  1874  // redirecting any request containing . or .. elements or repeated slashes
  1875  // to an equivalent, cleaner URL.
  1876  type ServeMux struct {
  1877  	mu    sync.RWMutex
  1878  	m     map[string]muxEntry
  1879  	hosts bool // whether any patterns contain hostnames
  1880  }
  1881  
  1882  type muxEntry struct {
  1883  	explicit bool
  1884  	h        Handler
  1885  	pattern  string
  1886  }
  1887  
  1888  // NewServeMux allocates and returns a new ServeMux.
  1889  func NewServeMux() *ServeMux { return new(ServeMux) }
  1890  
  1891  // DefaultServeMux is the default ServeMux used by Serve.
  1892  var DefaultServeMux = &defaultServeMux
  1893  
  1894  var defaultServeMux ServeMux
  1895  
  1896  // Does path match pattern?
  1897  func pathMatch(pattern, path string) bool {
  1898  	if len(pattern) == 0 {
  1899  		// should not happen
  1900  		return false
  1901  	}
  1902  	n := len(pattern)
  1903  	if pattern[n-1] != '/' {
  1904  		return pattern == path
  1905  	}
  1906  	return len(path) >= n && path[0:n] == pattern
  1907  }
  1908  
  1909  // Return the canonical path for p, eliminating . and .. elements.
  1910  func cleanPath(p string) string {
  1911  	if p == "" {
  1912  		return "/"
  1913  	}
  1914  	if p[0] != '/' {
  1915  		p = "/" + p
  1916  	}
  1917  	np := path.Clean(p)
  1918  	// path.Clean removes trailing slash except for root;
  1919  	// put the trailing slash back if necessary.
  1920  	if p[len(p)-1] == '/' && np != "/" {
  1921  		np += "/"
  1922  	}
  1923  	return np
  1924  }
  1925  
  1926  // Find a handler on a handler map given a path string
  1927  // Most-specific (longest) pattern wins
  1928  func (mux *ServeMux) match(path string) (h Handler, pattern string) {
  1929  	var n = 0
  1930  	for k, v := range mux.m {
  1931  		if !pathMatch(k, path) {
  1932  			continue
  1933  		}
  1934  		if h == nil || len(k) > n {
  1935  			n = len(k)
  1936  			h = v.h
  1937  			pattern = v.pattern
  1938  		}
  1939  	}
  1940  	return
  1941  }
  1942  
  1943  // Handler returns the handler to use for the given request,
  1944  // consulting r.Method, r.Host, and r.URL.Path. It always returns
  1945  // a non-nil handler. If the path is not in its canonical form, the
  1946  // handler will be an internally-generated handler that redirects
  1947  // to the canonical path.
  1948  //
  1949  // Handler also returns the registered pattern that matches the
  1950  // request or, in the case of internally-generated redirects,
  1951  // the pattern that will match after following the redirect.
  1952  //
  1953  // If there is no registered handler that applies to the request,
  1954  // Handler returns a ``page not found'' handler and an empty pattern.
  1955  func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
  1956  	if r.Method != "CONNECT" {
  1957  		if p := cleanPath(r.URL.Path); p != r.URL.Path {
  1958  			_, pattern = mux.handler(r.Host, p)
  1959  			url := *r.URL
  1960  			url.Path = p
  1961  			return RedirectHandler(url.String(), StatusMovedPermanently), pattern
  1962  		}
  1963  	}
  1964  
  1965  	return mux.handler(r.Host, r.URL.Path)
  1966  }
  1967  
  1968  // handler is the main implementation of Handler.
  1969  // The path is known to be in canonical form, except for CONNECT methods.
  1970  func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
  1971  	mux.mu.RLock()
  1972  	defer mux.mu.RUnlock()
  1973  
  1974  	// Host-specific pattern takes precedence over generic ones
  1975  	if mux.hosts {
  1976  		h, pattern = mux.match(host + path)
  1977  	}
  1978  	if h == nil {
  1979  		h, pattern = mux.match(path)
  1980  	}
  1981  	if h == nil {
  1982  		h, pattern = NotFoundHandler(), ""
  1983  	}
  1984  	return
  1985  }
  1986  
  1987  // ServeHTTP dispatches the request to the handler whose
  1988  // pattern most closely matches the request URL.
  1989  func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
  1990  	if r.RequestURI == "*" {
  1991  		if r.ProtoAtLeast(1, 1) {
  1992  			w.Header().Set("Connection", "close")
  1993  		}
  1994  		w.WriteHeader(StatusBadRequest)
  1995  		return
  1996  	}
  1997  	h, _ := mux.Handler(r)
  1998  	h.ServeHTTP(w, r)
  1999  }
  2000  
  2001  // Handle registers the handler for the given pattern.
  2002  // If a handler already exists for pattern, Handle panics.
  2003  func (mux *ServeMux) Handle(pattern string, handler Handler) {
  2004  	mux.mu.Lock()
  2005  	defer mux.mu.Unlock()
  2006  
  2007  	if pattern == "" {
  2008  		panic("http: invalid pattern " + pattern)
  2009  	}
  2010  	if handler == nil {
  2011  		panic("http: nil handler")
  2012  	}
  2013  	if mux.m[pattern].explicit {
  2014  		panic("http: multiple registrations for " + pattern)
  2015  	}
  2016  
  2017  	if mux.m == nil {
  2018  		mux.m = make(map[string]muxEntry)
  2019  	}
  2020  	mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern}
  2021  
  2022  	if pattern[0] != '/' {
  2023  		mux.hosts = true
  2024  	}
  2025  
  2026  	// Helpful behavior:
  2027  	// If pattern is /tree/, insert an implicit permanent redirect for /tree.
  2028  	// It can be overridden by an explicit registration.
  2029  	n := len(pattern)
  2030  	if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit {
  2031  		// If pattern contains a host name, strip it and use remaining
  2032  		// path for redirect.
  2033  		path := pattern
  2034  		if pattern[0] != '/' {
  2035  			// In pattern, at least the last character is a '/', so
  2036  			// strings.Index can't be -1.
  2037  			path = pattern[strings.Index(pattern, "/"):]
  2038  		}
  2039  		url := &url.URL{Path: path}
  2040  		mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(url.String(), StatusMovedPermanently), pattern: pattern}
  2041  	}
  2042  }
  2043  
  2044  // HandleFunc registers the handler function for the given pattern.
  2045  func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  2046  	mux.Handle(pattern, HandlerFunc(handler))
  2047  }
  2048  
  2049  // Handle registers the handler for the given pattern
  2050  // in the DefaultServeMux.
  2051  // The documentation for ServeMux explains how patterns are matched.
  2052  func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) }
  2053  
  2054  // HandleFunc registers the handler function for the given pattern
  2055  // in the DefaultServeMux.
  2056  // The documentation for ServeMux explains how patterns are matched.
  2057  func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  2058  	DefaultServeMux.HandleFunc(pattern, handler)
  2059  }
  2060  
  2061  // Serve accepts incoming HTTP connections on the listener l,
  2062  // creating a new service goroutine for each. The service goroutines
  2063  // read requests and then call handler to reply to them.
  2064  // Handler is typically nil, in which case the DefaultServeMux is used.
  2065  func Serve(l net.Listener, handler Handler) error {
  2066  	srv := &Server{Handler: handler}
  2067  	return srv.Serve(l)
  2068  }
  2069  
  2070  // A Server defines parameters for running an HTTP server.
  2071  // The zero value for Server is a valid configuration.
  2072  type Server struct {
  2073  	Addr         string        // TCP address to listen on, ":http" if empty
  2074  	Handler      Handler       // handler to invoke, http.DefaultServeMux if nil
  2075  	ReadTimeout  time.Duration // maximum duration before timing out read of the request
  2076  	WriteTimeout time.Duration // maximum duration before timing out write of the response
  2077  	TLSConfig    *tls.Config   // optional TLS config, used by ListenAndServeTLS
  2078  
  2079  	// MaxHeaderBytes controls the maximum number of bytes the
  2080  	// server will read parsing the request header's keys and
  2081  	// values, including the request line. It does not limit the
  2082  	// size of the request body.
  2083  	// If zero, DefaultMaxHeaderBytes is used.
  2084  	MaxHeaderBytes int
  2085  
  2086  	// TLSNextProto optionally specifies a function to take over
  2087  	// ownership of the provided TLS connection when an NPN/ALPN
  2088  	// protocol upgrade has occurred. The map key is the protocol
  2089  	// name negotiated. The Handler argument should be used to
  2090  	// handle HTTP requests and will initialize the Request's TLS
  2091  	// and RemoteAddr if not already set. The connection is
  2092  	// automatically closed when the function returns.
  2093  	// If TLSNextProto is nil, HTTP/2 support is enabled automatically.
  2094  	TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
  2095  
  2096  	// ConnState specifies an optional callback function that is
  2097  	// called when a client connection changes state. See the
  2098  	// ConnState type and associated constants for details.
  2099  	ConnState func(net.Conn, ConnState)
  2100  
  2101  	// ErrorLog specifies an optional logger for errors accepting
  2102  	// connections and unexpected behavior from handlers.
  2103  	// If nil, logging goes to os.Stderr via the log package's
  2104  	// standard logger.
  2105  	ErrorLog *log.Logger
  2106  
  2107  	disableKeepAlives int32     // accessed atomically.
  2108  	nextProtoOnce     sync.Once // guards initialization of TLSNextProto in Serve
  2109  	nextProtoErr      error
  2110  }
  2111  
  2112  // A ConnState represents the state of a client connection to a server.
  2113  // It's used by the optional Server.ConnState hook.
  2114  type ConnState int
  2115  
  2116  const (
  2117  	// StateNew represents a new connection that is expected to
  2118  	// send a request immediately. Connections begin at this
  2119  	// state and then transition to either StateActive or
  2120  	// StateClosed.
  2121  	StateNew ConnState = iota
  2122  
  2123  	// StateActive represents a connection that has read 1 or more
  2124  	// bytes of a request. The Server.ConnState hook for
  2125  	// StateActive fires before the request has entered a handler
  2126  	// and doesn't fire again until the request has been
  2127  	// handled. After the request is handled, the state
  2128  	// transitions to StateClosed, StateHijacked, or StateIdle.
  2129  	// For HTTP/2, StateActive fires on the transition from zero
  2130  	// to one active request, and only transitions away once all
  2131  	// active requests are complete. That means that ConnState
  2132  	// cannot be used to do per-request work; ConnState only notes
  2133  	// the overall state of the connection.
  2134  	StateActive
  2135  
  2136  	// StateIdle represents a connection that has finished
  2137  	// handling a request and is in the keep-alive state, waiting
  2138  	// for a new request. Connections transition from StateIdle
  2139  	// to either StateActive or StateClosed.
  2140  	StateIdle
  2141  
  2142  	// StateHijacked represents a hijacked connection.
  2143  	// This is a terminal state. It does not transition to StateClosed.
  2144  	StateHijacked
  2145  
  2146  	// StateClosed represents a closed connection.
  2147  	// This is a terminal state. Hijacked connections do not
  2148  	// transition to StateClosed.
  2149  	StateClosed
  2150  )
  2151  
  2152  var stateName = map[ConnState]string{
  2153  	StateNew:      "new",
  2154  	StateActive:   "active",
  2155  	StateIdle:     "idle",
  2156  	StateHijacked: "hijacked",
  2157  	StateClosed:   "closed",
  2158  }
  2159  
  2160  func (c ConnState) String() string {
  2161  	return stateName[c]
  2162  }
  2163  
  2164  // serverHandler delegates to either the server's Handler or
  2165  // DefaultServeMux and also handles "OPTIONS *" requests.
  2166  type serverHandler struct {
  2167  	srv *Server
  2168  }
  2169  
  2170  func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
  2171  	handler := sh.srv.Handler
  2172  	if handler == nil {
  2173  		handler = DefaultServeMux
  2174  	}
  2175  	if req.RequestURI == "*" && req.Method == "OPTIONS" {
  2176  		handler = globalOptionsHandler{}
  2177  	}
  2178  	handler.ServeHTTP(rw, req)
  2179  }
  2180  
  2181  // ListenAndServe listens on the TCP network address srv.Addr and then
  2182  // calls Serve to handle requests on incoming connections.
  2183  // Accepted connections are configured to enable TCP keep-alives.
  2184  // If srv.Addr is blank, ":http" is used.
  2185  // ListenAndServe always returns a non-nil error.
  2186  func (srv *Server) ListenAndServe() error {
  2187  	addr := srv.Addr
  2188  	if addr == "" {
  2189  		addr = ":http"
  2190  	}
  2191  	ln, err := net.Listen("tcp", addr)
  2192  	if err != nil {
  2193  		return err
  2194  	}
  2195  	return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
  2196  }
  2197  
  2198  var testHookServerServe func(*Server, net.Listener) // used if non-nil
  2199  
  2200  // Serve accepts incoming connections on the Listener l, creating a
  2201  // new service goroutine for each. The service goroutines read requests and
  2202  // then call srv.Handler to reply to them.
  2203  // Serve always returns a non-nil error.
  2204  func (srv *Server) Serve(l net.Listener) error {
  2205  	defer l.Close()
  2206  	if fn := testHookServerServe; fn != nil {
  2207  		fn(srv, l)
  2208  	}
  2209  	var tempDelay time.Duration // how long to sleep on accept failure
  2210  	if err := srv.setupHTTP2(); err != nil {
  2211  		return err
  2212  	}
  2213  	// TODO: allow changing base context? can't imagine concrete
  2214  	// use cases yet.
  2215  	baseCtx := context.Background()
  2216  	ctx := context.WithValue(baseCtx, ServerContextKey, srv)
  2217  	ctx = context.WithValue(ctx, LocalAddrContextKey, l.Addr())
  2218  	for {
  2219  		rw, e := l.Accept()
  2220  		if e != nil {
  2221  			if ne, ok := e.(net.Error); ok && ne.Temporary() {
  2222  				if tempDelay == 0 {
  2223  					tempDelay = 5 * time.Millisecond
  2224  				} else {
  2225  					tempDelay *= 2
  2226  				}
  2227  				if max := 1 * time.Second; tempDelay > max {
  2228  					tempDelay = max
  2229  				}
  2230  				srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
  2231  				time.Sleep(tempDelay)
  2232  				continue
  2233  			}
  2234  			return e
  2235  		}
  2236  		tempDelay = 0
  2237  		c := srv.newConn(rw)
  2238  		c.setState(c.rwc, StateNew) // before Serve can return
  2239  		go c.serve(ctx)
  2240  	}
  2241  }
  2242  
  2243  func (s *Server) doKeepAlives() bool {
  2244  	return atomic.LoadInt32(&s.disableKeepAlives) == 0
  2245  }
  2246  
  2247  // SetKeepAlivesEnabled controls whether HTTP keep-alives are enabled.
  2248  // By default, keep-alives are always enabled. Only very
  2249  // resource-constrained environments or servers in the process of
  2250  // shutting down should disable them.
  2251  func (srv *Server) SetKeepAlivesEnabled(v bool) {
  2252  	if v {
  2253  		atomic.StoreInt32(&srv.disableKeepAlives, 0)
  2254  	} else {
  2255  		atomic.StoreInt32(&srv.disableKeepAlives, 1)
  2256  	}
  2257  }
  2258  
  2259  func (s *Server) logf(format string, args ...interface{}) {
  2260  	if s.ErrorLog != nil {
  2261  		s.ErrorLog.Printf(format, args...)
  2262  	} else {
  2263  		log.Printf(format, args...)
  2264  	}
  2265  }
  2266  
  2267  // ListenAndServe listens on the TCP network address addr
  2268  // and then calls Serve with handler to handle requests
  2269  // on incoming connections.
  2270  // Accepted connections are configured to enable TCP keep-alives.
  2271  // Handler is typically nil, in which case the DefaultServeMux is
  2272  // used.
  2273  //
  2274  // A trivial example server is:
  2275  //
  2276  //	package main
  2277  //
  2278  //	import (
  2279  //		"io"
  2280  //		"net/http"
  2281  //		"log"
  2282  //	)
  2283  //
  2284  //	// hello world, the web server
  2285  //	func HelloServer(w http.ResponseWriter, req *http.Request) {
  2286  //		io.WriteString(w, "hello, world!\n")
  2287  //	}
  2288  //
  2289  //	func main() {
  2290  //		http.HandleFunc("/hello", HelloServer)
  2291  //		log.Fatal(http.ListenAndServe(":12345", nil))
  2292  //	}
  2293  //
  2294  // ListenAndServe always returns a non-nil error.
  2295  func ListenAndServe(addr string, handler Handler) error {
  2296  	server := &Server{Addr: addr, Handler: handler}
  2297  	return server.ListenAndServe()
  2298  }
  2299  
  2300  // ListenAndServeTLS acts identically to ListenAndServe, except that it
  2301  // expects HTTPS connections. Additionally, files containing a certificate and
  2302  // matching private key for the server must be provided. If the certificate
  2303  // is signed by a certificate authority, the certFile should be the concatenation
  2304  // of the server's certificate, any intermediates, and the CA's certificate.
  2305  //
  2306  // A trivial example server is:
  2307  //
  2308  //	import (
  2309  //		"log"
  2310  //		"net/http"
  2311  //	)
  2312  //
  2313  //	func handler(w http.ResponseWriter, req *http.Request) {
  2314  //		w.Header().Set("Content-Type", "text/plain")
  2315  //		w.Write([]byte("This is an example server.\n"))
  2316  //	}
  2317  //
  2318  //	func main() {
  2319  //		http.HandleFunc("/", handler)
  2320  //		log.Printf("About to listen on 10443. Go to https://127.0.0.1:10443/")
  2321  //		err := http.ListenAndServeTLS(":10443", "cert.pem", "key.pem", nil)
  2322  //		log.Fatal(err)
  2323  //	}
  2324  //
  2325  // One can use generate_cert.go in crypto/tls to generate cert.pem and key.pem.
  2326  //
  2327  // ListenAndServeTLS always returns a non-nil error.
  2328  func ListenAndServeTLS(addr, certFile, keyFile string, handler Handler) error {
  2329  	server := &Server{Addr: addr, Handler: handler}
  2330  	return server.ListenAndServeTLS(certFile, keyFile)
  2331  }
  2332  
  2333  // ListenAndServeTLS listens on the TCP network address srv.Addr and
  2334  // then calls Serve to handle requests on incoming TLS connections.
  2335  // Accepted connections are configured to enable TCP keep-alives.
  2336  //
  2337  // Filenames containing a certificate and matching private key for the
  2338  // server must be provided if neither the Server's TLSConfig.Certificates
  2339  // nor TLSConfig.GetCertificate are populated. If the certificate is
  2340  // signed by a certificate authority, the certFile should be the
  2341  // concatenation of the server's certificate, any intermediates, and
  2342  // the CA's certificate.
  2343  //
  2344  // If srv.Addr is blank, ":https" is used.
  2345  //
  2346  // ListenAndServeTLS always returns a non-nil error.
  2347  func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error {
  2348  	addr := srv.Addr
  2349  	if addr == "" {
  2350  		addr = ":https"
  2351  	}
  2352  
  2353  	// Setup HTTP/2 before srv.Serve, to initialize srv.TLSConfig
  2354  	// before we clone it and create the TLS Listener.
  2355  	if err := srv.setupHTTP2(); err != nil {
  2356  		return err
  2357  	}
  2358  
  2359  	config := cloneTLSConfig(srv.TLSConfig)
  2360  	if !strSliceContains(config.NextProtos, "http/1.1") {
  2361  		config.NextProtos = append(config.NextProtos, "http/1.1")
  2362  	}
  2363  
  2364  	configHasCert := len(config.Certificates) > 0 || config.GetCertificate != nil
  2365  	if !configHasCert || certFile != "" || keyFile != "" {
  2366  		var err error
  2367  		config.Certificates = make([]tls.Certificate, 1)
  2368  		config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile)
  2369  		if err != nil {
  2370  			return err
  2371  		}
  2372  	}
  2373  
  2374  	ln, err := net.Listen("tcp", addr)
  2375  	if err != nil {
  2376  		return err
  2377  	}
  2378  
  2379  	tlsListener := tls.NewListener(tcpKeepAliveListener{ln.(*net.TCPListener)}, config)
  2380  	return srv.Serve(tlsListener)
  2381  }
  2382  
  2383  func (srv *Server) setupHTTP2() error {
  2384  	srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults)
  2385  	return srv.nextProtoErr
  2386  }
  2387  
  2388  // onceSetNextProtoDefaults configures HTTP/2, if the user hasn't
  2389  // configured otherwise. (by setting srv.TLSNextProto non-nil)
  2390  // It must only be called via srv.nextProtoOnce (use srv.setupHTTP2).
  2391  func (srv *Server) onceSetNextProtoDefaults() {
  2392  	if strings.Contains(os.Getenv("GODEBUG"), "http2server=0") {
  2393  		return
  2394  	}
  2395  	// Enable HTTP/2 by default if the user hasn't otherwise
  2396  	// configured their TLSNextProto map.
  2397  	if srv.TLSNextProto == nil {
  2398  		srv.nextProtoErr = http2ConfigureServer(srv, nil)
  2399  	}
  2400  }
  2401  
  2402  // TimeoutHandler returns a Handler that runs h with the given time limit.
  2403  //
  2404  // The new Handler calls h.ServeHTTP to handle each request, but if a
  2405  // call runs for longer than its time limit, the handler responds with
  2406  // a 503 Service Unavailable error and the given message in its body.
  2407  // (If msg is empty, a suitable default message will be sent.)
  2408  // After such a timeout, writes by h to its ResponseWriter will return
  2409  // ErrHandlerTimeout.
  2410  //
  2411  // TimeoutHandler buffers all Handler writes to memory and does not
  2412  // support the Hijacker or Flusher interfaces.
  2413  func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler {
  2414  	return &timeoutHandler{
  2415  		handler: h,
  2416  		body:    msg,
  2417  		dt:      dt,
  2418  	}
  2419  }
  2420  
  2421  // ErrHandlerTimeout is returned on ResponseWriter Write calls
  2422  // in handlers which have timed out.
  2423  var ErrHandlerTimeout = errors.New("http: Handler timeout")
  2424  
  2425  type timeoutHandler struct {
  2426  	handler Handler
  2427  	body    string
  2428  	dt      time.Duration
  2429  
  2430  	// When set, no timer will be created and this channel will
  2431  	// be used instead.
  2432  	testTimeout <-chan time.Time
  2433  }
  2434  
  2435  func (h *timeoutHandler) errorBody() string {
  2436  	if h.body != "" {
  2437  		return h.body
  2438  	}
  2439  	return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>"
  2440  }
  2441  
  2442  func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) {
  2443  	var t *time.Timer
  2444  	timeout := h.testTimeout
  2445  	if timeout == nil {
  2446  		t = time.NewTimer(h.dt)
  2447  		timeout = t.C
  2448  	}
  2449  	done := make(chan struct{})
  2450  	tw := &timeoutWriter{
  2451  		w: w,
  2452  		h: make(Header),
  2453  	}
  2454  	go func() {
  2455  		h.handler.ServeHTTP(tw, r)
  2456  		close(done)
  2457  	}()
  2458  	select {
  2459  	case <-done:
  2460  		tw.mu.Lock()
  2461  		defer tw.mu.Unlock()
  2462  		dst := w.Header()
  2463  		for k, vv := range tw.h {
  2464  			dst[k] = vv
  2465  		}
  2466  		w.WriteHeader(tw.code)
  2467  		w.Write(tw.wbuf.Bytes())
  2468  		if t != nil {
  2469  			t.Stop()
  2470  		}
  2471  	case <-timeout:
  2472  		tw.mu.Lock()
  2473  		defer tw.mu.Unlock()
  2474  		w.WriteHeader(StatusServiceUnavailable)
  2475  		io.WriteString(w, h.errorBody())
  2476  		tw.timedOut = true
  2477  		return
  2478  	}
  2479  }
  2480  
  2481  type timeoutWriter struct {
  2482  	w    ResponseWriter
  2483  	h    Header
  2484  	wbuf bytes.Buffer
  2485  
  2486  	mu          sync.Mutex
  2487  	timedOut    bool
  2488  	wroteHeader bool
  2489  	code        int
  2490  }
  2491  
  2492  func (tw *timeoutWriter) Header() Header { return tw.h }
  2493  
  2494  func (tw *timeoutWriter) Write(p []byte) (int, error) {
  2495  	tw.mu.Lock()
  2496  	defer tw.mu.Unlock()
  2497  	if tw.timedOut {
  2498  		return 0, ErrHandlerTimeout
  2499  	}
  2500  	if !tw.wroteHeader {
  2501  		tw.writeHeader(StatusOK)
  2502  	}
  2503  	return tw.wbuf.Write(p)
  2504  }
  2505  
  2506  func (tw *timeoutWriter) WriteHeader(code int) {
  2507  	tw.mu.Lock()
  2508  	defer tw.mu.Unlock()
  2509  	if tw.timedOut || tw.wroteHeader {
  2510  		return
  2511  	}
  2512  	tw.writeHeader(code)
  2513  }
  2514  
  2515  func (tw *timeoutWriter) writeHeader(code int) {
  2516  	tw.wroteHeader = true
  2517  	tw.code = code
  2518  }
  2519  
  2520  // tcpKeepAliveListener sets TCP keep-alive timeouts on accepted
  2521  // connections. It's used by ListenAndServe and ListenAndServeTLS so
  2522  // dead TCP connections (e.g. closing laptop mid-download) eventually
  2523  // go away.
  2524  type tcpKeepAliveListener struct {
  2525  	*net.TCPListener
  2526  }
  2527  
  2528  func (ln tcpKeepAliveListener) Accept() (c net.Conn, err error) {
  2529  	tc, err := ln.AcceptTCP()
  2530  	if err != nil {
  2531  		return
  2532  	}
  2533  	tc.SetKeepAlive(true)
  2534  	tc.SetKeepAlivePeriod(3 * time.Minute)
  2535  	return tc, nil
  2536  }
  2537  
  2538  // globalOptionsHandler responds to "OPTIONS *" requests.
  2539  type globalOptionsHandler struct{}
  2540  
  2541  func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) {
  2542  	w.Header().Set("Content-Length", "0")
  2543  	if r.ContentLength != 0 {
  2544  		// Read up to 4KB of OPTIONS body (as mentioned in the
  2545  		// spec as being reserved for future use), but anything
  2546  		// over that is considered a waste of server resources
  2547  		// (or an attack) and we abort and close the connection,
  2548  		// courtesy of MaxBytesReader's EOF behavior.
  2549  		mb := MaxBytesReader(w, r.Body, 4<<10)
  2550  		io.Copy(ioutil.Discard, mb)
  2551  	}
  2552  }
  2553  
  2554  type eofReaderWithWriteTo struct{}
  2555  
  2556  func (eofReaderWithWriteTo) WriteTo(io.Writer) (int64, error) { return 0, nil }
  2557  func (eofReaderWithWriteTo) Read([]byte) (int, error)         { return 0, io.EOF }
  2558  
  2559  // eofReader is a non-nil io.ReadCloser that always returns EOF.
  2560  // It has a WriteTo method so io.Copy won't need a buffer.
  2561  var eofReader = &struct {
  2562  	eofReaderWithWriteTo
  2563  	io.Closer
  2564  }{
  2565  	eofReaderWithWriteTo{},
  2566  	ioutil.NopCloser(nil),
  2567  }
  2568  
  2569  // Verify that an io.Copy from an eofReader won't require a buffer.
  2570  var _ io.WriterTo = eofReader
  2571  
  2572  // initNPNRequest is an HTTP handler that initializes certain
  2573  // uninitialized fields in its *Request. Such partially-initialized
  2574  // Requests come from NPN protocol handlers.
  2575  type initNPNRequest struct {
  2576  	c *tls.Conn
  2577  	h serverHandler
  2578  }
  2579  
  2580  func (h initNPNRequest) ServeHTTP(rw ResponseWriter, req *Request) {
  2581  	if req.TLS == nil {
  2582  		req.TLS = &tls.ConnectionState{}
  2583  		*req.TLS = h.c.ConnectionState()
  2584  	}
  2585  	if req.Body == nil {
  2586  		req.Body = eofReader
  2587  	}
  2588  	if req.RemoteAddr == "" {
  2589  		req.RemoteAddr = h.c.RemoteAddr().String()
  2590  	}
  2591  	h.h.ServeHTTP(rw, req)
  2592  }
  2593  
  2594  // loggingConn is used for debugging.
  2595  type loggingConn struct {
  2596  	name string
  2597  	net.Conn
  2598  }
  2599  
  2600  var (
  2601  	uniqNameMu   sync.Mutex
  2602  	uniqNameNext = make(map[string]int)
  2603  )
  2604  
  2605  func newLoggingConn(baseName string, c net.Conn) net.Conn {
  2606  	uniqNameMu.Lock()
  2607  	defer uniqNameMu.Unlock()
  2608  	uniqNameNext[baseName]++
  2609  	return &loggingConn{
  2610  		name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]),
  2611  		Conn: c,
  2612  	}
  2613  }
  2614  
  2615  func (c *loggingConn) Write(p []byte) (n int, err error) {
  2616  	log.Printf("%s.Write(%d) = ....", c.name, len(p))
  2617  	n, err = c.Conn.Write(p)
  2618  	log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err)
  2619  	return
  2620  }
  2621  
  2622  func (c *loggingConn) Read(p []byte) (n int, err error) {
  2623  	log.Printf("%s.Read(%d) = ....", c.name, len(p))
  2624  	n, err = c.Conn.Read(p)
  2625  	log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err)
  2626  	return
  2627  }
  2628  
  2629  func (c *loggingConn) Close() (err error) {
  2630  	log.Printf("%s.Close() = ...", c.name)
  2631  	err = c.Conn.Close()
  2632  	log.Printf("%s.Close() = %v", c.name, err)
  2633  	return
  2634  }
  2635  
  2636  // checkConnErrorWriter writes to c.rwc and records any write errors to c.werr.
  2637  // It only contains one field (and a pointer field at that), so it
  2638  // fits in an interface value without an extra allocation.
  2639  type checkConnErrorWriter struct {
  2640  	c *conn
  2641  }
  2642  
  2643  func (w checkConnErrorWriter) Write(p []byte) (n int, err error) {
  2644  	n, err = w.c.rwc.Write(p)
  2645  	if err != nil && w.c.werr == nil {
  2646  		w.c.werr = err
  2647  	}
  2648  	return
  2649  }
  2650  
  2651  func numLeadingCRorLF(v []byte) (n int) {
  2652  	for _, b := range v {
  2653  		if b == '\r' || b == '\n' {
  2654  			n++
  2655  			continue
  2656  		}
  2657  		break
  2658  	}
  2659  	return
  2660  
  2661  }
  2662  
  2663  func strSliceContains(ss []string, s string) bool {
  2664  	for _, v := range ss {
  2665  		if v == s {
  2666  			return true
  2667  		}
  2668  	}
  2669  	return false
  2670  }