github.com/miolini/go@v0.0.0-20160405192216-fca68c8cb408/src/cmd/compile/internal/gc/popt.go (about) 1 // Derived from Inferno utils/6c/gc.h 2 // http://code.google.com/p/inferno-os/source/browse/utils/6c/gc.h 3 // 4 // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. 5 // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) 6 // Portions Copyright © 1997-1999 Vita Nuova Limited 7 // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) 8 // Portions Copyright © 2004,2006 Bruce Ellis 9 // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) 10 // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others 11 // Portions Copyright © 2009 The Go Authors. All rights reserved. 12 // 13 // Permission is hereby granted, free of charge, to any person obtaining a copy 14 // of this software and associated documentation files (the "Software"), to deal 15 // in the Software without restriction, including without limitation the rights 16 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 17 // copies of the Software, and to permit persons to whom the Software is 18 // furnished to do so, subject to the following conditions: 19 // 20 // The above copyright notice and this permission notice shall be included in 21 // all copies or substantial portions of the Software. 22 // 23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 24 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 26 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 28 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 29 // THE SOFTWARE. 30 31 // "Portable" optimizations. 32 33 package gc 34 35 import ( 36 "cmd/internal/obj" 37 "fmt" 38 "sort" 39 "strings" 40 ) 41 42 type OptStats struct { 43 Ncvtreg int32 44 Nspill int32 45 Nreload int32 46 Ndelmov int32 47 Nvar int32 48 Naddr int32 49 } 50 51 var Ostats OptStats 52 53 var noreturn_symlist [10]*Sym 54 55 // p is a call instruction. Does the call fail to return? 56 func Noreturn(p *obj.Prog) bool { 57 if noreturn_symlist[0] == nil { 58 noreturn_symlist[0] = Pkglookup("panicindex", Runtimepkg) 59 noreturn_symlist[1] = Pkglookup("panicslice", Runtimepkg) 60 noreturn_symlist[2] = Pkglookup("throwinit", Runtimepkg) 61 noreturn_symlist[3] = Pkglookup("gopanic", Runtimepkg) 62 noreturn_symlist[4] = Pkglookup("panicwrap", Runtimepkg) 63 noreturn_symlist[5] = Pkglookup("throwreturn", Runtimepkg) 64 noreturn_symlist[6] = Pkglookup("selectgo", Runtimepkg) 65 noreturn_symlist[7] = Pkglookup("block", Runtimepkg) 66 } 67 68 if p.To.Node == nil { 69 return false 70 } 71 s := ((p.To.Node).(*Node)).Sym 72 if s == nil { 73 return false 74 } 75 for i := 0; noreturn_symlist[i] != nil; i++ { 76 if s == noreturn_symlist[i] { 77 return true 78 } 79 } 80 return false 81 } 82 83 // JMP chasing and removal. 84 // 85 // The code generator depends on being able to write out jump 86 // instructions that it can jump to now but fill in later. 87 // the linker will resolve them nicely, but they make the code 88 // longer and more difficult to follow during debugging. 89 // Remove them. 90 91 // what instruction does a JMP to p eventually land on? 92 func chasejmp(p *obj.Prog, jmploop *int) *obj.Prog { 93 n := 0 94 for p != nil && p.As == obj.AJMP && p.To.Type == obj.TYPE_BRANCH { 95 n++ 96 if n > 10 { 97 *jmploop = 1 98 break 99 } 100 101 p = p.To.Val.(*obj.Prog) 102 } 103 104 return p 105 } 106 107 // reuse reg pointer for mark/sweep state. 108 // leave reg==nil at end because alive==nil. 109 var alive interface{} = nil 110 var dead interface{} = 1 111 112 // mark all code reachable from firstp as alive 113 func mark(firstp *obj.Prog) { 114 for p := firstp; p != nil; p = p.Link { 115 if p.Opt != dead { 116 break 117 } 118 p.Opt = alive 119 if p.As != obj.ACALL && p.To.Type == obj.TYPE_BRANCH && p.To.Val.(*obj.Prog) != nil { 120 mark(p.To.Val.(*obj.Prog)) 121 } 122 if p.As == obj.AJMP || p.As == obj.ARET || p.As == obj.AUNDEF { 123 break 124 } 125 } 126 } 127 128 func fixjmp(firstp *obj.Prog) { 129 if Debug['R'] != 0 && Debug['v'] != 0 { 130 fmt.Printf("\nfixjmp\n") 131 } 132 133 // pass 1: resolve jump to jump, mark all code as dead. 134 jmploop := 0 135 136 for p := firstp; p != nil; p = p.Link { 137 if Debug['R'] != 0 && Debug['v'] != 0 { 138 fmt.Printf("%v\n", p) 139 } 140 if p.As != obj.ACALL && p.To.Type == obj.TYPE_BRANCH && p.To.Val.(*obj.Prog) != nil && p.To.Val.(*obj.Prog).As == obj.AJMP { 141 if Debug['N'] == 0 { 142 p.To.Val = chasejmp(p.To.Val.(*obj.Prog), &jmploop) 143 if Debug['R'] != 0 && Debug['v'] != 0 { 144 fmt.Printf("->%v\n", p) 145 } 146 } 147 } 148 149 p.Opt = dead 150 } 151 if Debug['R'] != 0 && Debug['v'] != 0 { 152 fmt.Printf("\n") 153 } 154 155 // pass 2: mark all reachable code alive 156 mark(firstp) 157 158 // pass 3: delete dead code (mostly JMPs). 159 var last *obj.Prog 160 161 for p := firstp; p != nil; p = p.Link { 162 if p.Opt == dead { 163 if p.Link == nil && p.As == obj.ARET && last != nil && last.As != obj.ARET { 164 // This is the final ARET, and the code so far doesn't have one. 165 // Let it stay. The register allocator assumes that all live code in 166 // the function can be traversed by starting at all the RET instructions 167 // and following predecessor links. If we remove the final RET, 168 // this assumption will not hold in the case of an infinite loop 169 // at the end of a function. 170 // Keep the RET but mark it dead for the liveness analysis. 171 p.Mode = 1 172 } else { 173 if Debug['R'] != 0 && Debug['v'] != 0 { 174 fmt.Printf("del %v\n", p) 175 } 176 continue 177 } 178 } 179 180 if last != nil { 181 last.Link = p 182 } 183 last = p 184 } 185 186 last.Link = nil 187 188 // pass 4: elide JMP to next instruction. 189 // only safe if there are no jumps to JMPs anymore. 190 if jmploop == 0 && Debug['N'] == 0 { 191 var last *obj.Prog 192 for p := firstp; p != nil; p = p.Link { 193 if p.As == obj.AJMP && p.To.Type == obj.TYPE_BRANCH && p.To.Val == p.Link { 194 if Debug['R'] != 0 && Debug['v'] != 0 { 195 fmt.Printf("del %v\n", p) 196 } 197 continue 198 } 199 200 if last != nil { 201 last.Link = p 202 } 203 last = p 204 } 205 206 last.Link = nil 207 } 208 209 if Debug['R'] != 0 && Debug['v'] != 0 { 210 fmt.Printf("\n") 211 for p := firstp; p != nil; p = p.Link { 212 fmt.Printf("%v\n", p) 213 } 214 fmt.Printf("\n") 215 } 216 } 217 218 // Control flow analysis. The Flow structures hold predecessor and successor 219 // information as well as basic loop analysis. 220 // 221 // graph = Flowstart(firstp, nil) 222 // ... use flow graph ... 223 // Flowend(graph) // free graph 224 // 225 // Typical uses of the flow graph are to iterate over all the flow-relevant instructions: 226 // 227 // for f := graph.Start; f != nil; f = f.Link {} 228 // 229 // or, given an instruction f, to iterate over all the predecessors, which is 230 // f.P1 and this list: 231 // 232 // for f2 := f.P2; f2 != nil; f2 = f2.P2link {} 233 // 234 // The second argument (newData) to Flowstart specifies a func to create object 235 // for every f.Data field, for use by the client. 236 // If newData is nil, f.Data will be nil. 237 238 var flowmark int 239 240 // MaxFlowProg is the maximum size program (counted in instructions) 241 // for which the flow code will build a graph. Functions larger than this limit 242 // will not have flow graphs and consequently will not be optimized. 243 const MaxFlowProg = 50000 244 245 var ffcache []Flow // reusable []Flow, to reduce allocation 246 247 func growffcache(n int) { 248 if n > cap(ffcache) { 249 n = (n * 5) / 4 250 if n > MaxFlowProg { 251 n = MaxFlowProg 252 } 253 ffcache = make([]Flow, n) 254 } 255 ffcache = ffcache[:n] 256 } 257 258 func Flowstart(firstp *obj.Prog, newData func() interface{}) *Graph { 259 // Count and mark instructions to annotate. 260 nf := 0 261 262 for p := firstp; p != nil; p = p.Link { 263 p.Opt = nil // should be already, but just in case 264 Thearch.Proginfo(p) 265 if p.Info.Flags&Skip != 0 { 266 continue 267 } 268 p.Opt = &flowmark 269 nf++ 270 } 271 272 if nf == 0 { 273 return nil 274 } 275 276 if nf >= MaxFlowProg { 277 if Debug['v'] != 0 { 278 Warn("%v is too big (%d instructions)", Curfn.Func.Nname.Sym, nf) 279 } 280 return nil 281 } 282 283 // Allocate annotations and assign to instructions. 284 graph := new(Graph) 285 286 growffcache(nf) 287 ff := ffcache 288 start := &ff[0] 289 id := 0 290 var last *Flow 291 for p := firstp; p != nil; p = p.Link { 292 if p.Opt == nil { 293 continue 294 } 295 f := &ff[0] 296 ff = ff[1:] 297 p.Opt = f 298 f.Prog = p 299 if last != nil { 300 last.Link = f 301 } 302 last = f 303 if newData != nil { 304 f.Data = newData() 305 } 306 f.Id = int32(id) 307 id++ 308 } 309 310 // Fill in pred/succ information. 311 var f1 *Flow 312 var p *obj.Prog 313 for f := start; f != nil; f = f.Link { 314 p = f.Prog 315 if p.Info.Flags&Break == 0 { 316 f1 = f.Link 317 f.S1 = f1 318 f1.P1 = f 319 } 320 321 if p.To.Type == obj.TYPE_BRANCH { 322 if p.To.Val == nil { 323 Fatalf("pnil %v", p) 324 } 325 f1 = p.To.Val.(*obj.Prog).Opt.(*Flow) 326 if f1 == nil { 327 Fatalf("fnil %v / %v", p, p.To.Val.(*obj.Prog)) 328 } 329 if f1 == f { 330 //fatal("self loop %v", p); 331 continue 332 } 333 334 f.S2 = f1 335 f.P2link = f1.P2 336 f1.P2 = f 337 } 338 } 339 340 graph.Start = start 341 graph.Num = nf 342 return graph 343 } 344 345 func Flowend(graph *Graph) { 346 for f := graph.Start; f != nil; f = f.Link { 347 f.Prog.Info.Flags = 0 // drop cached proginfo 348 f.Prog.Opt = nil 349 } 350 clear := ffcache[:graph.Num] 351 for i := range clear { 352 clear[i] = Flow{} 353 } 354 } 355 356 // find looping structure 357 // 358 // 1) find reverse postordering 359 // 2) find approximate dominators, 360 // the actual dominators if the flow graph is reducible 361 // otherwise, dominators plus some other non-dominators. 362 // See Matthew S. Hecht and Jeffrey D. Ullman, 363 // "Analysis of a Simple Algorithm for Global Data Flow Problems", 364 // Conf. Record of ACM Symp. on Principles of Prog. Langs, Boston, Massachusetts, 365 // Oct. 1-3, 1973, pp. 207-217. 366 // 3) find all nodes with a predecessor dominated by the current node. 367 // such a node is a loop head. 368 // recursively, all preds with a greater rpo number are in the loop 369 func postorder(r *Flow, rpo2r []*Flow, n int32) int32 { 370 r.Rpo = 1 371 r1 := r.S1 372 if r1 != nil && r1.Rpo == 0 { 373 n = postorder(r1, rpo2r, n) 374 } 375 r1 = r.S2 376 if r1 != nil && r1.Rpo == 0 { 377 n = postorder(r1, rpo2r, n) 378 } 379 rpo2r[n] = r 380 n++ 381 return n 382 } 383 384 func rpolca(idom []int32, rpo1 int32, rpo2 int32) int32 { 385 if rpo1 == -1 { 386 return rpo2 387 } 388 var t int32 389 for rpo1 != rpo2 { 390 if rpo1 > rpo2 { 391 t = rpo2 392 rpo2 = rpo1 393 rpo1 = t 394 } 395 396 for rpo1 < rpo2 { 397 t = idom[rpo2] 398 if t >= rpo2 { 399 Fatalf("bad idom") 400 } 401 rpo2 = t 402 } 403 } 404 405 return rpo1 406 } 407 408 func doms(idom []int32, r int32, s int32) bool { 409 for s > r { 410 s = idom[s] 411 } 412 return s == r 413 } 414 415 func loophead(idom []int32, r *Flow) bool { 416 src := r.Rpo 417 if r.P1 != nil && doms(idom, src, r.P1.Rpo) { 418 return true 419 } 420 for r = r.P2; r != nil; r = r.P2link { 421 if doms(idom, src, r.Rpo) { 422 return true 423 } 424 } 425 return false 426 } 427 428 func loopmark(rpo2r **Flow, head int32, r *Flow) { 429 if r.Rpo < head || r.Active == head { 430 return 431 } 432 r.Active = head 433 r.Loop += LOOP 434 if r.P1 != nil { 435 loopmark(rpo2r, head, r.P1) 436 } 437 for r = r.P2; r != nil; r = r.P2link { 438 loopmark(rpo2r, head, r) 439 } 440 } 441 442 func flowrpo(g *Graph) { 443 g.Rpo = make([]*Flow, g.Num) 444 idom := make([]int32, g.Num) 445 446 for r1 := g.Start; r1 != nil; r1 = r1.Link { 447 r1.Active = 0 448 } 449 450 rpo2r := g.Rpo 451 d := postorder(g.Start, rpo2r, 0) 452 nr := int32(g.Num) 453 if d > nr { 454 Fatalf("too many reg nodes %d %d", d, nr) 455 } 456 nr = d 457 var r1 *Flow 458 for i := int32(0); i < nr/2; i++ { 459 r1 = rpo2r[i] 460 rpo2r[i] = rpo2r[nr-1-i] 461 rpo2r[nr-1-i] = r1 462 } 463 464 for i := int32(0); i < nr; i++ { 465 rpo2r[i].Rpo = i 466 } 467 468 idom[0] = 0 469 var me int32 470 for i := int32(0); i < nr; i++ { 471 r1 = rpo2r[i] 472 me = r1.Rpo 473 d = -1 474 475 // rpo2r[r.Rpo] == r protects against considering dead code, 476 // which has r.Rpo == 0. 477 if r1.P1 != nil && rpo2r[r1.P1.Rpo] == r1.P1 && r1.P1.Rpo < me { 478 d = r1.P1.Rpo 479 } 480 for r1 = r1.P2; r1 != nil; r1 = r1.P2link { 481 if rpo2r[r1.Rpo] == r1 && r1.Rpo < me { 482 d = rpolca(idom, d, r1.Rpo) 483 } 484 } 485 idom[i] = d 486 } 487 488 for i := int32(0); i < nr; i++ { 489 r1 = rpo2r[i] 490 r1.Loop++ 491 if r1.P2 != nil && loophead(idom, r1) { 492 loopmark(&rpo2r[0], i, r1) 493 } 494 } 495 496 for r1 := g.Start; r1 != nil; r1 = r1.Link { 497 r1.Active = 0 498 } 499 } 500 501 func Uniqp(r *Flow) *Flow { 502 r1 := r.P1 503 if r1 == nil { 504 r1 = r.P2 505 if r1 == nil || r1.P2link != nil { 506 return nil 507 } 508 } else if r.P2 != nil { 509 return nil 510 } 511 return r1 512 } 513 514 func Uniqs(r *Flow) *Flow { 515 r1 := r.S1 516 if r1 == nil { 517 r1 = r.S2 518 if r1 == nil { 519 return nil 520 } 521 } else if r.S2 != nil { 522 return nil 523 } 524 return r1 525 } 526 527 // The compilers assume they can generate temporary variables 528 // as needed to preserve the right semantics or simplify code 529 // generation and the back end will still generate good code. 530 // This results in a large number of ephemeral temporary variables. 531 // Merge temps with non-overlapping lifetimes and equal types using the 532 // greedy algorithm in Poletto and Sarkar, "Linear Scan Register Allocation", 533 // ACM TOPLAS 1999. 534 535 type TempVar struct { 536 node *Node 537 def *Flow // definition of temp var 538 use *Flow // use list, chained through Flow.data 539 merge *TempVar // merge var with this one 540 start int64 // smallest Prog.pc in live range 541 end int64 // largest Prog.pc in live range 542 addr bool // address taken - no accurate end 543 removed bool // removed from program 544 } 545 546 // startcmp sorts TempVars by start, then id, then symbol name. 547 type startcmp []*TempVar 548 549 func (x startcmp) Len() int { return len(x) } 550 func (x startcmp) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 551 func (x startcmp) Less(i, j int) bool { 552 a := x[i] 553 b := x[j] 554 555 if a.start < b.start { 556 return true 557 } 558 if a.start > b.start { 559 return false 560 } 561 562 // Order what's left by id or symbol name, 563 // just so that sort is forced into a specific ordering, 564 // so that the result of the sort does not depend on 565 // the sort implementation. 566 if a.def != b.def { 567 return int(a.def.Id-b.def.Id) < 0 568 } 569 if a.node != b.node { 570 return a.node.Sym.Name < b.node.Sym.Name 571 } 572 return false 573 } 574 575 // Is n available for merging? 576 func canmerge(n *Node) bool { 577 return n.Class == PAUTO && strings.HasPrefix(n.Sym.Name, "autotmp") 578 } 579 580 func mergetemp(firstp *obj.Prog) { 581 const ( 582 debugmerge = 0 583 ) 584 585 g := Flowstart(firstp, nil) 586 if g == nil { 587 return 588 } 589 590 // Build list of all mergeable variables. 591 var vars []*TempVar 592 for _, n := range Curfn.Func.Dcl { 593 if canmerge(n) { 594 v := &TempVar{} 595 vars = append(vars, v) 596 n.SetOpt(v) 597 v.node = n 598 } 599 } 600 601 // Build list of uses. 602 // We assume that the earliest reference to a temporary is its definition. 603 // This is not true of variables in general but our temporaries are all 604 // single-use (that's why we have so many!). 605 for f := g.Start; f != nil; f = f.Link { 606 p := f.Prog 607 if p.From.Node != nil && ((p.From.Node).(*Node)).Opt() != nil && p.To.Node != nil && ((p.To.Node).(*Node)).Opt() != nil { 608 Fatalf("double node %v", p) 609 } 610 var v *TempVar 611 n, _ := p.From.Node.(*Node) 612 if n != nil { 613 v, _ = n.Opt().(*TempVar) 614 } 615 if v == nil { 616 n, _ = p.To.Node.(*Node) 617 if n != nil { 618 v, _ = n.Opt().(*TempVar) 619 } 620 } 621 if v != nil { 622 if v.def == nil { 623 v.def = f 624 } 625 f.Data = v.use 626 v.use = f 627 if n == p.From.Node && (p.Info.Flags&LeftAddr != 0) { 628 v.addr = true 629 } 630 } 631 } 632 633 if debugmerge > 1 && Debug['v'] != 0 { 634 Dumpit("before", g.Start, 0) 635 } 636 637 nkill := 0 638 639 // Special case. 640 for _, v := range vars { 641 if v.addr { 642 continue 643 } 644 645 // Used in only one instruction, which had better be a write. 646 f := v.use 647 if f != nil && f.Data.(*Flow) == nil { 648 p := f.Prog 649 if p.To.Node == v.node && (p.Info.Flags&RightWrite != 0) && p.Info.Flags&RightRead == 0 { 650 p.As = obj.ANOP 651 p.To = obj.Addr{} 652 v.removed = true 653 if debugmerge > 0 && Debug['v'] != 0 { 654 fmt.Printf("drop write-only %v\n", v.node.Sym) 655 } 656 } else { 657 Fatalf("temp used and not set: %v", p) 658 } 659 nkill++ 660 continue 661 } 662 663 // Written in one instruction, read in the next, otherwise unused, 664 // no jumps to the next instruction. Happens mainly in 386 compiler. 665 f = v.use 666 if f != nil && f.Link == f.Data.(*Flow) && (f.Data.(*Flow)).Data.(*Flow) == nil && Uniqp(f.Link) == f { 667 p := f.Prog 668 p1 := f.Link.Prog 669 const ( 670 SizeAny = SizeB | SizeW | SizeL | SizeQ | SizeF | SizeD 671 ) 672 if p.From.Node == v.node && p1.To.Node == v.node && (p.Info.Flags&Move != 0) && (p.Info.Flags|p1.Info.Flags)&(LeftAddr|RightAddr) == 0 && p.Info.Flags&SizeAny == p1.Info.Flags&SizeAny { 673 p1.From = p.From 674 Thearch.Excise(f) 675 v.removed = true 676 if debugmerge > 0 && Debug['v'] != 0 { 677 fmt.Printf("drop immediate-use %v\n", v.node.Sym) 678 } 679 } 680 681 nkill++ 682 continue 683 } 684 } 685 686 // Traverse live range of each variable to set start, end. 687 // Each flood uses a new value of gen so that we don't have 688 // to clear all the r.Active words after each variable. 689 gen := uint32(0) 690 691 for _, v := range vars { 692 gen++ 693 for f := v.use; f != nil; f = f.Data.(*Flow) { 694 mergewalk(v, f, gen) 695 } 696 if v.addr { 697 gen++ 698 for f := v.use; f != nil; f = f.Data.(*Flow) { 699 varkillwalk(v, f, gen) 700 } 701 } 702 } 703 704 // Sort variables by start. 705 bystart := make([]*TempVar, len(vars)) 706 copy(bystart, vars) 707 sort.Sort(startcmp(bystart)) 708 709 // List of in-use variables, sorted by end, so that the ones that 710 // will last the longest are the earliest ones in the array. 711 // The tail inuse[nfree:] holds no-longer-used variables. 712 // In theory we should use a sorted tree so that insertions are 713 // guaranteed O(log n) and then the loop is guaranteed O(n log n). 714 // In practice, it doesn't really matter. 715 inuse := make([]*TempVar, len(bystart)) 716 717 ninuse := 0 718 nfree := len(bystart) 719 for _, v := range bystart { 720 if debugmerge > 0 && Debug['v'] != 0 { 721 fmt.Printf("consider %v: removed=%t\n", Nconv(v.node, FmtSharp), v.removed) 722 } 723 724 if v.removed { 725 continue 726 } 727 728 // Expire no longer in use. 729 for ninuse > 0 && inuse[ninuse-1].end < v.start { 730 ninuse-- 731 nfree-- 732 inuse[nfree] = inuse[ninuse] 733 } 734 735 if debugmerge > 0 && Debug['v'] != 0 { 736 fmt.Printf("consider %v: removed=%t nfree=%d nvar=%d\n", Nconv(v.node, FmtSharp), v.removed, nfree, len(bystart)) 737 } 738 739 // Find old temp to reuse if possible. 740 t := v.node.Type 741 742 for j := nfree; j < len(inuse); j++ { 743 v1 := inuse[j] 744 if debugmerge > 0 && Debug['v'] != 0 { 745 fmt.Printf("consider %v: maybe %v: type=%v,%v addrtaken=%v,%v\n", Nconv(v.node, FmtSharp), Nconv(v1.node, FmtSharp), t, v1.node.Type, v.node.Addrtaken, v1.node.Addrtaken) 746 } 747 748 // Require the types to match but also require the addrtaken bits to match. 749 // If a variable's address is taken, that disables registerization for the individual 750 // words of the variable (for example, the base,len,cap of a slice). 751 // We don't want to merge a non-addressed var with an addressed one and 752 // inhibit registerization of the former. 753 if Eqtype(t, v1.node.Type) && v.node.Addrtaken == v1.node.Addrtaken { 754 inuse[j] = inuse[nfree] 755 nfree++ 756 if v1.merge != nil { 757 v.merge = v1.merge 758 } else { 759 v.merge = v1 760 } 761 nkill++ 762 break 763 } 764 } 765 766 // Sort v into inuse. 767 j := ninuse 768 ninuse++ 769 770 for j > 0 && inuse[j-1].end < v.end { 771 inuse[j] = inuse[j-1] 772 j-- 773 } 774 775 inuse[j] = v 776 } 777 778 if debugmerge > 0 && Debug['v'] != 0 { 779 fmt.Printf("%v [%d - %d]\n", Curfn.Func.Nname.Sym, len(vars), nkill) 780 for _, v := range vars { 781 fmt.Printf("var %v %v %d-%d", Nconv(v.node, FmtSharp), v.node.Type, v.start, v.end) 782 if v.addr { 783 fmt.Printf(" addr=true") 784 } 785 if v.removed { 786 fmt.Printf(" removed=true") 787 } 788 if v.merge != nil { 789 fmt.Printf(" merge %v", Nconv(v.merge.node, FmtSharp)) 790 } 791 if v.start == v.end && v.def != nil { 792 fmt.Printf(" %v", v.def.Prog) 793 } 794 fmt.Printf("\n") 795 } 796 797 if debugmerge > 1 && Debug['v'] != 0 { 798 Dumpit("after", g.Start, 0) 799 } 800 } 801 802 // Update node references to use merged temporaries. 803 for f := g.Start; f != nil; f = f.Link { 804 p := f.Prog 805 n, _ := p.From.Node.(*Node) 806 if n != nil { 807 v, _ := n.Opt().(*TempVar) 808 if v != nil && v.merge != nil { 809 p.From.Node = v.merge.node 810 } 811 } 812 n, _ = p.To.Node.(*Node) 813 if n != nil { 814 v, _ := n.Opt().(*TempVar) 815 if v != nil && v.merge != nil { 816 p.To.Node = v.merge.node 817 } 818 } 819 } 820 821 // Delete merged nodes from declaration list. 822 dcl := make([]*Node, 0, len(Curfn.Func.Dcl)-nkill) 823 for _, n := range Curfn.Func.Dcl { 824 v, _ := n.Opt().(*TempVar) 825 if v != nil && (v.merge != nil || v.removed) { 826 continue 827 } 828 dcl = append(dcl, n) 829 } 830 Curfn.Func.Dcl = dcl 831 832 // Clear aux structures. 833 for _, v := range vars { 834 v.node.SetOpt(nil) 835 } 836 837 Flowend(g) 838 } 839 840 func mergewalk(v *TempVar, f0 *Flow, gen uint32) { 841 var p *obj.Prog 842 var f1 *Flow 843 844 for f1 = f0; f1 != nil; f1 = f1.P1 { 845 if uint32(f1.Active) == gen { 846 break 847 } 848 f1.Active = int32(gen) 849 p = f1.Prog 850 if v.end < p.Pc { 851 v.end = p.Pc 852 } 853 if f1 == v.def { 854 v.start = p.Pc 855 break 856 } 857 } 858 859 var f2 *Flow 860 for f := f0; f != f1; f = f.P1 { 861 for f2 = f.P2; f2 != nil; f2 = f2.P2link { 862 mergewalk(v, f2, gen) 863 } 864 } 865 } 866 867 func varkillwalk(v *TempVar, f0 *Flow, gen uint32) { 868 var p *obj.Prog 869 var f1 *Flow 870 871 for f1 = f0; f1 != nil; f1 = f1.S1 { 872 if uint32(f1.Active) == gen { 873 break 874 } 875 f1.Active = int32(gen) 876 p = f1.Prog 877 if v.end < p.Pc { 878 v.end = p.Pc 879 } 880 if v.start > p.Pc { 881 v.start = p.Pc 882 } 883 if p.As == obj.ARET || (p.As == obj.AVARKILL && p.To.Node == v.node) { 884 break 885 } 886 } 887 888 for f := f0; f != f1; f = f.S1 { 889 varkillwalk(v, f.S2, gen) 890 } 891 } 892 893 // Eliminate redundant nil pointer checks. 894 // 895 // The code generation pass emits a CHECKNIL for every possibly nil pointer. 896 // This pass removes a CHECKNIL if every predecessor path has already 897 // checked this value for nil. 898 // 899 // Simple backwards flood from check to definition. 900 // Run prog loop backward from end of program to beginning to avoid quadratic 901 // behavior removing a run of checks. 902 // 903 // Assume that stack variables with address not taken can be loaded multiple times 904 // from memory without being rechecked. Other variables need to be checked on 905 // each load. 906 907 var killed int // f.Data is either nil or &killed 908 909 func nilopt(firstp *obj.Prog) { 910 g := Flowstart(firstp, nil) 911 if g == nil { 912 return 913 } 914 915 if Debug_checknil > 1 { // || strcmp(curfn->nname->sym->name, "f1") == 0 916 Dumpit("nilopt", g.Start, 0) 917 } 918 919 ncheck := 0 920 nkill := 0 921 var p *obj.Prog 922 for f := g.Start; f != nil; f = f.Link { 923 p = f.Prog 924 if p.As != obj.ACHECKNIL || !Thearch.Regtyp(&p.From) { 925 continue 926 } 927 ncheck++ 928 if Thearch.Stackaddr(&p.From) { 929 if Debug_checknil != 0 && p.Lineno > 1 { 930 Warnl(p.Lineno, "removed nil check of SP address") 931 } 932 f.Data = &killed 933 continue 934 } 935 936 nilwalkfwd(f) 937 if f.Data != nil { 938 if Debug_checknil != 0 && p.Lineno > 1 { 939 Warnl(p.Lineno, "removed nil check before indirect") 940 } 941 continue 942 } 943 944 nilwalkback(f) 945 if f.Data != nil { 946 if Debug_checknil != 0 && p.Lineno > 1 { 947 Warnl(p.Lineno, "removed repeated nil check") 948 } 949 continue 950 } 951 } 952 953 for f := g.Start; f != nil; f = f.Link { 954 if f.Data != nil { 955 nkill++ 956 Thearch.Excise(f) 957 } 958 } 959 960 Flowend(g) 961 962 if Debug_checknil > 1 { 963 fmt.Printf("%v: removed %d of %d nil checks\n", Curfn.Func.Nname.Sym, nkill, ncheck) 964 } 965 } 966 967 func nilwalkback(fcheck *Flow) { 968 for f := fcheck; f != nil; f = Uniqp(f) { 969 p := f.Prog 970 if (p.Info.Flags&RightWrite != 0) && Thearch.Sameaddr(&p.To, &fcheck.Prog.From) { 971 // Found initialization of value we're checking for nil. 972 // without first finding the check, so this one is unchecked. 973 return 974 } 975 976 if f != fcheck && p.As == obj.ACHECKNIL && Thearch.Sameaddr(&p.From, &fcheck.Prog.From) { 977 fcheck.Data = &killed 978 return 979 } 980 } 981 } 982 983 // Here is a more complex version that scans backward across branches. 984 // It assumes fcheck->kill = 1 has been set on entry, and its job is to find a reason 985 // to keep the check (setting fcheck->kill = 0). 986 // It doesn't handle copying of aggregates as well as I would like, 987 // nor variables with their address taken, 988 // and it's too subtle to turn on this late in Go 1.2. Perhaps for Go 1.3. 989 /* 990 for(f1 = f0; f1 != nil; f1 = f1->p1) { 991 if(f1->active == gen) 992 break; 993 f1->active = gen; 994 p = f1->prog; 995 996 // If same check, stop this loop but still check 997 // alternate predecessors up to this point. 998 if(f1 != fcheck && p->as == ACHECKNIL && thearch.sameaddr(&p->from, &fcheck->prog->from)) 999 break; 1000 1001 if((p.Info.flags & RightWrite) && thearch.sameaddr(&p->to, &fcheck->prog->from)) { 1002 // Found initialization of value we're checking for nil. 1003 // without first finding the check, so this one is unchecked. 1004 fcheck->kill = 0; 1005 return; 1006 } 1007 1008 if(f1->p1 == nil && f1->p2 == nil) { 1009 print("lost pred for %v\n", fcheck->prog); 1010 for(f1=f0; f1!=nil; f1=f1->p1) { 1011 thearch.proginfo(&info, f1->prog); 1012 print("\t%v %d %d %D %D\n", r1->prog, info.flags&RightWrite, thearch.sameaddr(&f1->prog->to, &fcheck->prog->from), &f1->prog->to, &fcheck->prog->from); 1013 } 1014 fatal("lost pred trail"); 1015 } 1016 } 1017 1018 for(f = f0; f != f1; f = f->p1) 1019 for(f2 = f->p2; f2 != nil; f2 = f2->p2link) 1020 nilwalkback(fcheck, f2, gen); 1021 */ 1022 1023 func nilwalkfwd(fcheck *Flow) { 1024 // If the path down from rcheck dereferences the address 1025 // (possibly with a small offset) before writing to memory 1026 // and before any subsequent checks, it's okay to wait for 1027 // that implicit check. Only consider this basic block to 1028 // avoid problems like: 1029 // _ = *x // should panic 1030 // for {} // no writes but infinite loop may be considered visible 1031 1032 var last *Flow 1033 for f := Uniqs(fcheck); f != nil; f = Uniqs(f) { 1034 p := f.Prog 1035 if (p.Info.Flags&LeftRead != 0) && Thearch.Smallindir(&p.From, &fcheck.Prog.From) { 1036 fcheck.Data = &killed 1037 return 1038 } 1039 1040 if (p.Info.Flags&(RightRead|RightWrite) != 0) && Thearch.Smallindir(&p.To, &fcheck.Prog.From) { 1041 fcheck.Data = &killed 1042 return 1043 } 1044 1045 // Stop if another nil check happens. 1046 if p.As == obj.ACHECKNIL { 1047 return 1048 } 1049 1050 // Stop if value is lost. 1051 if (p.Info.Flags&RightWrite != 0) && Thearch.Sameaddr(&p.To, &fcheck.Prog.From) { 1052 return 1053 } 1054 1055 // Stop if memory write. 1056 if (p.Info.Flags&RightWrite != 0) && !Thearch.Regtyp(&p.To) { 1057 return 1058 } 1059 1060 // Stop if we jump backward. 1061 if last != nil && f.Id <= last.Id { 1062 return 1063 } 1064 last = f 1065 } 1066 }