github.com/miolini/go@v0.0.0-20160405192216-fca68c8cb408/src/cmd/compile/internal/gc/const.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gc 6 7 import ( 8 "cmd/compile/internal/big" 9 "cmd/internal/obj" 10 "strings" 11 ) 12 13 // IntLiteral returns the Node's literal value as an integer. 14 func (n *Node) IntLiteral() (x int64, ok bool) { 15 switch { 16 case n == nil: 17 return 18 case Isconst(n, CTINT): 19 return n.Int64(), true 20 case Isconst(n, CTBOOL): 21 return int64(obj.Bool2int(n.Bool())), true 22 } 23 return 24 } 25 26 // Int64 returns n as an int64. 27 // n must be an integer or rune constant. 28 func (n *Node) Int64() int64 { 29 if !Isconst(n, CTINT) { 30 Fatalf("Int(%v)", n) 31 } 32 return n.Val().U.(*Mpint).Int64() 33 } 34 35 // SetInt sets n's value to i. 36 // n must be an integer constant. 37 func (n *Node) SetInt(i int64) { 38 if !Isconst(n, CTINT) { 39 Fatalf("SetInt(%v)", n) 40 } 41 n.Val().U.(*Mpint).SetInt64(i) 42 } 43 44 // SetBigInt sets n's value to x. 45 // n must be an integer constant. 46 func (n *Node) SetBigInt(x *big.Int) { 47 if !Isconst(n, CTINT) { 48 Fatalf("SetBigInt(%v)", n) 49 } 50 n.Val().U.(*Mpint).Val.Set(x) 51 } 52 53 // Bool returns n as an bool. 54 // n must be an boolean constant. 55 func (n *Node) Bool() bool { 56 if !Isconst(n, CTBOOL) { 57 Fatalf("Int(%v)", n) 58 } 59 return n.Val().U.(bool) 60 } 61 62 // truncate float literal fv to 32-bit or 64-bit precision 63 // according to type; return truncated value. 64 func truncfltlit(oldv *Mpflt, t *Type) *Mpflt { 65 if t == nil { 66 return oldv 67 } 68 69 var v Val 70 v.U = oldv 71 overflow(v, t) 72 73 fv := newMpflt() 74 fv.Set(oldv) 75 76 // convert large precision literal floating 77 // into limited precision (float64 or float32) 78 switch t.Etype { 79 case TFLOAT64: 80 d := fv.Float64() 81 fv.SetFloat64(d) 82 83 case TFLOAT32: 84 d := fv.Float32() 85 fv.SetFloat64(d) 86 } 87 88 return fv 89 } 90 91 // NegOne returns a Node of type t with value -1. 92 func NegOne(t *Type) *Node { 93 n := Nodintconst(-1) 94 n = convlit(n, t) 95 return n 96 } 97 98 // canReuseNode indicates whether it is known to be safe 99 // to reuse a Node. 100 type canReuseNode bool 101 102 const ( 103 noReuse canReuseNode = false // not necessarily safe to reuse 104 reuseOK canReuseNode = true // safe to reuse 105 ) 106 107 // convert n, if literal, to type t. 108 // implicit conversion. 109 // The result of convlit MUST be assigned back to n, e.g. 110 // n.Left = convlit(n.Left, t) 111 func convlit(n *Node, t *Type) *Node { 112 return convlit1(n, t, false, noReuse) 113 } 114 115 // convlit1 converts n, if literal, to type t. 116 // It returns a new node if necessary. 117 // The result of convlit1 MUST be assigned back to n, e.g. 118 // n.Left = convlit1(n.Left, t, explicit, reuse) 119 func convlit1(n *Node, t *Type, explicit bool, reuse canReuseNode) *Node { 120 if n == nil || t == nil || n.Type == nil || t.IsUntyped() || n.Type == t { 121 return n 122 } 123 if !explicit && !n.Type.IsUntyped() { 124 return n 125 } 126 127 if n.Op == OLITERAL && !reuse { 128 // Can't always set n.Type directly on OLITERAL nodes. 129 // See discussion on CL 20813. 130 nn := *n 131 n = &nn 132 reuse = true 133 } 134 135 switch n.Op { 136 default: 137 if n.Type == idealbool { 138 if t.IsBoolean() { 139 n.Type = t 140 } else { 141 n.Type = Types[TBOOL] 142 } 143 } 144 145 if n.Type.Etype == TIDEAL { 146 n.Left = convlit(n.Left, t) 147 n.Right = convlit(n.Right, t) 148 n.Type = t 149 } 150 151 return n 152 153 // target is invalid type for a constant? leave alone. 154 case OLITERAL: 155 if !okforconst[t.Etype] && n.Type.Etype != TNIL { 156 return defaultlitreuse(n, nil, reuse) 157 } 158 159 case OLSH, ORSH: 160 n.Left = convlit1(n.Left, t, explicit && n.Left.Type.IsUntyped(), noReuse) 161 t = n.Left.Type 162 if t != nil && t.Etype == TIDEAL && n.Val().Ctype() != CTINT { 163 n.SetVal(toint(n.Val())) 164 } 165 if t != nil && !t.IsInteger() { 166 Yyerror("invalid operation: %v (shift of type %v)", n, t) 167 t = nil 168 } 169 170 n.Type = t 171 return n 172 173 case OCOMPLEX: 174 if n.Type.Etype == TIDEAL { 175 switch t.Etype { 176 // If trying to convert to non-complex type, 177 // leave as complex128 and let typechecker complain. 178 default: 179 t = Types[TCOMPLEX128] 180 fallthrough 181 182 //fallthrough 183 case TCOMPLEX128: 184 n.Type = t 185 186 n.Left = convlit(n.Left, Types[TFLOAT64]) 187 n.Right = convlit(n.Right, Types[TFLOAT64]) 188 189 case TCOMPLEX64: 190 n.Type = t 191 n.Left = convlit(n.Left, Types[TFLOAT32]) 192 n.Right = convlit(n.Right, Types[TFLOAT32]) 193 } 194 } 195 196 return n 197 } 198 199 // avoided repeated calculations, errors 200 if Eqtype(n.Type, t) { 201 return n 202 } 203 204 ct := consttype(n) 205 var et EType 206 if ct < 0 { 207 goto bad 208 } 209 210 et = t.Etype 211 if et == TINTER { 212 if ct == CTNIL && n.Type == Types[TNIL] { 213 n.Type = t 214 return n 215 } 216 return defaultlitreuse(n, nil, reuse) 217 } 218 219 switch ct { 220 default: 221 goto bad 222 223 case CTNIL: 224 switch et { 225 default: 226 n.Type = nil 227 goto bad 228 229 // let normal conversion code handle it 230 case TSTRING: 231 return n 232 233 case TARRAY: 234 if !t.IsSlice() { 235 goto bad 236 } 237 238 case TPTR32, 239 TPTR64, 240 TINTER, 241 TMAP, 242 TCHAN, 243 TFUNC, 244 TUNSAFEPTR: 245 break 246 247 // A nil literal may be converted to uintptr 248 // if it is an unsafe.Pointer 249 case TUINTPTR: 250 if n.Type.Etype == TUNSAFEPTR { 251 n.SetVal(Val{new(Mpint)}) 252 n.Val().U.(*Mpint).SetInt64(0) 253 } else { 254 goto bad 255 } 256 } 257 258 case CTSTR, CTBOOL: 259 if et != n.Type.Etype { 260 goto bad 261 } 262 263 case CTINT, CTRUNE, CTFLT, CTCPLX: 264 if n.Type.Etype == TUNSAFEPTR && t.Etype != TUINTPTR { 265 goto bad 266 } 267 ct := n.Val().Ctype() 268 if Isint[et] { 269 switch ct { 270 default: 271 goto bad 272 273 case CTCPLX, CTFLT, CTRUNE: 274 n.SetVal(toint(n.Val())) 275 fallthrough 276 277 case CTINT: 278 overflow(n.Val(), t) 279 } 280 } else if Isfloat[et] { 281 switch ct { 282 default: 283 goto bad 284 285 case CTCPLX, CTINT, CTRUNE: 286 n.SetVal(toflt(n.Val())) 287 fallthrough 288 289 case CTFLT: 290 n.SetVal(Val{truncfltlit(n.Val().U.(*Mpflt), t)}) 291 } 292 } else if Iscomplex[et] { 293 switch ct { 294 default: 295 goto bad 296 297 case CTFLT, CTINT, CTRUNE: 298 n.SetVal(tocplx(n.Val())) 299 fallthrough 300 301 case CTCPLX: 302 overflow(n.Val(), t) 303 } 304 } else if et == TSTRING && (ct == CTINT || ct == CTRUNE) && explicit { 305 n.SetVal(tostr(n.Val())) 306 } else { 307 goto bad 308 } 309 } 310 311 n.Type = t 312 return n 313 314 bad: 315 if n.Diag == 0 { 316 if !t.Broke { 317 Yyerror("cannot convert %v to type %v", n, t) 318 } 319 n.Diag = 1 320 } 321 322 if n.Type.IsUntyped() { 323 n = defaultlitreuse(n, nil, reuse) 324 } 325 return n 326 } 327 328 func copyval(v Val) Val { 329 switch v.Ctype() { 330 case CTINT, CTRUNE: 331 i := new(Mpint) 332 i.Set(v.U.(*Mpint)) 333 i.Rune = v.U.(*Mpint).Rune 334 v.U = i 335 336 case CTFLT: 337 f := newMpflt() 338 f.Set(v.U.(*Mpflt)) 339 v.U = f 340 341 case CTCPLX: 342 c := new(Mpcplx) 343 c.Real.Set(&v.U.(*Mpcplx).Real) 344 c.Imag.Set(&v.U.(*Mpcplx).Imag) 345 v.U = c 346 } 347 348 return v 349 } 350 351 func tocplx(v Val) Val { 352 switch v.Ctype() { 353 case CTINT, CTRUNE: 354 c := new(Mpcplx) 355 c.Real.SetInt(v.U.(*Mpint)) 356 c.Imag.SetFloat64(0.0) 357 v.U = c 358 359 case CTFLT: 360 c := new(Mpcplx) 361 c.Real.Set(v.U.(*Mpflt)) 362 c.Imag.SetFloat64(0.0) 363 v.U = c 364 } 365 366 return v 367 } 368 369 func toflt(v Val) Val { 370 switch v.Ctype() { 371 case CTINT, CTRUNE: 372 f := newMpflt() 373 f.SetInt(v.U.(*Mpint)) 374 v.U = f 375 376 case CTCPLX: 377 f := newMpflt() 378 f.Set(&v.U.(*Mpcplx).Real) 379 if v.U.(*Mpcplx).Imag.CmpFloat64(0) != 0 { 380 Yyerror("constant %v%vi truncated to real", Fconv(&v.U.(*Mpcplx).Real, FmtSharp), Fconv(&v.U.(*Mpcplx).Imag, FmtSharp|FmtSign)) 381 } 382 v.U = f 383 } 384 385 return v 386 } 387 388 func toint(v Val) Val { 389 switch v.Ctype() { 390 case CTRUNE: 391 i := new(Mpint) 392 i.Set(v.U.(*Mpint)) 393 v.U = i 394 395 case CTFLT: 396 i := new(Mpint) 397 if f := v.U.(*Mpflt); i.SetFloat(f) < 0 { 398 msg := "constant %v truncated to integer" 399 // provide better error message if SetFloat failed because f was too large 400 if f.Val.IsInt() { 401 msg = "constant %v overflows integer" 402 } 403 Yyerror(msg, Fconv(f, FmtSharp)) 404 } 405 v.U = i 406 407 case CTCPLX: 408 i := new(Mpint) 409 if i.SetFloat(&v.U.(*Mpcplx).Real) < 0 { 410 Yyerror("constant %v%vi truncated to integer", Fconv(&v.U.(*Mpcplx).Real, FmtSharp), Fconv(&v.U.(*Mpcplx).Imag, FmtSharp|FmtSign)) 411 } 412 if v.U.(*Mpcplx).Imag.CmpFloat64(0) != 0 { 413 Yyerror("constant %v%vi truncated to real", Fconv(&v.U.(*Mpcplx).Real, FmtSharp), Fconv(&v.U.(*Mpcplx).Imag, FmtSharp|FmtSign)) 414 } 415 v.U = i 416 } 417 418 return v 419 } 420 421 func doesoverflow(v Val, t *Type) bool { 422 switch v.Ctype() { 423 case CTINT, CTRUNE: 424 if !t.IsInteger() { 425 Fatalf("overflow: %v integer constant", t) 426 } 427 if v.U.(*Mpint).Cmp(Minintval[t.Etype]) < 0 || v.U.(*Mpint).Cmp(Maxintval[t.Etype]) > 0 { 428 return true 429 } 430 431 case CTFLT: 432 if !t.IsFloat() { 433 Fatalf("overflow: %v floating-point constant", t) 434 } 435 if v.U.(*Mpflt).Cmp(minfltval[t.Etype]) <= 0 || v.U.(*Mpflt).Cmp(maxfltval[t.Etype]) >= 0 { 436 return true 437 } 438 439 case CTCPLX: 440 if !t.IsComplex() { 441 Fatalf("overflow: %v complex constant", t) 442 } 443 if v.U.(*Mpcplx).Real.Cmp(minfltval[t.Etype]) <= 0 || v.U.(*Mpcplx).Real.Cmp(maxfltval[t.Etype]) >= 0 || v.U.(*Mpcplx).Imag.Cmp(minfltval[t.Etype]) <= 0 || v.U.(*Mpcplx).Imag.Cmp(maxfltval[t.Etype]) >= 0 { 444 return true 445 } 446 } 447 448 return false 449 } 450 451 func overflow(v Val, t *Type) { 452 // v has already been converted 453 // to appropriate form for t. 454 if t == nil || t.Etype == TIDEAL { 455 return 456 } 457 458 // Only uintptrs may be converted to unsafe.Pointer, which cannot overflow. 459 if t.Etype == TUNSAFEPTR { 460 return 461 } 462 463 if doesoverflow(v, t) { 464 Yyerror("constant %s overflows %v", Vconv(v, 0), t) 465 } 466 } 467 468 func tostr(v Val) Val { 469 switch v.Ctype() { 470 case CTINT, CTRUNE: 471 var i int64 = 0xFFFD 472 if u := v.U.(*Mpint); u.Cmp(Minintval[TUINT32]) >= 0 && u.Cmp(Maxintval[TUINT32]) <= 0 { 473 i = u.Int64() 474 } 475 v = Val{} 476 v.U = string(i) 477 478 case CTFLT: 479 Yyerror("no float -> string") 480 fallthrough 481 482 case CTNIL: 483 v = Val{} 484 v.U = "" 485 } 486 487 return v 488 } 489 490 func consttype(n *Node) Ctype { 491 if n == nil || n.Op != OLITERAL { 492 return -1 493 } 494 return n.Val().Ctype() 495 } 496 497 func Isconst(n *Node, ct Ctype) bool { 498 t := consttype(n) 499 500 // If the caller is asking for CTINT, allow CTRUNE too. 501 // Makes life easier for back ends. 502 return t == ct || (ct == CTINT && t == CTRUNE) 503 } 504 505 func saveorig(n *Node) *Node { 506 if n == n.Orig { 507 // duplicate node for n->orig. 508 n1 := Nod(OLITERAL, nil, nil) 509 510 n.Orig = n1 511 *n1 = *n 512 } 513 514 return n.Orig 515 } 516 517 // if n is constant, rewrite as OLITERAL node. 518 func evconst(n *Node) { 519 // pick off just the opcodes that can be 520 // constant evaluated. 521 switch n.Op { 522 default: 523 return 524 525 case OADD, 526 OAND, 527 OANDAND, 528 OANDNOT, 529 OARRAYBYTESTR, 530 OCOM, 531 ODIV, 532 OEQ, 533 OGE, 534 OGT, 535 OLE, 536 OLSH, 537 OLT, 538 OMINUS, 539 OMOD, 540 OMUL, 541 ONE, 542 ONOT, 543 OOR, 544 OOROR, 545 OPLUS, 546 ORSH, 547 OSUB, 548 OXOR: 549 break 550 551 case OCONV: 552 if n.Type == nil { 553 return 554 } 555 if !okforconst[n.Type.Etype] && n.Type.Etype != TNIL { 556 return 557 } 558 559 // merge adjacent constants in the argument list. 560 case OADDSTR: 561 s := n.List.Slice() 562 for i1 := 0; i1 < len(s); i1++ { 563 if Isconst(s[i1], CTSTR) && i1+1 < len(s) && Isconst(s[i1+1], CTSTR) { 564 // merge from i1 up to but not including i2 565 var strs []string 566 i2 := i1 567 for i2 < len(s) && Isconst(s[i2], CTSTR) { 568 strs = append(strs, s[i2].Val().U.(string)) 569 i2++ 570 } 571 572 nl := *s[i1] 573 nl.Orig = &nl 574 nl.SetVal(Val{strings.Join(strs, "")}) 575 s[i1] = &nl 576 s = append(s[:i1+1], s[i2:]...) 577 } 578 } 579 580 if len(s) == 1 && Isconst(s[0], CTSTR) { 581 n.Op = OLITERAL 582 n.SetVal(s[0].Val()) 583 } else { 584 n.List.Set(s) 585 } 586 587 return 588 } 589 590 nl := n.Left 591 if nl == nil || nl.Type == nil { 592 return 593 } 594 if consttype(nl) < 0 { 595 return 596 } 597 wl := nl.Type.Etype 598 if Isint[wl] || Isfloat[wl] || Iscomplex[wl] { 599 wl = TIDEAL 600 } 601 602 // avoid constant conversions in switches below 603 const ( 604 CTINT_ = uint32(CTINT) 605 CTRUNE_ = uint32(CTRUNE) 606 CTFLT_ = uint32(CTFLT) 607 CTCPLX_ = uint32(CTCPLX) 608 CTSTR_ = uint32(CTSTR) 609 CTBOOL_ = uint32(CTBOOL) 610 CTNIL_ = uint32(CTNIL) 611 OCONV_ = uint32(OCONV) << 16 612 OARRAYBYTESTR_ = uint32(OARRAYBYTESTR) << 16 613 OPLUS_ = uint32(OPLUS) << 16 614 OMINUS_ = uint32(OMINUS) << 16 615 OCOM_ = uint32(OCOM) << 16 616 ONOT_ = uint32(ONOT) << 16 617 OLSH_ = uint32(OLSH) << 16 618 ORSH_ = uint32(ORSH) << 16 619 OADD_ = uint32(OADD) << 16 620 OSUB_ = uint32(OSUB) << 16 621 OMUL_ = uint32(OMUL) << 16 622 ODIV_ = uint32(ODIV) << 16 623 OMOD_ = uint32(OMOD) << 16 624 OOR_ = uint32(OOR) << 16 625 OAND_ = uint32(OAND) << 16 626 OANDNOT_ = uint32(OANDNOT) << 16 627 OXOR_ = uint32(OXOR) << 16 628 OEQ_ = uint32(OEQ) << 16 629 ONE_ = uint32(ONE) << 16 630 OLT_ = uint32(OLT) << 16 631 OLE_ = uint32(OLE) << 16 632 OGE_ = uint32(OGE) << 16 633 OGT_ = uint32(OGT) << 16 634 OOROR_ = uint32(OOROR) << 16 635 OANDAND_ = uint32(OANDAND) << 16 636 ) 637 638 nr := n.Right 639 var rv Val 640 var lno int32 641 var wr EType 642 var v Val 643 var norig *Node 644 var nn *Node 645 if nr == nil { 646 // copy numeric value to avoid modifying 647 // nl, in case someone still refers to it (e.g. iota). 648 v = nl.Val() 649 650 if wl == TIDEAL { 651 v = copyval(v) 652 } 653 654 switch uint32(n.Op)<<16 | uint32(v.Ctype()) { 655 default: 656 if n.Diag == 0 { 657 Yyerror("illegal constant expression %v %v", Oconv(n.Op, 0), nl.Type) 658 n.Diag = 1 659 } 660 return 661 662 case OCONV_ | CTNIL_, 663 OARRAYBYTESTR_ | CTNIL_: 664 if n.Type.IsString() { 665 v = tostr(v) 666 nl.Type = n.Type 667 break 668 } 669 fallthrough 670 671 // fall through 672 case OCONV_ | CTINT_, 673 OCONV_ | CTRUNE_, 674 OCONV_ | CTFLT_, 675 OCONV_ | CTSTR_, 676 OCONV_ | CTBOOL_: 677 nl = convlit1(nl, n.Type, true, false) 678 v = nl.Val() 679 680 case OPLUS_ | CTINT_, 681 OPLUS_ | CTRUNE_: 682 break 683 684 case OMINUS_ | CTINT_, 685 OMINUS_ | CTRUNE_: 686 v.U.(*Mpint).Neg() 687 688 case OCOM_ | CTINT_, 689 OCOM_ | CTRUNE_: 690 var et EType = Txxx 691 if nl.Type != nil { 692 et = nl.Type.Etype 693 } 694 695 // calculate the mask in b 696 // result will be (a ^ mask) 697 var b Mpint 698 switch et { 699 // signed guys change sign 700 default: 701 b.SetInt64(-1) 702 703 // unsigned guys invert their bits 704 case TUINT8, 705 TUINT16, 706 TUINT32, 707 TUINT64, 708 TUINT, 709 TUINTPTR: 710 b.Set(Maxintval[et]) 711 } 712 713 v.U.(*Mpint).Xor(&b) 714 715 case OPLUS_ | CTFLT_: 716 break 717 718 case OMINUS_ | CTFLT_: 719 v.U.(*Mpflt).Neg() 720 721 case OPLUS_ | CTCPLX_: 722 break 723 724 case OMINUS_ | CTCPLX_: 725 v.U.(*Mpcplx).Real.Neg() 726 v.U.(*Mpcplx).Imag.Neg() 727 728 case ONOT_ | CTBOOL_: 729 if !v.U.(bool) { 730 goto settrue 731 } 732 goto setfalse 733 } 734 goto ret 735 } 736 if nr.Type == nil { 737 return 738 } 739 if consttype(nr) < 0 { 740 return 741 } 742 wr = nr.Type.Etype 743 if Isint[wr] || Isfloat[wr] || Iscomplex[wr] { 744 wr = TIDEAL 745 } 746 747 // check for compatible general types (numeric, string, etc) 748 if wl != wr { 749 goto illegal 750 } 751 752 // check for compatible types. 753 switch n.Op { 754 // ideal const mixes with anything but otherwise must match. 755 default: 756 if nl.Type.Etype != TIDEAL { 757 nr = defaultlit(nr, nl.Type) 758 n.Right = nr 759 } 760 761 if nr.Type.Etype != TIDEAL { 762 nl = defaultlit(nl, nr.Type) 763 n.Left = nl 764 } 765 766 if nl.Type.Etype != nr.Type.Etype { 767 goto illegal 768 } 769 770 // right must be unsigned. 771 // left can be ideal. 772 case OLSH, ORSH: 773 nr = defaultlit(nr, Types[TUINT]) 774 775 n.Right = nr 776 if nr.Type != nil && (nr.Type.IsSigned() || !nr.Type.IsInteger()) { 777 goto illegal 778 } 779 if nl.Val().Ctype() != CTRUNE { 780 nl.SetVal(toint(nl.Val())) 781 } 782 nr.SetVal(toint(nr.Val())) 783 } 784 785 // copy numeric value to avoid modifying 786 // n->left, in case someone still refers to it (e.g. iota). 787 v = nl.Val() 788 789 if wl == TIDEAL { 790 v = copyval(v) 791 } 792 793 rv = nr.Val() 794 795 // convert to common ideal 796 if v.Ctype() == CTCPLX || rv.Ctype() == CTCPLX { 797 v = tocplx(v) 798 rv = tocplx(rv) 799 } 800 801 if v.Ctype() == CTFLT || rv.Ctype() == CTFLT { 802 v = toflt(v) 803 rv = toflt(rv) 804 } 805 806 // Rune and int turns into rune. 807 if v.Ctype() == CTRUNE && rv.Ctype() == CTINT { 808 i := new(Mpint) 809 i.Set(rv.U.(*Mpint)) 810 i.Rune = true 811 rv.U = i 812 } 813 if v.Ctype() == CTINT && rv.Ctype() == CTRUNE { 814 if n.Op == OLSH || n.Op == ORSH { 815 i := new(Mpint) 816 i.Set(rv.U.(*Mpint)) 817 rv.U = i 818 } else { 819 i := new(Mpint) 820 i.Set(v.U.(*Mpint)) 821 i.Rune = true 822 v.U = i 823 } 824 } 825 826 if v.Ctype() != rv.Ctype() { 827 // Use of undefined name as constant? 828 if (v.Ctype() == 0 || rv.Ctype() == 0) && nerrors > 0 { 829 return 830 } 831 Fatalf("constant type mismatch %v(%d) %v(%d)", nl.Type, v.Ctype(), nr.Type, rv.Ctype()) 832 } 833 834 // run op 835 switch uint32(n.Op)<<16 | uint32(v.Ctype()) { 836 default: 837 goto illegal 838 839 case OADD_ | CTINT_, 840 OADD_ | CTRUNE_: 841 v.U.(*Mpint).Add(rv.U.(*Mpint)) 842 843 case OSUB_ | CTINT_, 844 OSUB_ | CTRUNE_: 845 v.U.(*Mpint).Sub(rv.U.(*Mpint)) 846 847 case OMUL_ | CTINT_, 848 OMUL_ | CTRUNE_: 849 v.U.(*Mpint).Mul(rv.U.(*Mpint)) 850 851 case ODIV_ | CTINT_, 852 ODIV_ | CTRUNE_: 853 if rv.U.(*Mpint).CmpInt64(0) == 0 { 854 Yyerror("division by zero") 855 v.U.(*Mpint).SetOverflow() 856 break 857 } 858 859 v.U.(*Mpint).Quo(rv.U.(*Mpint)) 860 861 case OMOD_ | CTINT_, 862 OMOD_ | CTRUNE_: 863 if rv.U.(*Mpint).CmpInt64(0) == 0 { 864 Yyerror("division by zero") 865 v.U.(*Mpint).SetOverflow() 866 break 867 } 868 869 v.U.(*Mpint).Rem(rv.U.(*Mpint)) 870 871 case OLSH_ | CTINT_, 872 OLSH_ | CTRUNE_: 873 v.U.(*Mpint).Lsh(rv.U.(*Mpint)) 874 875 case ORSH_ | CTINT_, 876 ORSH_ | CTRUNE_: 877 v.U.(*Mpint).Rsh(rv.U.(*Mpint)) 878 879 case OOR_ | CTINT_, 880 OOR_ | CTRUNE_: 881 v.U.(*Mpint).Or(rv.U.(*Mpint)) 882 883 case OAND_ | CTINT_, 884 OAND_ | CTRUNE_: 885 v.U.(*Mpint).And(rv.U.(*Mpint)) 886 887 case OANDNOT_ | CTINT_, 888 OANDNOT_ | CTRUNE_: 889 v.U.(*Mpint).AndNot(rv.U.(*Mpint)) 890 891 case OXOR_ | CTINT_, 892 OXOR_ | CTRUNE_: 893 v.U.(*Mpint).Xor(rv.U.(*Mpint)) 894 895 case OADD_ | CTFLT_: 896 v.U.(*Mpflt).Add(rv.U.(*Mpflt)) 897 898 case OSUB_ | CTFLT_: 899 v.U.(*Mpflt).Sub(rv.U.(*Mpflt)) 900 901 case OMUL_ | CTFLT_: 902 v.U.(*Mpflt).Mul(rv.U.(*Mpflt)) 903 904 case ODIV_ | CTFLT_: 905 if rv.U.(*Mpflt).CmpFloat64(0) == 0 { 906 Yyerror("division by zero") 907 v.U.(*Mpflt).SetFloat64(1.0) 908 break 909 } 910 911 v.U.(*Mpflt).Quo(rv.U.(*Mpflt)) 912 913 // The default case above would print 'ideal % ideal', 914 // which is not quite an ideal error. 915 case OMOD_ | CTFLT_: 916 if n.Diag == 0 { 917 Yyerror("illegal constant expression: floating-point %% operation") 918 n.Diag = 1 919 } 920 921 return 922 923 case OADD_ | CTCPLX_: 924 v.U.(*Mpcplx).Real.Add(&rv.U.(*Mpcplx).Real) 925 v.U.(*Mpcplx).Imag.Add(&rv.U.(*Mpcplx).Imag) 926 927 case OSUB_ | CTCPLX_: 928 v.U.(*Mpcplx).Real.Sub(&rv.U.(*Mpcplx).Real) 929 v.U.(*Mpcplx).Imag.Sub(&rv.U.(*Mpcplx).Imag) 930 931 case OMUL_ | CTCPLX_: 932 cmplxmpy(v.U.(*Mpcplx), rv.U.(*Mpcplx)) 933 934 case ODIV_ | CTCPLX_: 935 if rv.U.(*Mpcplx).Real.CmpFloat64(0) == 0 && rv.U.(*Mpcplx).Imag.CmpFloat64(0) == 0 { 936 Yyerror("complex division by zero") 937 rv.U.(*Mpcplx).Real.SetFloat64(1.0) 938 rv.U.(*Mpcplx).Imag.SetFloat64(0.0) 939 break 940 } 941 942 cmplxdiv(v.U.(*Mpcplx), rv.U.(*Mpcplx)) 943 944 case OEQ_ | CTNIL_: 945 goto settrue 946 947 case ONE_ | CTNIL_: 948 goto setfalse 949 950 case OEQ_ | CTINT_, 951 OEQ_ | CTRUNE_: 952 if v.U.(*Mpint).Cmp(rv.U.(*Mpint)) == 0 { 953 goto settrue 954 } 955 goto setfalse 956 957 case ONE_ | CTINT_, 958 ONE_ | CTRUNE_: 959 if v.U.(*Mpint).Cmp(rv.U.(*Mpint)) != 0 { 960 goto settrue 961 } 962 goto setfalse 963 964 case OLT_ | CTINT_, 965 OLT_ | CTRUNE_: 966 if v.U.(*Mpint).Cmp(rv.U.(*Mpint)) < 0 { 967 goto settrue 968 } 969 goto setfalse 970 971 case OLE_ | CTINT_, 972 OLE_ | CTRUNE_: 973 if v.U.(*Mpint).Cmp(rv.U.(*Mpint)) <= 0 { 974 goto settrue 975 } 976 goto setfalse 977 978 case OGE_ | CTINT_, 979 OGE_ | CTRUNE_: 980 if v.U.(*Mpint).Cmp(rv.U.(*Mpint)) >= 0 { 981 goto settrue 982 } 983 goto setfalse 984 985 case OGT_ | CTINT_, 986 OGT_ | CTRUNE_: 987 if v.U.(*Mpint).Cmp(rv.U.(*Mpint)) > 0 { 988 goto settrue 989 } 990 goto setfalse 991 992 case OEQ_ | CTFLT_: 993 if v.U.(*Mpflt).Cmp(rv.U.(*Mpflt)) == 0 { 994 goto settrue 995 } 996 goto setfalse 997 998 case ONE_ | CTFLT_: 999 if v.U.(*Mpflt).Cmp(rv.U.(*Mpflt)) != 0 { 1000 goto settrue 1001 } 1002 goto setfalse 1003 1004 case OLT_ | CTFLT_: 1005 if v.U.(*Mpflt).Cmp(rv.U.(*Mpflt)) < 0 { 1006 goto settrue 1007 } 1008 goto setfalse 1009 1010 case OLE_ | CTFLT_: 1011 if v.U.(*Mpflt).Cmp(rv.U.(*Mpflt)) <= 0 { 1012 goto settrue 1013 } 1014 goto setfalse 1015 1016 case OGE_ | CTFLT_: 1017 if v.U.(*Mpflt).Cmp(rv.U.(*Mpflt)) >= 0 { 1018 goto settrue 1019 } 1020 goto setfalse 1021 1022 case OGT_ | CTFLT_: 1023 if v.U.(*Mpflt).Cmp(rv.U.(*Mpflt)) > 0 { 1024 goto settrue 1025 } 1026 goto setfalse 1027 1028 case OEQ_ | CTCPLX_: 1029 if v.U.(*Mpcplx).Real.Cmp(&rv.U.(*Mpcplx).Real) == 0 && v.U.(*Mpcplx).Imag.Cmp(&rv.U.(*Mpcplx).Imag) == 0 { 1030 goto settrue 1031 } 1032 goto setfalse 1033 1034 case ONE_ | CTCPLX_: 1035 if v.U.(*Mpcplx).Real.Cmp(&rv.U.(*Mpcplx).Real) != 0 || v.U.(*Mpcplx).Imag.Cmp(&rv.U.(*Mpcplx).Imag) != 0 { 1036 goto settrue 1037 } 1038 goto setfalse 1039 1040 case OEQ_ | CTSTR_: 1041 if strlit(nl) == strlit(nr) { 1042 goto settrue 1043 } 1044 goto setfalse 1045 1046 case ONE_ | CTSTR_: 1047 if strlit(nl) != strlit(nr) { 1048 goto settrue 1049 } 1050 goto setfalse 1051 1052 case OLT_ | CTSTR_: 1053 if strlit(nl) < strlit(nr) { 1054 goto settrue 1055 } 1056 goto setfalse 1057 1058 case OLE_ | CTSTR_: 1059 if strlit(nl) <= strlit(nr) { 1060 goto settrue 1061 } 1062 goto setfalse 1063 1064 case OGE_ | CTSTR_: 1065 if strlit(nl) >= strlit(nr) { 1066 goto settrue 1067 } 1068 goto setfalse 1069 1070 case OGT_ | CTSTR_: 1071 if strlit(nl) > strlit(nr) { 1072 goto settrue 1073 } 1074 goto setfalse 1075 1076 case OOROR_ | CTBOOL_: 1077 if v.U.(bool) || rv.U.(bool) { 1078 goto settrue 1079 } 1080 goto setfalse 1081 1082 case OANDAND_ | CTBOOL_: 1083 if v.U.(bool) && rv.U.(bool) { 1084 goto settrue 1085 } 1086 goto setfalse 1087 1088 case OEQ_ | CTBOOL_: 1089 if v.U.(bool) == rv.U.(bool) { 1090 goto settrue 1091 } 1092 goto setfalse 1093 1094 case ONE_ | CTBOOL_: 1095 if v.U.(bool) != rv.U.(bool) { 1096 goto settrue 1097 } 1098 goto setfalse 1099 } 1100 1101 goto ret 1102 1103 ret: 1104 norig = saveorig(n) 1105 *n = *nl 1106 1107 // restore value of n->orig. 1108 n.Orig = norig 1109 1110 n.SetVal(v) 1111 1112 // check range. 1113 lno = setlineno(n) 1114 overflow(v, n.Type) 1115 lineno = lno 1116 1117 // truncate precision for non-ideal float. 1118 if v.Ctype() == CTFLT && n.Type.Etype != TIDEAL { 1119 n.SetVal(Val{truncfltlit(v.U.(*Mpflt), n.Type)}) 1120 } 1121 return 1122 1123 settrue: 1124 nn = Nodbool(true) 1125 nn.Orig = saveorig(n) 1126 if !iscmp[n.Op] { 1127 nn.Type = nl.Type 1128 } 1129 *n = *nn 1130 return 1131 1132 setfalse: 1133 nn = Nodbool(false) 1134 nn.Orig = saveorig(n) 1135 if !iscmp[n.Op] { 1136 nn.Type = nl.Type 1137 } 1138 *n = *nn 1139 return 1140 1141 illegal: 1142 if n.Diag == 0 { 1143 Yyerror("illegal constant expression: %v %v %v", nl.Type, Oconv(n.Op, 0), nr.Type) 1144 n.Diag = 1 1145 } 1146 } 1147 1148 func nodlit(v Val) *Node { 1149 n := Nod(OLITERAL, nil, nil) 1150 n.SetVal(v) 1151 switch v.Ctype() { 1152 default: 1153 Fatalf("nodlit ctype %d", v.Ctype()) 1154 1155 case CTSTR: 1156 n.Type = idealstring 1157 1158 case CTBOOL: 1159 n.Type = idealbool 1160 1161 case CTINT, CTRUNE, CTFLT, CTCPLX: 1162 n.Type = Types[TIDEAL] 1163 1164 case CTNIL: 1165 n.Type = Types[TNIL] 1166 } 1167 1168 return n 1169 } 1170 1171 func nodcplxlit(r Val, i Val) *Node { 1172 r = toflt(r) 1173 i = toflt(i) 1174 1175 c := new(Mpcplx) 1176 n := Nod(OLITERAL, nil, nil) 1177 n.Type = Types[TIDEAL] 1178 n.SetVal(Val{c}) 1179 1180 if r.Ctype() != CTFLT || i.Ctype() != CTFLT { 1181 Fatalf("nodcplxlit ctype %d/%d", r.Ctype(), i.Ctype()) 1182 } 1183 1184 c.Real.Set(r.U.(*Mpflt)) 1185 c.Imag.Set(i.U.(*Mpflt)) 1186 return n 1187 } 1188 1189 // idealkind returns a constant kind like consttype 1190 // but for an arbitrary "ideal" (untyped constant) expression. 1191 func idealkind(n *Node) Ctype { 1192 if n == nil || !n.Type.IsUntyped() { 1193 return CTxxx 1194 } 1195 1196 switch n.Op { 1197 default: 1198 return CTxxx 1199 1200 case OLITERAL: 1201 return n.Val().Ctype() 1202 1203 // numeric kinds. 1204 case OADD, 1205 OAND, 1206 OANDNOT, 1207 OCOM, 1208 ODIV, 1209 OMINUS, 1210 OMOD, 1211 OMUL, 1212 OSUB, 1213 OXOR, 1214 OOR, 1215 OPLUS: 1216 k1 := idealkind(n.Left) 1217 1218 k2 := idealkind(n.Right) 1219 if k1 > k2 { 1220 return k1 1221 } else { 1222 return k2 1223 } 1224 1225 case OREAL, OIMAG: 1226 return CTFLT 1227 1228 case OCOMPLEX: 1229 return CTCPLX 1230 1231 case OADDSTR: 1232 return CTSTR 1233 1234 case OANDAND, 1235 OEQ, 1236 OGE, 1237 OGT, 1238 OLE, 1239 OLT, 1240 ONE, 1241 ONOT, 1242 OOROR, 1243 OCMPSTR, 1244 OCMPIFACE: 1245 return CTBOOL 1246 1247 // shifts (beware!). 1248 case OLSH, ORSH: 1249 return idealkind(n.Left) 1250 } 1251 } 1252 1253 // The result of defaultlit MUST be assigned back to n, e.g. 1254 // n.Left = defaultlit(n.Left, t) 1255 func defaultlit(n *Node, t *Type) *Node { 1256 return defaultlitreuse(n, t, noReuse) 1257 } 1258 1259 // The result of defaultlitreuse MUST be assigned back to n, e.g. 1260 // n.Left = defaultlitreuse(n.Left, t, reuse) 1261 func defaultlitreuse(n *Node, t *Type, reuse canReuseNode) *Node { 1262 if n == nil || !n.Type.IsUntyped() { 1263 return n 1264 } 1265 1266 if n.Op == OLITERAL && !reuse { 1267 nn := *n 1268 n = &nn 1269 reuse = true 1270 } 1271 1272 lno := setlineno(n) 1273 ctype := idealkind(n) 1274 var t1 *Type 1275 switch ctype { 1276 default: 1277 if t != nil { 1278 return convlit(n, t) 1279 } 1280 1281 if n.Val().Ctype() == CTNIL { 1282 lineno = lno 1283 if n.Diag == 0 { 1284 Yyerror("use of untyped nil") 1285 n.Diag = 1 1286 } 1287 1288 n.Type = nil 1289 break 1290 } 1291 1292 if n.Val().Ctype() == CTSTR { 1293 t1 := Types[TSTRING] 1294 n = convlit1(n, t1, false, reuse) 1295 break 1296 } 1297 1298 Yyerror("defaultlit: unknown literal: %v", n) 1299 1300 case CTxxx: 1301 Fatalf("defaultlit: idealkind is CTxxx: %v", Nconv(n, FmtSign)) 1302 1303 case CTBOOL: 1304 t1 := Types[TBOOL] 1305 if t != nil && t.IsBoolean() { 1306 t1 = t 1307 } 1308 n = convlit1(n, t1, false, reuse) 1309 1310 case CTINT: 1311 t1 = Types[TINT] 1312 goto num 1313 1314 case CTRUNE: 1315 t1 = runetype 1316 goto num 1317 1318 case CTFLT: 1319 t1 = Types[TFLOAT64] 1320 goto num 1321 1322 case CTCPLX: 1323 t1 = Types[TCOMPLEX128] 1324 goto num 1325 } 1326 1327 lineno = lno 1328 return n 1329 1330 num: 1331 // Note: n.Val().Ctype() can be CTxxx (not a constant) here 1332 // in the case of an untyped non-constant value, like 1<<i. 1333 v1 := n.Val() 1334 if t != nil { 1335 if t.IsInteger() { 1336 t1 = t 1337 v1 = toint(n.Val()) 1338 } else if t.IsFloat() { 1339 t1 = t 1340 v1 = toflt(n.Val()) 1341 } else if t.IsComplex() { 1342 t1 = t 1343 v1 = tocplx(n.Val()) 1344 } 1345 if n.Val().Ctype() != CTxxx { 1346 n.SetVal(v1) 1347 } 1348 } 1349 1350 if n.Val().Ctype() != CTxxx { 1351 overflow(n.Val(), t1) 1352 } 1353 n = convlit1(n, t1, false, reuse) 1354 lineno = lno 1355 return n 1356 } 1357 1358 // defaultlit on both nodes simultaneously; 1359 // if they're both ideal going in they better 1360 // get the same type going out. 1361 // force means must assign concrete (non-ideal) type. 1362 // The results of defaultlit2 MUST be assigned back to l and r, e.g. 1363 // n.Left, n.Right = defaultlit2(n.Left, n.Right, force) 1364 func defaultlit2(l *Node, r *Node, force bool) (*Node, *Node) { 1365 if l.Type == nil || r.Type == nil { 1366 return l, r 1367 } 1368 if !l.Type.IsUntyped() { 1369 r = convlit(r, l.Type) 1370 return l, r 1371 } 1372 1373 if !r.Type.IsUntyped() { 1374 l = convlit(l, r.Type) 1375 return l, r 1376 } 1377 1378 if !force { 1379 return l, r 1380 } 1381 1382 if l.Type.IsBoolean() { 1383 l = convlit(l, Types[TBOOL]) 1384 r = convlit(r, Types[TBOOL]) 1385 } 1386 1387 lkind := idealkind(l) 1388 rkind := idealkind(r) 1389 if lkind == CTCPLX || rkind == CTCPLX { 1390 l = convlit(l, Types[TCOMPLEX128]) 1391 r = convlit(r, Types[TCOMPLEX128]) 1392 return l, r 1393 } 1394 1395 if lkind == CTFLT || rkind == CTFLT { 1396 l = convlit(l, Types[TFLOAT64]) 1397 r = convlit(r, Types[TFLOAT64]) 1398 return l, r 1399 } 1400 1401 if lkind == CTRUNE || rkind == CTRUNE { 1402 l = convlit(l, runetype) 1403 r = convlit(r, runetype) 1404 return l, r 1405 } 1406 1407 l = convlit(l, Types[TINT]) 1408 r = convlit(r, Types[TINT]) 1409 1410 return l, r 1411 } 1412 1413 // strlit returns the value of a literal string Node as a string. 1414 func strlit(n *Node) string { 1415 return n.Val().U.(string) 1416 } 1417 1418 func Smallintconst(n *Node) bool { 1419 if n.Op == OLITERAL && Isconst(n, CTINT) && n.Type != nil { 1420 switch Simtype[n.Type.Etype] { 1421 case TINT8, 1422 TUINT8, 1423 TINT16, 1424 TUINT16, 1425 TINT32, 1426 TUINT32, 1427 TBOOL, 1428 TPTR32: 1429 return true 1430 1431 case TIDEAL, TINT64, TUINT64, TPTR64: 1432 if n.Val().U.(*Mpint).Cmp(Minintval[TINT32]) < 0 || n.Val().U.(*Mpint).Cmp(Maxintval[TINT32]) > 0 { 1433 break 1434 } 1435 return true 1436 } 1437 } 1438 1439 return false 1440 } 1441 1442 func nonnegconst(n *Node) int { 1443 if n.Op == OLITERAL && n.Type != nil { 1444 switch Simtype[n.Type.Etype] { 1445 // check negative and 2^31 1446 case TINT8, 1447 TUINT8, 1448 TINT16, 1449 TUINT16, 1450 TINT32, 1451 TUINT32, 1452 TINT64, 1453 TUINT64, 1454 TIDEAL: 1455 if n.Val().U.(*Mpint).Cmp(Minintval[TUINT32]) < 0 || n.Val().U.(*Mpint).Cmp(Maxintval[TINT32]) > 0 { 1456 break 1457 } 1458 return int(n.Int64()) 1459 } 1460 } 1461 1462 return -1 1463 } 1464 1465 // convert x to type et and back to int64 1466 // for sign extension and truncation. 1467 func iconv(x int64, et EType) int64 { 1468 switch et { 1469 case TINT8: 1470 x = int64(int8(x)) 1471 1472 case TUINT8: 1473 x = int64(uint8(x)) 1474 1475 case TINT16: 1476 x = int64(int16(x)) 1477 1478 case TUINT16: 1479 x = int64(uint64(x)) 1480 1481 case TINT32: 1482 x = int64(int32(x)) 1483 1484 case TUINT32: 1485 x = int64(uint32(x)) 1486 1487 case TINT64, TUINT64: 1488 break 1489 } 1490 1491 return x 1492 } 1493 1494 // Convconst converts constant node n to type t and 1495 // places the result in con. 1496 func (n *Node) Convconst(con *Node, t *Type) { 1497 tt := Simsimtype(t) 1498 1499 // copy the constant for conversion 1500 Nodconst(con, Types[TINT8], 0) 1501 1502 con.Type = t 1503 con.SetVal(n.Val()) 1504 1505 if Isint[tt] { 1506 con.SetVal(Val{new(Mpint)}) 1507 var i int64 1508 switch n.Val().Ctype() { 1509 default: 1510 Fatalf("convconst ctype=%d %v", n.Val().Ctype(), Tconv(t, FmtLong)) 1511 1512 case CTINT, CTRUNE: 1513 i = n.Int64() 1514 1515 case CTBOOL: 1516 i = int64(obj.Bool2int(n.Val().U.(bool))) 1517 1518 case CTNIL: 1519 i = 0 1520 } 1521 1522 i = iconv(i, tt) 1523 con.Val().U.(*Mpint).SetInt64(i) 1524 return 1525 } 1526 1527 if Isfloat[tt] { 1528 con.SetVal(toflt(con.Val())) 1529 if con.Val().Ctype() != CTFLT { 1530 Fatalf("convconst ctype=%d %v", con.Val().Ctype(), t) 1531 } 1532 if tt == TFLOAT32 { 1533 con.SetVal(Val{truncfltlit(con.Val().U.(*Mpflt), t)}) 1534 } 1535 return 1536 } 1537 1538 if Iscomplex[tt] { 1539 con.SetVal(tocplx(con.Val())) 1540 if tt == TCOMPLEX64 { 1541 con.Val().U.(*Mpcplx).Real = *truncfltlit(&con.Val().U.(*Mpcplx).Real, Types[TFLOAT32]) 1542 con.Val().U.(*Mpcplx).Imag = *truncfltlit(&con.Val().U.(*Mpcplx).Imag, Types[TFLOAT32]) 1543 } 1544 return 1545 } 1546 1547 Fatalf("convconst %v constant", Tconv(t, FmtLong)) 1548 } 1549 1550 // complex multiply v *= rv 1551 // (a, b) * (c, d) = (a*c - b*d, b*c + a*d) 1552 func cmplxmpy(v *Mpcplx, rv *Mpcplx) { 1553 var ac Mpflt 1554 var bd Mpflt 1555 var bc Mpflt 1556 var ad Mpflt 1557 1558 ac.Set(&v.Real) 1559 ac.Mul(&rv.Real) // ac 1560 1561 bd.Set(&v.Imag) 1562 1563 bd.Mul(&rv.Imag) // bd 1564 1565 bc.Set(&v.Imag) 1566 1567 bc.Mul(&rv.Real) // bc 1568 1569 ad.Set(&v.Real) 1570 1571 ad.Mul(&rv.Imag) // ad 1572 1573 v.Real.Set(&ac) 1574 1575 v.Real.Sub(&bd) // ac-bd 1576 1577 v.Imag.Set(&bc) 1578 1579 v.Imag.Add(&ad) // bc+ad 1580 } 1581 1582 // complex divide v /= rv 1583 // (a, b) / (c, d) = ((a*c + b*d), (b*c - a*d))/(c*c + d*d) 1584 func cmplxdiv(v *Mpcplx, rv *Mpcplx) { 1585 var ac Mpflt 1586 var bd Mpflt 1587 var bc Mpflt 1588 var ad Mpflt 1589 var cc_plus_dd Mpflt 1590 1591 cc_plus_dd.Set(&rv.Real) 1592 cc_plus_dd.Mul(&rv.Real) // cc 1593 1594 ac.Set(&rv.Imag) 1595 1596 ac.Mul(&rv.Imag) // dd 1597 1598 cc_plus_dd.Add(&ac) // cc+dd 1599 1600 ac.Set(&v.Real) 1601 1602 ac.Mul(&rv.Real) // ac 1603 1604 bd.Set(&v.Imag) 1605 1606 bd.Mul(&rv.Imag) // bd 1607 1608 bc.Set(&v.Imag) 1609 1610 bc.Mul(&rv.Real) // bc 1611 1612 ad.Set(&v.Real) 1613 1614 ad.Mul(&rv.Imag) // ad 1615 1616 v.Real.Set(&ac) 1617 1618 v.Real.Add(&bd) // ac+bd 1619 v.Real.Quo(&cc_plus_dd) // (ac+bd)/(cc+dd) 1620 1621 v.Imag.Set(&bc) 1622 1623 v.Imag.Sub(&ad) // bc-ad 1624 v.Imag.Quo(&cc_plus_dd) // (bc+ad)/(cc+dd) 1625 } 1626 1627 // Is n a Go language constant (as opposed to a compile-time constant)? 1628 // Expressions derived from nil, like string([]byte(nil)), while they 1629 // may be known at compile time, are not Go language constants. 1630 // Only called for expressions known to evaluated to compile-time 1631 // constants. 1632 func isgoconst(n *Node) bool { 1633 if n.Orig != nil { 1634 n = n.Orig 1635 } 1636 1637 switch n.Op { 1638 case OADD, 1639 OADDSTR, 1640 OAND, 1641 OANDAND, 1642 OANDNOT, 1643 OCOM, 1644 ODIV, 1645 OEQ, 1646 OGE, 1647 OGT, 1648 OLE, 1649 OLSH, 1650 OLT, 1651 OMINUS, 1652 OMOD, 1653 OMUL, 1654 ONE, 1655 ONOT, 1656 OOR, 1657 OOROR, 1658 OPLUS, 1659 ORSH, 1660 OSUB, 1661 OXOR, 1662 OIOTA, 1663 OCOMPLEX, 1664 OREAL, 1665 OIMAG: 1666 if isgoconst(n.Left) && (n.Right == nil || isgoconst(n.Right)) { 1667 return true 1668 } 1669 1670 case OCONV: 1671 if okforconst[n.Type.Etype] && isgoconst(n.Left) { 1672 return true 1673 } 1674 1675 case OLEN, OCAP: 1676 l := n.Left 1677 if isgoconst(l) { 1678 return true 1679 } 1680 1681 // Special case: len/cap is constant when applied to array or 1682 // pointer to array when the expression does not contain 1683 // function calls or channel receive operations. 1684 t := l.Type 1685 1686 if t != nil && t.IsPtr() { 1687 t = t.Elem() 1688 } 1689 if t != nil && t.IsArray() && !hascallchan(l) { 1690 return true 1691 } 1692 1693 case OLITERAL: 1694 if n.Val().Ctype() != CTNIL { 1695 return true 1696 } 1697 1698 case ONAME: 1699 l := n.Sym.Def 1700 if l != nil && l.Op == OLITERAL && n.Val().Ctype() != CTNIL { 1701 return true 1702 } 1703 1704 case ONONAME: 1705 if n.Sym.Def != nil && n.Sym.Def.Op == OIOTA { 1706 return true 1707 } 1708 1709 // Only constant calls are unsafe.Alignof, Offsetof, and Sizeof. 1710 case OCALL: 1711 l := n.Left 1712 1713 for l.Op == OPAREN { 1714 l = l.Left 1715 } 1716 if l.Op != ONAME || l.Sym.Pkg != unsafepkg { 1717 break 1718 } 1719 if l.Sym.Name == "Alignof" || l.Sym.Name == "Offsetof" || l.Sym.Name == "Sizeof" { 1720 return true 1721 } 1722 } 1723 1724 //dump("nonconst", n); 1725 return false 1726 } 1727 1728 func hascallchan(n *Node) bool { 1729 if n == nil { 1730 return false 1731 } 1732 switch n.Op { 1733 case OAPPEND, 1734 OCALL, 1735 OCALLFUNC, 1736 OCALLINTER, 1737 OCALLMETH, 1738 OCAP, 1739 OCLOSE, 1740 OCOMPLEX, 1741 OCOPY, 1742 ODELETE, 1743 OIMAG, 1744 OLEN, 1745 OMAKE, 1746 ONEW, 1747 OPANIC, 1748 OPRINT, 1749 OPRINTN, 1750 OREAL, 1751 ORECOVER, 1752 ORECV: 1753 return true 1754 } 1755 1756 if hascallchan(n.Left) || hascallchan(n.Right) { 1757 return true 1758 } 1759 for _, n1 := range n.List.Slice() { 1760 if hascallchan(n1) { 1761 return true 1762 } 1763 } 1764 for _, n2 := range n.Rlist.Slice() { 1765 if hascallchan(n2) { 1766 return true 1767 } 1768 } 1769 1770 return false 1771 }