github.com/miolini/go@v0.0.0-20160405192216-fca68c8cb408/src/cmd/compile/internal/gc/ssa.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gc 6 7 import ( 8 "bytes" 9 "fmt" 10 "html" 11 "os" 12 "strings" 13 14 "cmd/compile/internal/ssa" 15 "cmd/internal/obj" 16 ) 17 18 var ssaEnabled = true 19 20 var ssaConfig *ssa.Config 21 var ssaExp ssaExport 22 23 func initssa() *ssa.Config { 24 ssaExp.unimplemented = false 25 ssaExp.mustImplement = true 26 if ssaConfig == nil { 27 ssaConfig = ssa.NewConfig(Thearch.Thestring, &ssaExp, Ctxt, Debug['N'] == 0) 28 } 29 return ssaConfig 30 } 31 32 func shouldssa(fn *Node) bool { 33 switch Thearch.Thestring { 34 default: 35 // Only available for testing. 36 if os.Getenv("SSATEST") == "" { 37 return false 38 } 39 // Generally available. 40 case "amd64": 41 } 42 if !ssaEnabled { 43 return false 44 } 45 46 // Environment variable control of SSA CG 47 // 1. IF GOSSAFUNC == current function name THEN 48 // compile this function with SSA and log output to ssa.html 49 50 // 2. IF GOSSAHASH == "" THEN 51 // compile this function (and everything else) with SSA 52 53 // 3. IF GOSSAHASH == "n" or "N" 54 // IF GOSSAPKG == current package name THEN 55 // compile this function (and everything in this package) with SSA 56 // ELSE 57 // use the old back end for this function. 58 // This is for compatibility with existing test harness and should go away. 59 60 // 4. IF GOSSAHASH is a suffix of the binary-rendered SHA1 hash of the function name THEN 61 // compile this function with SSA 62 // ELSE 63 // compile this function with the old back end. 64 65 // Plan is for 3 to be removed when the tests are revised. 66 // SSA is now default, and is disabled by setting 67 // GOSSAHASH to n or N, or selectively with strings of 68 // 0 and 1. 69 70 name := fn.Func.Nname.Sym.Name 71 72 funcname := os.Getenv("GOSSAFUNC") 73 if funcname != "" { 74 // If GOSSAFUNC is set, compile only that function. 75 return name == funcname 76 } 77 78 pkg := os.Getenv("GOSSAPKG") 79 if pkg != "" { 80 // If GOSSAPKG is set, compile only that package. 81 return localpkg.Name == pkg 82 } 83 84 return initssa().DebugHashMatch("GOSSAHASH", name) 85 } 86 87 // buildssa builds an SSA function. 88 func buildssa(fn *Node) *ssa.Func { 89 name := fn.Func.Nname.Sym.Name 90 printssa := name == os.Getenv("GOSSAFUNC") 91 if printssa { 92 fmt.Println("generating SSA for", name) 93 dumplist("buildssa-enter", fn.Func.Enter) 94 dumplist("buildssa-body", fn.Nbody) 95 dumplist("buildssa-exit", fn.Func.Exit) 96 } 97 98 var s state 99 s.pushLine(fn.Lineno) 100 defer s.popLine() 101 102 if fn.Func.Pragma&CgoUnsafeArgs != 0 { 103 s.cgoUnsafeArgs = true 104 } 105 if fn.Func.Pragma&Nowritebarrier != 0 { 106 s.noWB = true 107 } 108 defer func() { 109 if s.WBLineno != 0 { 110 fn.Func.WBLineno = s.WBLineno 111 } 112 }() 113 // TODO(khr): build config just once at the start of the compiler binary 114 115 ssaExp.log = printssa 116 117 s.config = initssa() 118 s.f = s.config.NewFunc() 119 s.f.Name = name 120 s.exitCode = fn.Func.Exit 121 s.panics = map[funcLine]*ssa.Block{} 122 123 if name == os.Getenv("GOSSAFUNC") { 124 // TODO: tempfile? it is handy to have the location 125 // of this file be stable, so you can just reload in the browser. 126 s.config.HTML = ssa.NewHTMLWriter("ssa.html", s.config, name) 127 // TODO: generate and print a mapping from nodes to values and blocks 128 } 129 defer func() { 130 if !printssa { 131 s.config.HTML.Close() 132 } 133 }() 134 135 // Allocate starting block 136 s.f.Entry = s.f.NewBlock(ssa.BlockPlain) 137 138 // Allocate starting values 139 s.labels = map[string]*ssaLabel{} 140 s.labeledNodes = map[*Node]*ssaLabel{} 141 s.startmem = s.entryNewValue0(ssa.OpInitMem, ssa.TypeMem) 142 s.sp = s.entryNewValue0(ssa.OpSP, Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead 143 s.sb = s.entryNewValue0(ssa.OpSB, Types[TUINTPTR]) 144 145 s.startBlock(s.f.Entry) 146 s.vars[&memVar] = s.startmem 147 148 s.varsyms = map[*Node]interface{}{} 149 150 // Generate addresses of local declarations 151 s.decladdrs = map[*Node]*ssa.Value{} 152 for _, n := range fn.Func.Dcl { 153 switch n.Class { 154 case PPARAM, PPARAMOUT: 155 aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n}) 156 s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sp) 157 if n.Class == PPARAMOUT && s.canSSA(n) { 158 // Save ssa-able PPARAMOUT variables so we can 159 // store them back to the stack at the end of 160 // the function. 161 s.returns = append(s.returns, n) 162 } 163 case PAUTO | PHEAP: 164 // TODO this looks wrong for PAUTO|PHEAP, no vardef, but also no definition 165 aux := s.lookupSymbol(n, &ssa.AutoSymbol{Typ: n.Type, Node: n}) 166 s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sp) 167 case PPARAM | PHEAP, PPARAMOUT | PHEAP: 168 // This ends up wrong, have to do it at the PARAM node instead. 169 case PAUTO: 170 // processed at each use, to prevent Addr coming 171 // before the decl. 172 case PFUNC: 173 // local function - already handled by frontend 174 default: 175 str := "" 176 if n.Class&PHEAP != 0 { 177 str = ",heap" 178 } 179 s.Unimplementedf("local variable with class %s%s unimplemented", classnames[n.Class&^PHEAP], str) 180 } 181 } 182 183 // Convert the AST-based IR to the SSA-based IR 184 s.stmts(fn.Func.Enter) 185 s.stmts(fn.Nbody) 186 187 // fallthrough to exit 188 if s.curBlock != nil { 189 s.pushLine(fn.Func.Endlineno) 190 s.exit() 191 s.popLine() 192 } 193 194 // Check that we used all labels 195 for name, lab := range s.labels { 196 if !lab.used() && !lab.reported { 197 yyerrorl(lab.defNode.Lineno, "label %v defined and not used", name) 198 lab.reported = true 199 } 200 if lab.used() && !lab.defined() && !lab.reported { 201 yyerrorl(lab.useNode.Lineno, "label %v not defined", name) 202 lab.reported = true 203 } 204 } 205 206 // Check any forward gotos. Non-forward gotos have already been checked. 207 for _, n := range s.fwdGotos { 208 lab := s.labels[n.Left.Sym.Name] 209 // If the label is undefined, we have already have printed an error. 210 if lab.defined() { 211 s.checkgoto(n, lab.defNode) 212 } 213 } 214 215 if nerrors > 0 { 216 s.f.Free() 217 return nil 218 } 219 220 // Link up variable uses to variable definitions 221 s.linkForwardReferences() 222 223 // Don't carry reference this around longer than necessary 224 s.exitCode = Nodes{} 225 226 // Main call to ssa package to compile function 227 ssa.Compile(s.f) 228 229 return s.f 230 } 231 232 type state struct { 233 // configuration (arch) information 234 config *ssa.Config 235 236 // function we're building 237 f *ssa.Func 238 239 // labels and labeled control flow nodes (OFOR, OSWITCH, OSELECT) in f 240 labels map[string]*ssaLabel 241 labeledNodes map[*Node]*ssaLabel 242 243 // gotos that jump forward; required for deferred checkgoto calls 244 fwdGotos []*Node 245 // Code that must precede any return 246 // (e.g., copying value of heap-escaped paramout back to true paramout) 247 exitCode Nodes 248 249 // unlabeled break and continue statement tracking 250 breakTo *ssa.Block // current target for plain break statement 251 continueTo *ssa.Block // current target for plain continue statement 252 253 // current location where we're interpreting the AST 254 curBlock *ssa.Block 255 256 // variable assignments in the current block (map from variable symbol to ssa value) 257 // *Node is the unique identifier (an ONAME Node) for the variable. 258 vars map[*Node]*ssa.Value 259 260 // all defined variables at the end of each block. Indexed by block ID. 261 defvars []map[*Node]*ssa.Value 262 263 // addresses of PPARAM and PPARAMOUT variables. 264 decladdrs map[*Node]*ssa.Value 265 266 // symbols for PEXTERN, PAUTO and PPARAMOUT variables so they can be reused. 267 varsyms map[*Node]interface{} 268 269 // starting values. Memory, stack pointer, and globals pointer 270 startmem *ssa.Value 271 sp *ssa.Value 272 sb *ssa.Value 273 274 // line number stack. The current line number is top of stack 275 line []int32 276 277 // list of panic calls by function name and line number. 278 // Used to deduplicate panic calls. 279 panics map[funcLine]*ssa.Block 280 281 // list of FwdRef values. 282 fwdRefs []*ssa.Value 283 284 // list of PPARAMOUT (return) variables. Does not include PPARAM|PHEAP vars. 285 returns []*Node 286 287 cgoUnsafeArgs bool 288 noWB bool 289 WBLineno int32 // line number of first write barrier. 0=no write barriers 290 } 291 292 type funcLine struct { 293 f *Node 294 line int32 295 } 296 297 type ssaLabel struct { 298 target *ssa.Block // block identified by this label 299 breakTarget *ssa.Block // block to break to in control flow node identified by this label 300 continueTarget *ssa.Block // block to continue to in control flow node identified by this label 301 defNode *Node // label definition Node (OLABEL) 302 // Label use Node (OGOTO, OBREAK, OCONTINUE). 303 // Used only for error detection and reporting. 304 // There might be multiple uses, but we only need to track one. 305 useNode *Node 306 reported bool // reported indicates whether an error has already been reported for this label 307 } 308 309 // defined reports whether the label has a definition (OLABEL node). 310 func (l *ssaLabel) defined() bool { return l.defNode != nil } 311 312 // used reports whether the label has a use (OGOTO, OBREAK, or OCONTINUE node). 313 func (l *ssaLabel) used() bool { return l.useNode != nil } 314 315 // label returns the label associated with sym, creating it if necessary. 316 func (s *state) label(sym *Sym) *ssaLabel { 317 lab := s.labels[sym.Name] 318 if lab == nil { 319 lab = new(ssaLabel) 320 s.labels[sym.Name] = lab 321 } 322 return lab 323 } 324 325 func (s *state) Logf(msg string, args ...interface{}) { s.config.Logf(msg, args...) } 326 func (s *state) Log() bool { return s.config.Log() } 327 func (s *state) Fatalf(msg string, args ...interface{}) { s.config.Fatalf(s.peekLine(), msg, args...) } 328 func (s *state) Unimplementedf(msg string, args ...interface{}) { 329 s.config.Unimplementedf(s.peekLine(), msg, args...) 330 } 331 func (s *state) Warnl(line int32, msg string, args ...interface{}) { s.config.Warnl(line, msg, args...) } 332 func (s *state) Debug_checknil() bool { return s.config.Debug_checknil() } 333 334 var ( 335 // dummy node for the memory variable 336 memVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "mem"}} 337 338 // dummy nodes for temporary variables 339 ptrVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ptr"}} 340 capVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "cap"}} 341 typVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "typ"}} 342 idataVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "idata"}} 343 okVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ok"}} 344 deltaVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "delta"}} 345 ) 346 347 // startBlock sets the current block we're generating code in to b. 348 func (s *state) startBlock(b *ssa.Block) { 349 if s.curBlock != nil { 350 s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock) 351 } 352 s.curBlock = b 353 s.vars = map[*Node]*ssa.Value{} 354 } 355 356 // endBlock marks the end of generating code for the current block. 357 // Returns the (former) current block. Returns nil if there is no current 358 // block, i.e. if no code flows to the current execution point. 359 func (s *state) endBlock() *ssa.Block { 360 b := s.curBlock 361 if b == nil { 362 return nil 363 } 364 for len(s.defvars) <= int(b.ID) { 365 s.defvars = append(s.defvars, nil) 366 } 367 s.defvars[b.ID] = s.vars 368 s.curBlock = nil 369 s.vars = nil 370 b.Line = s.peekLine() 371 return b 372 } 373 374 // pushLine pushes a line number on the line number stack. 375 func (s *state) pushLine(line int32) { 376 s.line = append(s.line, line) 377 } 378 379 // popLine pops the top of the line number stack. 380 func (s *state) popLine() { 381 s.line = s.line[:len(s.line)-1] 382 } 383 384 // peekLine peek the top of the line number stack. 385 func (s *state) peekLine() int32 { 386 return s.line[len(s.line)-1] 387 } 388 389 func (s *state) Error(msg string, args ...interface{}) { 390 yyerrorl(s.peekLine(), msg, args...) 391 } 392 393 // newValue0 adds a new value with no arguments to the current block. 394 func (s *state) newValue0(op ssa.Op, t ssa.Type) *ssa.Value { 395 return s.curBlock.NewValue0(s.peekLine(), op, t) 396 } 397 398 // newValue0A adds a new value with no arguments and an aux value to the current block. 399 func (s *state) newValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value { 400 return s.curBlock.NewValue0A(s.peekLine(), op, t, aux) 401 } 402 403 // newValue0I adds a new value with no arguments and an auxint value to the current block. 404 func (s *state) newValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value { 405 return s.curBlock.NewValue0I(s.peekLine(), op, t, auxint) 406 } 407 408 // newValue1 adds a new value with one argument to the current block. 409 func (s *state) newValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value { 410 return s.curBlock.NewValue1(s.peekLine(), op, t, arg) 411 } 412 413 // newValue1A adds a new value with one argument and an aux value to the current block. 414 func (s *state) newValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value { 415 return s.curBlock.NewValue1A(s.peekLine(), op, t, aux, arg) 416 } 417 418 // newValue1I adds a new value with one argument and an auxint value to the current block. 419 func (s *state) newValue1I(op ssa.Op, t ssa.Type, aux int64, arg *ssa.Value) *ssa.Value { 420 return s.curBlock.NewValue1I(s.peekLine(), op, t, aux, arg) 421 } 422 423 // newValue2 adds a new value with two arguments to the current block. 424 func (s *state) newValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value { 425 return s.curBlock.NewValue2(s.peekLine(), op, t, arg0, arg1) 426 } 427 428 // newValue2I adds a new value with two arguments and an auxint value to the current block. 429 func (s *state) newValue2I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value { 430 return s.curBlock.NewValue2I(s.peekLine(), op, t, aux, arg0, arg1) 431 } 432 433 // newValue3 adds a new value with three arguments to the current block. 434 func (s *state) newValue3(op ssa.Op, t ssa.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value { 435 return s.curBlock.NewValue3(s.peekLine(), op, t, arg0, arg1, arg2) 436 } 437 438 // newValue3I adds a new value with three arguments and an auxint value to the current block. 439 func (s *state) newValue3I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value { 440 return s.curBlock.NewValue3I(s.peekLine(), op, t, aux, arg0, arg1, arg2) 441 } 442 443 // entryNewValue0 adds a new value with no arguments to the entry block. 444 func (s *state) entryNewValue0(op ssa.Op, t ssa.Type) *ssa.Value { 445 return s.f.Entry.NewValue0(s.peekLine(), op, t) 446 } 447 448 // entryNewValue0A adds a new value with no arguments and an aux value to the entry block. 449 func (s *state) entryNewValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value { 450 return s.f.Entry.NewValue0A(s.peekLine(), op, t, aux) 451 } 452 453 // entryNewValue0I adds a new value with no arguments and an auxint value to the entry block. 454 func (s *state) entryNewValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value { 455 return s.f.Entry.NewValue0I(s.peekLine(), op, t, auxint) 456 } 457 458 // entryNewValue1 adds a new value with one argument to the entry block. 459 func (s *state) entryNewValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value { 460 return s.f.Entry.NewValue1(s.peekLine(), op, t, arg) 461 } 462 463 // entryNewValue1 adds a new value with one argument and an auxint value to the entry block. 464 func (s *state) entryNewValue1I(op ssa.Op, t ssa.Type, auxint int64, arg *ssa.Value) *ssa.Value { 465 return s.f.Entry.NewValue1I(s.peekLine(), op, t, auxint, arg) 466 } 467 468 // entryNewValue1A adds a new value with one argument and an aux value to the entry block. 469 func (s *state) entryNewValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value { 470 return s.f.Entry.NewValue1A(s.peekLine(), op, t, aux, arg) 471 } 472 473 // entryNewValue2 adds a new value with two arguments to the entry block. 474 func (s *state) entryNewValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value { 475 return s.f.Entry.NewValue2(s.peekLine(), op, t, arg0, arg1) 476 } 477 478 // const* routines add a new const value to the entry block. 479 func (s *state) constSlice(t ssa.Type) *ssa.Value { return s.f.ConstSlice(s.peekLine(), t) } 480 func (s *state) constInterface(t ssa.Type) *ssa.Value { return s.f.ConstInterface(s.peekLine(), t) } 481 func (s *state) constNil(t ssa.Type) *ssa.Value { return s.f.ConstNil(s.peekLine(), t) } 482 func (s *state) constEmptyString(t ssa.Type) *ssa.Value { return s.f.ConstEmptyString(s.peekLine(), t) } 483 func (s *state) constBool(c bool) *ssa.Value { 484 return s.f.ConstBool(s.peekLine(), Types[TBOOL], c) 485 } 486 func (s *state) constInt8(t ssa.Type, c int8) *ssa.Value { 487 return s.f.ConstInt8(s.peekLine(), t, c) 488 } 489 func (s *state) constInt16(t ssa.Type, c int16) *ssa.Value { 490 return s.f.ConstInt16(s.peekLine(), t, c) 491 } 492 func (s *state) constInt32(t ssa.Type, c int32) *ssa.Value { 493 return s.f.ConstInt32(s.peekLine(), t, c) 494 } 495 func (s *state) constInt64(t ssa.Type, c int64) *ssa.Value { 496 return s.f.ConstInt64(s.peekLine(), t, c) 497 } 498 func (s *state) constFloat32(t ssa.Type, c float64) *ssa.Value { 499 return s.f.ConstFloat32(s.peekLine(), t, c) 500 } 501 func (s *state) constFloat64(t ssa.Type, c float64) *ssa.Value { 502 return s.f.ConstFloat64(s.peekLine(), t, c) 503 } 504 func (s *state) constInt(t ssa.Type, c int64) *ssa.Value { 505 if s.config.IntSize == 8 { 506 return s.constInt64(t, c) 507 } 508 if int64(int32(c)) != c { 509 s.Fatalf("integer constant too big %d", c) 510 } 511 return s.constInt32(t, int32(c)) 512 } 513 514 func (s *state) stmts(a Nodes) { 515 for _, x := range a.Slice() { 516 s.stmt(x) 517 } 518 } 519 520 // ssaStmtList converts the statement n to SSA and adds it to s. 521 func (s *state) stmtList(l Nodes) { 522 for _, n := range l.Slice() { 523 s.stmt(n) 524 } 525 } 526 527 // ssaStmt converts the statement n to SSA and adds it to s. 528 func (s *state) stmt(n *Node) { 529 s.pushLine(n.Lineno) 530 defer s.popLine() 531 532 // If s.curBlock is nil, then we're about to generate dead code. 533 // We can't just short-circuit here, though, 534 // because we check labels and gotos as part of SSA generation. 535 // Provide a block for the dead code so that we don't have 536 // to add special cases everywhere else. 537 if s.curBlock == nil { 538 dead := s.f.NewBlock(ssa.BlockPlain) 539 s.startBlock(dead) 540 } 541 542 s.stmtList(n.Ninit) 543 switch n.Op { 544 545 case OBLOCK: 546 s.stmtList(n.List) 547 548 // No-ops 549 case OEMPTY, ODCLCONST, ODCLTYPE, OFALL: 550 551 // Expression statements 552 case OCALLFUNC, OCALLMETH, OCALLINTER: 553 s.call(n, callNormal) 554 if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class == PFUNC && 555 (compiling_runtime != 0 && n.Left.Sym.Name == "throw" || 556 n.Left.Sym.Pkg == Runtimepkg && (n.Left.Sym.Name == "gopanic" || n.Left.Sym.Name == "selectgo" || n.Left.Sym.Name == "block")) { 557 m := s.mem() 558 b := s.endBlock() 559 b.Kind = ssa.BlockExit 560 b.SetControl(m) 561 // TODO: never rewrite OPANIC to OCALLFUNC in the 562 // first place. Need to wait until all backends 563 // go through SSA. 564 } 565 case ODEFER: 566 s.call(n.Left, callDefer) 567 case OPROC: 568 s.call(n.Left, callGo) 569 570 case OAS2DOTTYPE: 571 res, resok := s.dottype(n.Rlist.First(), true) 572 s.assign(n.List.First(), res, needwritebarrier(n.List.First(), n.Rlist.First()), false, n.Lineno, 0) 573 s.assign(n.List.Second(), resok, false, false, n.Lineno, 0) 574 return 575 576 case ODCL: 577 if n.Left.Class&PHEAP == 0 { 578 return 579 } 580 if compiling_runtime != 0 { 581 Fatalf("%v escapes to heap, not allowed in runtime.", n) 582 } 583 584 // TODO: the old pass hides the details of PHEAP 585 // variables behind ONAME nodes. Figure out if it's better 586 // to rewrite the tree and make the heapaddr construct explicit 587 // or to keep this detail hidden behind the scenes. 588 palloc := prealloc[n.Left] 589 if palloc == nil { 590 palloc = callnew(n.Left.Type) 591 prealloc[n.Left] = palloc 592 } 593 r := s.expr(palloc) 594 s.assign(n.Left.Name.Heapaddr, r, false, false, n.Lineno, 0) 595 596 case OLABEL: 597 sym := n.Left.Sym 598 599 if isblanksym(sym) { 600 // Empty identifier is valid but useless. 601 // See issues 11589, 11593. 602 return 603 } 604 605 lab := s.label(sym) 606 607 // Associate label with its control flow node, if any 608 if ctl := n.Name.Defn; ctl != nil { 609 switch ctl.Op { 610 case OFOR, OSWITCH, OSELECT: 611 s.labeledNodes[ctl] = lab 612 } 613 } 614 615 if !lab.defined() { 616 lab.defNode = n 617 } else { 618 s.Error("label %v already defined at %v", sym, linestr(lab.defNode.Lineno)) 619 lab.reported = true 620 } 621 // The label might already have a target block via a goto. 622 if lab.target == nil { 623 lab.target = s.f.NewBlock(ssa.BlockPlain) 624 } 625 626 // go to that label (we pretend "label:" is preceded by "goto label") 627 b := s.endBlock() 628 b.AddEdgeTo(lab.target) 629 s.startBlock(lab.target) 630 631 case OGOTO: 632 sym := n.Left.Sym 633 634 lab := s.label(sym) 635 if lab.target == nil { 636 lab.target = s.f.NewBlock(ssa.BlockPlain) 637 } 638 if !lab.used() { 639 lab.useNode = n 640 } 641 642 if lab.defined() { 643 s.checkgoto(n, lab.defNode) 644 } else { 645 s.fwdGotos = append(s.fwdGotos, n) 646 } 647 648 b := s.endBlock() 649 b.AddEdgeTo(lab.target) 650 651 case OAS, OASWB: 652 // Check whether we can generate static data rather than code. 653 // If so, ignore n and defer data generation until codegen. 654 // Failure to do this causes writes to readonly symbols. 655 if gen_as_init(n, true) { 656 var data []*Node 657 if s.f.StaticData != nil { 658 data = s.f.StaticData.([]*Node) 659 } 660 s.f.StaticData = append(data, n) 661 return 662 } 663 664 var t *Type 665 if n.Right != nil { 666 t = n.Right.Type 667 } else { 668 t = n.Left.Type 669 } 670 671 // Evaluate RHS. 672 rhs := n.Right 673 if rhs != nil && (rhs.Op == OSTRUCTLIT || rhs.Op == OARRAYLIT) { 674 // All literals with nonzero fields have already been 675 // rewritten during walk. Any that remain are just T{} 676 // or equivalents. Use the zero value. 677 if !iszero(rhs) { 678 Fatalf("literal with nonzero value in SSA: %v", rhs) 679 } 680 rhs = nil 681 } 682 var r *ssa.Value 683 needwb := n.Op == OASWB && rhs != nil 684 deref := !canSSAType(t) 685 if deref { 686 if rhs == nil { 687 r = nil // Signal assign to use OpZero. 688 } else { 689 r = s.addr(rhs, false) 690 } 691 } else { 692 if rhs == nil { 693 r = s.zeroVal(t) 694 } else { 695 r = s.expr(rhs) 696 } 697 } 698 if rhs != nil && rhs.Op == OAPPEND { 699 // Yuck! The frontend gets rid of the write barrier, but we need it! 700 // At least, we need it in the case where growslice is called. 701 // TODO: Do the write barrier on just the growslice branch. 702 // TODO: just add a ptr graying to the end of growslice? 703 // TODO: check whether we need to do this for ODOTTYPE and ORECV also. 704 // They get similar wb-removal treatment in walk.go:OAS. 705 needwb = true 706 } 707 708 var skip skipMask 709 if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) { 710 // We're assigning a slicing operation back to its source. 711 // Don't write back fields we aren't changing. See issue #14855. 712 i := rhs.Right.Left 713 var j, k *Node 714 if rhs.Op == OSLICE3 { 715 j = rhs.Right.Right.Left 716 k = rhs.Right.Right.Right 717 } else { 718 j = rhs.Right.Right 719 } 720 if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) { 721 // [0:...] is the same as [:...] 722 i = nil 723 } 724 // TODO: detect defaults for len/cap also. 725 // Currently doesn't really work because (*p)[:len(*p)] appears here as: 726 // tmp = len(*p) 727 // (*p)[:tmp] 728 //if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) { 729 // j = nil 730 //} 731 //if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) { 732 // k = nil 733 //} 734 if i == nil { 735 skip |= skipPtr 736 if j == nil { 737 skip |= skipLen 738 } 739 if k == nil { 740 skip |= skipCap 741 } 742 } 743 } 744 745 s.assign(n.Left, r, needwb, deref, n.Lineno, skip) 746 747 case OIF: 748 bThen := s.f.NewBlock(ssa.BlockPlain) 749 bEnd := s.f.NewBlock(ssa.BlockPlain) 750 var bElse *ssa.Block 751 if n.Rlist.Len() != 0 { 752 bElse = s.f.NewBlock(ssa.BlockPlain) 753 s.condBranch(n.Left, bThen, bElse, n.Likely) 754 } else { 755 s.condBranch(n.Left, bThen, bEnd, n.Likely) 756 } 757 758 s.startBlock(bThen) 759 s.stmts(n.Nbody) 760 if b := s.endBlock(); b != nil { 761 b.AddEdgeTo(bEnd) 762 } 763 764 if n.Rlist.Len() != 0 { 765 s.startBlock(bElse) 766 s.stmtList(n.Rlist) 767 if b := s.endBlock(); b != nil { 768 b.AddEdgeTo(bEnd) 769 } 770 } 771 s.startBlock(bEnd) 772 773 case ORETURN: 774 s.stmtList(n.List) 775 s.exit() 776 case ORETJMP: 777 s.stmtList(n.List) 778 b := s.exit() 779 b.Kind = ssa.BlockRetJmp // override BlockRet 780 b.Aux = n.Left.Sym 781 782 case OCONTINUE, OBREAK: 783 var op string 784 var to *ssa.Block 785 switch n.Op { 786 case OCONTINUE: 787 op = "continue" 788 to = s.continueTo 789 case OBREAK: 790 op = "break" 791 to = s.breakTo 792 } 793 if n.Left == nil { 794 // plain break/continue 795 if to == nil { 796 s.Error("%s is not in a loop", op) 797 return 798 } 799 // nothing to do; "to" is already the correct target 800 } else { 801 // labeled break/continue; look up the target 802 sym := n.Left.Sym 803 lab := s.label(sym) 804 if !lab.used() { 805 lab.useNode = n.Left 806 } 807 if !lab.defined() { 808 s.Error("%s label not defined: %v", op, sym) 809 lab.reported = true 810 return 811 } 812 switch n.Op { 813 case OCONTINUE: 814 to = lab.continueTarget 815 case OBREAK: 816 to = lab.breakTarget 817 } 818 if to == nil { 819 // Valid label but not usable with a break/continue here, e.g.: 820 // for { 821 // continue abc 822 // } 823 // abc: 824 // for {} 825 s.Error("invalid %s label %v", op, sym) 826 lab.reported = true 827 return 828 } 829 } 830 831 b := s.endBlock() 832 b.AddEdgeTo(to) 833 834 case OFOR: 835 // OFOR: for Ninit; Left; Right { Nbody } 836 bCond := s.f.NewBlock(ssa.BlockPlain) 837 bBody := s.f.NewBlock(ssa.BlockPlain) 838 bIncr := s.f.NewBlock(ssa.BlockPlain) 839 bEnd := s.f.NewBlock(ssa.BlockPlain) 840 841 // first, jump to condition test 842 b := s.endBlock() 843 b.AddEdgeTo(bCond) 844 845 // generate code to test condition 846 s.startBlock(bCond) 847 if n.Left != nil { 848 s.condBranch(n.Left, bBody, bEnd, 1) 849 } else { 850 b := s.endBlock() 851 b.Kind = ssa.BlockPlain 852 b.AddEdgeTo(bBody) 853 } 854 855 // set up for continue/break in body 856 prevContinue := s.continueTo 857 prevBreak := s.breakTo 858 s.continueTo = bIncr 859 s.breakTo = bEnd 860 lab := s.labeledNodes[n] 861 if lab != nil { 862 // labeled for loop 863 lab.continueTarget = bIncr 864 lab.breakTarget = bEnd 865 } 866 867 // generate body 868 s.startBlock(bBody) 869 s.stmts(n.Nbody) 870 871 // tear down continue/break 872 s.continueTo = prevContinue 873 s.breakTo = prevBreak 874 if lab != nil { 875 lab.continueTarget = nil 876 lab.breakTarget = nil 877 } 878 879 // done with body, goto incr 880 if b := s.endBlock(); b != nil { 881 b.AddEdgeTo(bIncr) 882 } 883 884 // generate incr 885 s.startBlock(bIncr) 886 if n.Right != nil { 887 s.stmt(n.Right) 888 } 889 if b := s.endBlock(); b != nil { 890 b.AddEdgeTo(bCond) 891 } 892 s.startBlock(bEnd) 893 894 case OSWITCH, OSELECT: 895 // These have been mostly rewritten by the front end into their Nbody fields. 896 // Our main task is to correctly hook up any break statements. 897 bEnd := s.f.NewBlock(ssa.BlockPlain) 898 899 prevBreak := s.breakTo 900 s.breakTo = bEnd 901 lab := s.labeledNodes[n] 902 if lab != nil { 903 // labeled 904 lab.breakTarget = bEnd 905 } 906 907 // generate body code 908 s.stmts(n.Nbody) 909 910 s.breakTo = prevBreak 911 if lab != nil { 912 lab.breakTarget = nil 913 } 914 915 // OSWITCH never falls through (s.curBlock == nil here). 916 // OSELECT does not fall through if we're calling selectgo. 917 // OSELECT does fall through if we're calling selectnb{send,recv}[2]. 918 // In those latter cases, go to the code after the select. 919 if b := s.endBlock(); b != nil { 920 b.AddEdgeTo(bEnd) 921 } 922 s.startBlock(bEnd) 923 924 case OVARKILL: 925 // Insert a varkill op to record that a variable is no longer live. 926 // We only care about liveness info at call sites, so putting the 927 // varkill in the store chain is enough to keep it correctly ordered 928 // with respect to call ops. 929 if !s.canSSA(n.Left) { 930 s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, n.Left, s.mem()) 931 } 932 933 case OVARLIVE: 934 // Insert a varlive op to record that a variable is still live. 935 if !n.Left.Addrtaken { 936 s.Fatalf("VARLIVE variable %s must have Addrtaken set", n.Left) 937 } 938 s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, ssa.TypeMem, n.Left, s.mem()) 939 940 case OCHECKNIL: 941 p := s.expr(n.Left) 942 s.nilCheck(p) 943 944 default: 945 s.Unimplementedf("unhandled stmt %s", opnames[n.Op]) 946 } 947 } 948 949 // exit processes any code that needs to be generated just before returning. 950 // It returns a BlockRet block that ends the control flow. Its control value 951 // will be set to the final memory state. 952 func (s *state) exit() *ssa.Block { 953 if hasdefer { 954 s.rtcall(Deferreturn, true, nil) 955 } 956 957 // Run exit code. Typically, this code copies heap-allocated PPARAMOUT 958 // variables back to the stack. 959 s.stmts(s.exitCode) 960 961 // Store SSAable PPARAMOUT variables back to stack locations. 962 for _, n := range s.returns { 963 aux := &ssa.ArgSymbol{Typ: n.Type, Node: n} 964 addr := s.newValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sp) 965 val := s.variable(n, n.Type) 966 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, n, s.mem()) 967 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, n.Type.Size(), addr, val, s.mem()) 968 // TODO: if val is ever spilled, we'd like to use the 969 // PPARAMOUT slot for spilling it. That won't happen 970 // currently. 971 } 972 973 // Do actual return. 974 m := s.mem() 975 b := s.endBlock() 976 b.Kind = ssa.BlockRet 977 b.SetControl(m) 978 return b 979 } 980 981 type opAndType struct { 982 op Op 983 etype EType 984 } 985 986 var opToSSA = map[opAndType]ssa.Op{ 987 opAndType{OADD, TINT8}: ssa.OpAdd8, 988 opAndType{OADD, TUINT8}: ssa.OpAdd8, 989 opAndType{OADD, TINT16}: ssa.OpAdd16, 990 opAndType{OADD, TUINT16}: ssa.OpAdd16, 991 opAndType{OADD, TINT32}: ssa.OpAdd32, 992 opAndType{OADD, TUINT32}: ssa.OpAdd32, 993 opAndType{OADD, TPTR32}: ssa.OpAdd32, 994 opAndType{OADD, TINT64}: ssa.OpAdd64, 995 opAndType{OADD, TUINT64}: ssa.OpAdd64, 996 opAndType{OADD, TPTR64}: ssa.OpAdd64, 997 opAndType{OADD, TFLOAT32}: ssa.OpAdd32F, 998 opAndType{OADD, TFLOAT64}: ssa.OpAdd64F, 999 1000 opAndType{OSUB, TINT8}: ssa.OpSub8, 1001 opAndType{OSUB, TUINT8}: ssa.OpSub8, 1002 opAndType{OSUB, TINT16}: ssa.OpSub16, 1003 opAndType{OSUB, TUINT16}: ssa.OpSub16, 1004 opAndType{OSUB, TINT32}: ssa.OpSub32, 1005 opAndType{OSUB, TUINT32}: ssa.OpSub32, 1006 opAndType{OSUB, TINT64}: ssa.OpSub64, 1007 opAndType{OSUB, TUINT64}: ssa.OpSub64, 1008 opAndType{OSUB, TFLOAT32}: ssa.OpSub32F, 1009 opAndType{OSUB, TFLOAT64}: ssa.OpSub64F, 1010 1011 opAndType{ONOT, TBOOL}: ssa.OpNot, 1012 1013 opAndType{OMINUS, TINT8}: ssa.OpNeg8, 1014 opAndType{OMINUS, TUINT8}: ssa.OpNeg8, 1015 opAndType{OMINUS, TINT16}: ssa.OpNeg16, 1016 opAndType{OMINUS, TUINT16}: ssa.OpNeg16, 1017 opAndType{OMINUS, TINT32}: ssa.OpNeg32, 1018 opAndType{OMINUS, TUINT32}: ssa.OpNeg32, 1019 opAndType{OMINUS, TINT64}: ssa.OpNeg64, 1020 opAndType{OMINUS, TUINT64}: ssa.OpNeg64, 1021 opAndType{OMINUS, TFLOAT32}: ssa.OpNeg32F, 1022 opAndType{OMINUS, TFLOAT64}: ssa.OpNeg64F, 1023 1024 opAndType{OCOM, TINT8}: ssa.OpCom8, 1025 opAndType{OCOM, TUINT8}: ssa.OpCom8, 1026 opAndType{OCOM, TINT16}: ssa.OpCom16, 1027 opAndType{OCOM, TUINT16}: ssa.OpCom16, 1028 opAndType{OCOM, TINT32}: ssa.OpCom32, 1029 opAndType{OCOM, TUINT32}: ssa.OpCom32, 1030 opAndType{OCOM, TINT64}: ssa.OpCom64, 1031 opAndType{OCOM, TUINT64}: ssa.OpCom64, 1032 1033 opAndType{OIMAG, TCOMPLEX64}: ssa.OpComplexImag, 1034 opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag, 1035 opAndType{OREAL, TCOMPLEX64}: ssa.OpComplexReal, 1036 opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal, 1037 1038 opAndType{OMUL, TINT8}: ssa.OpMul8, 1039 opAndType{OMUL, TUINT8}: ssa.OpMul8, 1040 opAndType{OMUL, TINT16}: ssa.OpMul16, 1041 opAndType{OMUL, TUINT16}: ssa.OpMul16, 1042 opAndType{OMUL, TINT32}: ssa.OpMul32, 1043 opAndType{OMUL, TUINT32}: ssa.OpMul32, 1044 opAndType{OMUL, TINT64}: ssa.OpMul64, 1045 opAndType{OMUL, TUINT64}: ssa.OpMul64, 1046 opAndType{OMUL, TFLOAT32}: ssa.OpMul32F, 1047 opAndType{OMUL, TFLOAT64}: ssa.OpMul64F, 1048 1049 opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F, 1050 opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F, 1051 1052 opAndType{OHMUL, TINT8}: ssa.OpHmul8, 1053 opAndType{OHMUL, TUINT8}: ssa.OpHmul8u, 1054 opAndType{OHMUL, TINT16}: ssa.OpHmul16, 1055 opAndType{OHMUL, TUINT16}: ssa.OpHmul16u, 1056 opAndType{OHMUL, TINT32}: ssa.OpHmul32, 1057 opAndType{OHMUL, TUINT32}: ssa.OpHmul32u, 1058 1059 opAndType{ODIV, TINT8}: ssa.OpDiv8, 1060 opAndType{ODIV, TUINT8}: ssa.OpDiv8u, 1061 opAndType{ODIV, TINT16}: ssa.OpDiv16, 1062 opAndType{ODIV, TUINT16}: ssa.OpDiv16u, 1063 opAndType{ODIV, TINT32}: ssa.OpDiv32, 1064 opAndType{ODIV, TUINT32}: ssa.OpDiv32u, 1065 opAndType{ODIV, TINT64}: ssa.OpDiv64, 1066 opAndType{ODIV, TUINT64}: ssa.OpDiv64u, 1067 1068 opAndType{OMOD, TINT8}: ssa.OpMod8, 1069 opAndType{OMOD, TUINT8}: ssa.OpMod8u, 1070 opAndType{OMOD, TINT16}: ssa.OpMod16, 1071 opAndType{OMOD, TUINT16}: ssa.OpMod16u, 1072 opAndType{OMOD, TINT32}: ssa.OpMod32, 1073 opAndType{OMOD, TUINT32}: ssa.OpMod32u, 1074 opAndType{OMOD, TINT64}: ssa.OpMod64, 1075 opAndType{OMOD, TUINT64}: ssa.OpMod64u, 1076 1077 opAndType{OAND, TINT8}: ssa.OpAnd8, 1078 opAndType{OAND, TUINT8}: ssa.OpAnd8, 1079 opAndType{OAND, TINT16}: ssa.OpAnd16, 1080 opAndType{OAND, TUINT16}: ssa.OpAnd16, 1081 opAndType{OAND, TINT32}: ssa.OpAnd32, 1082 opAndType{OAND, TUINT32}: ssa.OpAnd32, 1083 opAndType{OAND, TINT64}: ssa.OpAnd64, 1084 opAndType{OAND, TUINT64}: ssa.OpAnd64, 1085 1086 opAndType{OOR, TINT8}: ssa.OpOr8, 1087 opAndType{OOR, TUINT8}: ssa.OpOr8, 1088 opAndType{OOR, TINT16}: ssa.OpOr16, 1089 opAndType{OOR, TUINT16}: ssa.OpOr16, 1090 opAndType{OOR, TINT32}: ssa.OpOr32, 1091 opAndType{OOR, TUINT32}: ssa.OpOr32, 1092 opAndType{OOR, TINT64}: ssa.OpOr64, 1093 opAndType{OOR, TUINT64}: ssa.OpOr64, 1094 1095 opAndType{OXOR, TINT8}: ssa.OpXor8, 1096 opAndType{OXOR, TUINT8}: ssa.OpXor8, 1097 opAndType{OXOR, TINT16}: ssa.OpXor16, 1098 opAndType{OXOR, TUINT16}: ssa.OpXor16, 1099 opAndType{OXOR, TINT32}: ssa.OpXor32, 1100 opAndType{OXOR, TUINT32}: ssa.OpXor32, 1101 opAndType{OXOR, TINT64}: ssa.OpXor64, 1102 opAndType{OXOR, TUINT64}: ssa.OpXor64, 1103 1104 opAndType{OEQ, TBOOL}: ssa.OpEq8, 1105 opAndType{OEQ, TINT8}: ssa.OpEq8, 1106 opAndType{OEQ, TUINT8}: ssa.OpEq8, 1107 opAndType{OEQ, TINT16}: ssa.OpEq16, 1108 opAndType{OEQ, TUINT16}: ssa.OpEq16, 1109 opAndType{OEQ, TINT32}: ssa.OpEq32, 1110 opAndType{OEQ, TUINT32}: ssa.OpEq32, 1111 opAndType{OEQ, TINT64}: ssa.OpEq64, 1112 opAndType{OEQ, TUINT64}: ssa.OpEq64, 1113 opAndType{OEQ, TINTER}: ssa.OpEqInter, 1114 opAndType{OEQ, TARRAY}: ssa.OpEqSlice, 1115 opAndType{OEQ, TFUNC}: ssa.OpEqPtr, 1116 opAndType{OEQ, TMAP}: ssa.OpEqPtr, 1117 opAndType{OEQ, TCHAN}: ssa.OpEqPtr, 1118 opAndType{OEQ, TPTR64}: ssa.OpEqPtr, 1119 opAndType{OEQ, TUINTPTR}: ssa.OpEqPtr, 1120 opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr, 1121 opAndType{OEQ, TFLOAT64}: ssa.OpEq64F, 1122 opAndType{OEQ, TFLOAT32}: ssa.OpEq32F, 1123 1124 opAndType{ONE, TBOOL}: ssa.OpNeq8, 1125 opAndType{ONE, TINT8}: ssa.OpNeq8, 1126 opAndType{ONE, TUINT8}: ssa.OpNeq8, 1127 opAndType{ONE, TINT16}: ssa.OpNeq16, 1128 opAndType{ONE, TUINT16}: ssa.OpNeq16, 1129 opAndType{ONE, TINT32}: ssa.OpNeq32, 1130 opAndType{ONE, TUINT32}: ssa.OpNeq32, 1131 opAndType{ONE, TINT64}: ssa.OpNeq64, 1132 opAndType{ONE, TUINT64}: ssa.OpNeq64, 1133 opAndType{ONE, TINTER}: ssa.OpNeqInter, 1134 opAndType{ONE, TARRAY}: ssa.OpNeqSlice, 1135 opAndType{ONE, TFUNC}: ssa.OpNeqPtr, 1136 opAndType{ONE, TMAP}: ssa.OpNeqPtr, 1137 opAndType{ONE, TCHAN}: ssa.OpNeqPtr, 1138 opAndType{ONE, TPTR64}: ssa.OpNeqPtr, 1139 opAndType{ONE, TUINTPTR}: ssa.OpNeqPtr, 1140 opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr, 1141 opAndType{ONE, TFLOAT64}: ssa.OpNeq64F, 1142 opAndType{ONE, TFLOAT32}: ssa.OpNeq32F, 1143 1144 opAndType{OLT, TINT8}: ssa.OpLess8, 1145 opAndType{OLT, TUINT8}: ssa.OpLess8U, 1146 opAndType{OLT, TINT16}: ssa.OpLess16, 1147 opAndType{OLT, TUINT16}: ssa.OpLess16U, 1148 opAndType{OLT, TINT32}: ssa.OpLess32, 1149 opAndType{OLT, TUINT32}: ssa.OpLess32U, 1150 opAndType{OLT, TINT64}: ssa.OpLess64, 1151 opAndType{OLT, TUINT64}: ssa.OpLess64U, 1152 opAndType{OLT, TFLOAT64}: ssa.OpLess64F, 1153 opAndType{OLT, TFLOAT32}: ssa.OpLess32F, 1154 1155 opAndType{OGT, TINT8}: ssa.OpGreater8, 1156 opAndType{OGT, TUINT8}: ssa.OpGreater8U, 1157 opAndType{OGT, TINT16}: ssa.OpGreater16, 1158 opAndType{OGT, TUINT16}: ssa.OpGreater16U, 1159 opAndType{OGT, TINT32}: ssa.OpGreater32, 1160 opAndType{OGT, TUINT32}: ssa.OpGreater32U, 1161 opAndType{OGT, TINT64}: ssa.OpGreater64, 1162 opAndType{OGT, TUINT64}: ssa.OpGreater64U, 1163 opAndType{OGT, TFLOAT64}: ssa.OpGreater64F, 1164 opAndType{OGT, TFLOAT32}: ssa.OpGreater32F, 1165 1166 opAndType{OLE, TINT8}: ssa.OpLeq8, 1167 opAndType{OLE, TUINT8}: ssa.OpLeq8U, 1168 opAndType{OLE, TINT16}: ssa.OpLeq16, 1169 opAndType{OLE, TUINT16}: ssa.OpLeq16U, 1170 opAndType{OLE, TINT32}: ssa.OpLeq32, 1171 opAndType{OLE, TUINT32}: ssa.OpLeq32U, 1172 opAndType{OLE, TINT64}: ssa.OpLeq64, 1173 opAndType{OLE, TUINT64}: ssa.OpLeq64U, 1174 opAndType{OLE, TFLOAT64}: ssa.OpLeq64F, 1175 opAndType{OLE, TFLOAT32}: ssa.OpLeq32F, 1176 1177 opAndType{OGE, TINT8}: ssa.OpGeq8, 1178 opAndType{OGE, TUINT8}: ssa.OpGeq8U, 1179 opAndType{OGE, TINT16}: ssa.OpGeq16, 1180 opAndType{OGE, TUINT16}: ssa.OpGeq16U, 1181 opAndType{OGE, TINT32}: ssa.OpGeq32, 1182 opAndType{OGE, TUINT32}: ssa.OpGeq32U, 1183 opAndType{OGE, TINT64}: ssa.OpGeq64, 1184 opAndType{OGE, TUINT64}: ssa.OpGeq64U, 1185 opAndType{OGE, TFLOAT64}: ssa.OpGeq64F, 1186 opAndType{OGE, TFLOAT32}: ssa.OpGeq32F, 1187 1188 opAndType{OLROT, TUINT8}: ssa.OpLrot8, 1189 opAndType{OLROT, TUINT16}: ssa.OpLrot16, 1190 opAndType{OLROT, TUINT32}: ssa.OpLrot32, 1191 opAndType{OLROT, TUINT64}: ssa.OpLrot64, 1192 1193 opAndType{OSQRT, TFLOAT64}: ssa.OpSqrt, 1194 } 1195 1196 func (s *state) concreteEtype(t *Type) EType { 1197 e := t.Etype 1198 switch e { 1199 default: 1200 return e 1201 case TINT: 1202 if s.config.IntSize == 8 { 1203 return TINT64 1204 } 1205 return TINT32 1206 case TUINT: 1207 if s.config.IntSize == 8 { 1208 return TUINT64 1209 } 1210 return TUINT32 1211 case TUINTPTR: 1212 if s.config.PtrSize == 8 { 1213 return TUINT64 1214 } 1215 return TUINT32 1216 } 1217 } 1218 1219 func (s *state) ssaOp(op Op, t *Type) ssa.Op { 1220 etype := s.concreteEtype(t) 1221 x, ok := opToSSA[opAndType{op, etype}] 1222 if !ok { 1223 s.Unimplementedf("unhandled binary op %s %s", opnames[op], Econv(etype)) 1224 } 1225 return x 1226 } 1227 1228 func floatForComplex(t *Type) *Type { 1229 if t.Size() == 8 { 1230 return Types[TFLOAT32] 1231 } else { 1232 return Types[TFLOAT64] 1233 } 1234 } 1235 1236 type opAndTwoTypes struct { 1237 op Op 1238 etype1 EType 1239 etype2 EType 1240 } 1241 1242 type twoTypes struct { 1243 etype1 EType 1244 etype2 EType 1245 } 1246 1247 type twoOpsAndType struct { 1248 op1 ssa.Op 1249 op2 ssa.Op 1250 intermediateType EType 1251 } 1252 1253 var fpConvOpToSSA = map[twoTypes]twoOpsAndType{ 1254 1255 twoTypes{TINT8, TFLOAT32}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32}, 1256 twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32}, 1257 twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32}, 1258 twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64}, 1259 1260 twoTypes{TINT8, TFLOAT64}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32}, 1261 twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32}, 1262 twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32}, 1263 twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64}, 1264 1265 twoTypes{TFLOAT32, TINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32}, 1266 twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32}, 1267 twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32}, 1268 twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64}, 1269 1270 twoTypes{TFLOAT64, TINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32}, 1271 twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32}, 1272 twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32}, 1273 twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64}, 1274 // unsigned 1275 twoTypes{TUINT8, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32}, 1276 twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32}, 1277 twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned 1278 twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto32F, branchy code expansion instead 1279 1280 twoTypes{TUINT8, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32}, 1281 twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32}, 1282 twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned 1283 twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto64F, branchy code expansion instead 1284 1285 twoTypes{TFLOAT32, TUINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32}, 1286 twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32}, 1287 twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned 1288 twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt32Fto64U, branchy code expansion instead 1289 1290 twoTypes{TFLOAT64, TUINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32}, 1291 twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32}, 1292 twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned 1293 twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt64Fto64U, branchy code expansion instead 1294 1295 // float 1296 twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32}, 1297 twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT64}, 1298 twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT32}, 1299 twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64}, 1300 } 1301 1302 var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{ 1303 opAndTwoTypes{OLSH, TINT8, TUINT8}: ssa.OpLsh8x8, 1304 opAndTwoTypes{OLSH, TUINT8, TUINT8}: ssa.OpLsh8x8, 1305 opAndTwoTypes{OLSH, TINT8, TUINT16}: ssa.OpLsh8x16, 1306 opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16, 1307 opAndTwoTypes{OLSH, TINT8, TUINT32}: ssa.OpLsh8x32, 1308 opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32, 1309 opAndTwoTypes{OLSH, TINT8, TUINT64}: ssa.OpLsh8x64, 1310 opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64, 1311 1312 opAndTwoTypes{OLSH, TINT16, TUINT8}: ssa.OpLsh16x8, 1313 opAndTwoTypes{OLSH, TUINT16, TUINT8}: ssa.OpLsh16x8, 1314 opAndTwoTypes{OLSH, TINT16, TUINT16}: ssa.OpLsh16x16, 1315 opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16, 1316 opAndTwoTypes{OLSH, TINT16, TUINT32}: ssa.OpLsh16x32, 1317 opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32, 1318 opAndTwoTypes{OLSH, TINT16, TUINT64}: ssa.OpLsh16x64, 1319 opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64, 1320 1321 opAndTwoTypes{OLSH, TINT32, TUINT8}: ssa.OpLsh32x8, 1322 opAndTwoTypes{OLSH, TUINT32, TUINT8}: ssa.OpLsh32x8, 1323 opAndTwoTypes{OLSH, TINT32, TUINT16}: ssa.OpLsh32x16, 1324 opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16, 1325 opAndTwoTypes{OLSH, TINT32, TUINT32}: ssa.OpLsh32x32, 1326 opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32, 1327 opAndTwoTypes{OLSH, TINT32, TUINT64}: ssa.OpLsh32x64, 1328 opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64, 1329 1330 opAndTwoTypes{OLSH, TINT64, TUINT8}: ssa.OpLsh64x8, 1331 opAndTwoTypes{OLSH, TUINT64, TUINT8}: ssa.OpLsh64x8, 1332 opAndTwoTypes{OLSH, TINT64, TUINT16}: ssa.OpLsh64x16, 1333 opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16, 1334 opAndTwoTypes{OLSH, TINT64, TUINT32}: ssa.OpLsh64x32, 1335 opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32, 1336 opAndTwoTypes{OLSH, TINT64, TUINT64}: ssa.OpLsh64x64, 1337 opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64, 1338 1339 opAndTwoTypes{ORSH, TINT8, TUINT8}: ssa.OpRsh8x8, 1340 opAndTwoTypes{ORSH, TUINT8, TUINT8}: ssa.OpRsh8Ux8, 1341 opAndTwoTypes{ORSH, TINT8, TUINT16}: ssa.OpRsh8x16, 1342 opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16, 1343 opAndTwoTypes{ORSH, TINT8, TUINT32}: ssa.OpRsh8x32, 1344 opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32, 1345 opAndTwoTypes{ORSH, TINT8, TUINT64}: ssa.OpRsh8x64, 1346 opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64, 1347 1348 opAndTwoTypes{ORSH, TINT16, TUINT8}: ssa.OpRsh16x8, 1349 opAndTwoTypes{ORSH, TUINT16, TUINT8}: ssa.OpRsh16Ux8, 1350 opAndTwoTypes{ORSH, TINT16, TUINT16}: ssa.OpRsh16x16, 1351 opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16, 1352 opAndTwoTypes{ORSH, TINT16, TUINT32}: ssa.OpRsh16x32, 1353 opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32, 1354 opAndTwoTypes{ORSH, TINT16, TUINT64}: ssa.OpRsh16x64, 1355 opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64, 1356 1357 opAndTwoTypes{ORSH, TINT32, TUINT8}: ssa.OpRsh32x8, 1358 opAndTwoTypes{ORSH, TUINT32, TUINT8}: ssa.OpRsh32Ux8, 1359 opAndTwoTypes{ORSH, TINT32, TUINT16}: ssa.OpRsh32x16, 1360 opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16, 1361 opAndTwoTypes{ORSH, TINT32, TUINT32}: ssa.OpRsh32x32, 1362 opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32, 1363 opAndTwoTypes{ORSH, TINT32, TUINT64}: ssa.OpRsh32x64, 1364 opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64, 1365 1366 opAndTwoTypes{ORSH, TINT64, TUINT8}: ssa.OpRsh64x8, 1367 opAndTwoTypes{ORSH, TUINT64, TUINT8}: ssa.OpRsh64Ux8, 1368 opAndTwoTypes{ORSH, TINT64, TUINT16}: ssa.OpRsh64x16, 1369 opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16, 1370 opAndTwoTypes{ORSH, TINT64, TUINT32}: ssa.OpRsh64x32, 1371 opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32, 1372 opAndTwoTypes{ORSH, TINT64, TUINT64}: ssa.OpRsh64x64, 1373 opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64, 1374 } 1375 1376 func (s *state) ssaShiftOp(op Op, t *Type, u *Type) ssa.Op { 1377 etype1 := s.concreteEtype(t) 1378 etype2 := s.concreteEtype(u) 1379 x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}] 1380 if !ok { 1381 s.Unimplementedf("unhandled shift op %s etype=%s/%s", opnames[op], Econv(etype1), Econv(etype2)) 1382 } 1383 return x 1384 } 1385 1386 func (s *state) ssaRotateOp(op Op, t *Type) ssa.Op { 1387 etype1 := s.concreteEtype(t) 1388 x, ok := opToSSA[opAndType{op, etype1}] 1389 if !ok { 1390 s.Unimplementedf("unhandled rotate op %s etype=%s", opnames[op], Econv(etype1)) 1391 } 1392 return x 1393 } 1394 1395 // expr converts the expression n to ssa, adds it to s and returns the ssa result. 1396 func (s *state) expr(n *Node) *ssa.Value { 1397 s.pushLine(n.Lineno) 1398 defer s.popLine() 1399 1400 s.stmtList(n.Ninit) 1401 switch n.Op { 1402 case OCFUNC: 1403 aux := s.lookupSymbol(n, &ssa.ExternSymbol{n.Type, n.Left.Sym}) 1404 return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb) 1405 case OPARAM: 1406 addr := s.addr(n, false) 1407 return s.newValue2(ssa.OpLoad, n.Left.Type, addr, s.mem()) 1408 case ONAME: 1409 if n.Class == PFUNC { 1410 // "value" of a function is the address of the function's closure 1411 sym := funcsym(n.Sym) 1412 aux := &ssa.ExternSymbol{n.Type, sym} 1413 return s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sb) 1414 } 1415 if s.canSSA(n) { 1416 return s.variable(n, n.Type) 1417 } 1418 addr := s.addr(n, false) 1419 return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) 1420 case OCLOSUREVAR: 1421 addr := s.addr(n, false) 1422 return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) 1423 case OLITERAL: 1424 switch n.Val().Ctype() { 1425 case CTINT: 1426 i := n.Int64() 1427 switch n.Type.Size() { 1428 case 1: 1429 return s.constInt8(n.Type, int8(i)) 1430 case 2: 1431 return s.constInt16(n.Type, int16(i)) 1432 case 4: 1433 return s.constInt32(n.Type, int32(i)) 1434 case 8: 1435 return s.constInt64(n.Type, i) 1436 default: 1437 s.Fatalf("bad integer size %d", n.Type.Size()) 1438 return nil 1439 } 1440 case CTSTR: 1441 if n.Val().U == "" { 1442 return s.constEmptyString(n.Type) 1443 } 1444 return s.entryNewValue0A(ssa.OpConstString, n.Type, n.Val().U) 1445 case CTBOOL: 1446 v := s.constBool(n.Val().U.(bool)) 1447 // For some reason the frontend gets the line numbers of 1448 // CTBOOL literals totally wrong. Fix it here by grabbing 1449 // the line number of the enclosing AST node. 1450 if len(s.line) >= 2 { 1451 v.Line = s.line[len(s.line)-2] 1452 } 1453 return v 1454 case CTNIL: 1455 t := n.Type 1456 switch { 1457 case t.IsSlice(): 1458 return s.constSlice(t) 1459 case t.IsInterface(): 1460 return s.constInterface(t) 1461 default: 1462 return s.constNil(t) 1463 } 1464 case CTFLT: 1465 f := n.Val().U.(*Mpflt) 1466 switch n.Type.Size() { 1467 case 4: 1468 return s.constFloat32(n.Type, f.Float32()) 1469 case 8: 1470 return s.constFloat64(n.Type, f.Float64()) 1471 default: 1472 s.Fatalf("bad float size %d", n.Type.Size()) 1473 return nil 1474 } 1475 case CTCPLX: 1476 c := n.Val().U.(*Mpcplx) 1477 r := &c.Real 1478 i := &c.Imag 1479 switch n.Type.Size() { 1480 case 8: 1481 { 1482 pt := Types[TFLOAT32] 1483 return s.newValue2(ssa.OpComplexMake, n.Type, 1484 s.constFloat32(pt, r.Float32()), 1485 s.constFloat32(pt, i.Float32())) 1486 } 1487 case 16: 1488 { 1489 pt := Types[TFLOAT64] 1490 return s.newValue2(ssa.OpComplexMake, n.Type, 1491 s.constFloat64(pt, r.Float64()), 1492 s.constFloat64(pt, i.Float64())) 1493 } 1494 default: 1495 s.Fatalf("bad float size %d", n.Type.Size()) 1496 return nil 1497 } 1498 1499 default: 1500 s.Unimplementedf("unhandled OLITERAL %v", n.Val().Ctype()) 1501 return nil 1502 } 1503 case OCONVNOP: 1504 to := n.Type 1505 from := n.Left.Type 1506 1507 // Assume everything will work out, so set up our return value. 1508 // Anything interesting that happens from here is a fatal. 1509 x := s.expr(n.Left) 1510 1511 // Special case for not confusing GC and liveness. 1512 // We don't want pointers accidentally classified 1513 // as not-pointers or vice-versa because of copy 1514 // elision. 1515 if to.IsPtrShaped() != from.IsPtrShaped() { 1516 return s.newValue2(ssa.OpConvert, to, x, s.mem()) 1517 } 1518 1519 v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type 1520 1521 // CONVNOP closure 1522 if to.Etype == TFUNC && from.IsPtrShaped() { 1523 return v 1524 } 1525 1526 // named <--> unnamed type or typed <--> untyped const 1527 if from.Etype == to.Etype { 1528 return v 1529 } 1530 1531 // unsafe.Pointer <--> *T 1532 if to.Etype == TUNSAFEPTR && from.IsPtr() || from.Etype == TUNSAFEPTR && to.IsPtr() { 1533 return v 1534 } 1535 1536 dowidth(from) 1537 dowidth(to) 1538 if from.Width != to.Width { 1539 s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width) 1540 return nil 1541 } 1542 if etypesign(from.Etype) != etypesign(to.Etype) { 1543 s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, Econv(from.Etype), to, Econv(to.Etype)) 1544 return nil 1545 } 1546 1547 if instrumenting { 1548 // These appear to be fine, but they fail the 1549 // integer constraint below, so okay them here. 1550 // Sample non-integer conversion: map[string]string -> *uint8 1551 return v 1552 } 1553 1554 if etypesign(from.Etype) == 0 { 1555 s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to) 1556 return nil 1557 } 1558 1559 // integer, same width, same sign 1560 return v 1561 1562 case OCONV: 1563 x := s.expr(n.Left) 1564 ft := n.Left.Type // from type 1565 tt := n.Type // to type 1566 if ft.IsInteger() && tt.IsInteger() { 1567 var op ssa.Op 1568 if tt.Size() == ft.Size() { 1569 op = ssa.OpCopy 1570 } else if tt.Size() < ft.Size() { 1571 // truncation 1572 switch 10*ft.Size() + tt.Size() { 1573 case 21: 1574 op = ssa.OpTrunc16to8 1575 case 41: 1576 op = ssa.OpTrunc32to8 1577 case 42: 1578 op = ssa.OpTrunc32to16 1579 case 81: 1580 op = ssa.OpTrunc64to8 1581 case 82: 1582 op = ssa.OpTrunc64to16 1583 case 84: 1584 op = ssa.OpTrunc64to32 1585 default: 1586 s.Fatalf("weird integer truncation %s -> %s", ft, tt) 1587 } 1588 } else if ft.IsSigned() { 1589 // sign extension 1590 switch 10*ft.Size() + tt.Size() { 1591 case 12: 1592 op = ssa.OpSignExt8to16 1593 case 14: 1594 op = ssa.OpSignExt8to32 1595 case 18: 1596 op = ssa.OpSignExt8to64 1597 case 24: 1598 op = ssa.OpSignExt16to32 1599 case 28: 1600 op = ssa.OpSignExt16to64 1601 case 48: 1602 op = ssa.OpSignExt32to64 1603 default: 1604 s.Fatalf("bad integer sign extension %s -> %s", ft, tt) 1605 } 1606 } else { 1607 // zero extension 1608 switch 10*ft.Size() + tt.Size() { 1609 case 12: 1610 op = ssa.OpZeroExt8to16 1611 case 14: 1612 op = ssa.OpZeroExt8to32 1613 case 18: 1614 op = ssa.OpZeroExt8to64 1615 case 24: 1616 op = ssa.OpZeroExt16to32 1617 case 28: 1618 op = ssa.OpZeroExt16to64 1619 case 48: 1620 op = ssa.OpZeroExt32to64 1621 default: 1622 s.Fatalf("weird integer sign extension %s -> %s", ft, tt) 1623 } 1624 } 1625 return s.newValue1(op, n.Type, x) 1626 } 1627 1628 if ft.IsFloat() || tt.IsFloat() { 1629 conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}] 1630 if !ok { 1631 s.Fatalf("weird float conversion %s -> %s", ft, tt) 1632 } 1633 op1, op2, it := conv.op1, conv.op2, conv.intermediateType 1634 1635 if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid { 1636 // normal case, not tripping over unsigned 64 1637 if op1 == ssa.OpCopy { 1638 if op2 == ssa.OpCopy { 1639 return x 1640 } 1641 return s.newValue1(op2, n.Type, x) 1642 } 1643 if op2 == ssa.OpCopy { 1644 return s.newValue1(op1, n.Type, x) 1645 } 1646 return s.newValue1(op2, n.Type, s.newValue1(op1, Types[it], x)) 1647 } 1648 // Tricky 64-bit unsigned cases. 1649 if ft.IsInteger() { 1650 // therefore tt is float32 or float64, and ft is also unsigned 1651 if tt.Size() == 4 { 1652 return s.uint64Tofloat32(n, x, ft, tt) 1653 } 1654 if tt.Size() == 8 { 1655 return s.uint64Tofloat64(n, x, ft, tt) 1656 } 1657 s.Fatalf("weird unsigned integer to float conversion %s -> %s", ft, tt) 1658 } 1659 // therefore ft is float32 or float64, and tt is unsigned integer 1660 if ft.Size() == 4 { 1661 return s.float32ToUint64(n, x, ft, tt) 1662 } 1663 if ft.Size() == 8 { 1664 return s.float64ToUint64(n, x, ft, tt) 1665 } 1666 s.Fatalf("weird float to unsigned integer conversion %s -> %s", ft, tt) 1667 return nil 1668 } 1669 1670 if ft.IsComplex() && tt.IsComplex() { 1671 var op ssa.Op 1672 if ft.Size() == tt.Size() { 1673 op = ssa.OpCopy 1674 } else if ft.Size() == 8 && tt.Size() == 16 { 1675 op = ssa.OpCvt32Fto64F 1676 } else if ft.Size() == 16 && tt.Size() == 8 { 1677 op = ssa.OpCvt64Fto32F 1678 } else { 1679 s.Fatalf("weird complex conversion %s -> %s", ft, tt) 1680 } 1681 ftp := floatForComplex(ft) 1682 ttp := floatForComplex(tt) 1683 return s.newValue2(ssa.OpComplexMake, tt, 1684 s.newValue1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)), 1685 s.newValue1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x))) 1686 } 1687 1688 s.Unimplementedf("unhandled OCONV %s -> %s", Econv(n.Left.Type.Etype), Econv(n.Type.Etype)) 1689 return nil 1690 1691 case ODOTTYPE: 1692 res, _ := s.dottype(n, false) 1693 return res 1694 1695 // binary ops 1696 case OLT, OEQ, ONE, OLE, OGE, OGT: 1697 a := s.expr(n.Left) 1698 b := s.expr(n.Right) 1699 if n.Left.Type.IsComplex() { 1700 pt := floatForComplex(n.Left.Type) 1701 op := s.ssaOp(OEQ, pt) 1702 r := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)) 1703 i := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)) 1704 c := s.newValue2(ssa.OpAnd8, Types[TBOOL], r, i) 1705 switch n.Op { 1706 case OEQ: 1707 return c 1708 case ONE: 1709 return s.newValue1(ssa.OpNot, Types[TBOOL], c) 1710 default: 1711 s.Fatalf("ordered complex compare %s", opnames[n.Op]) 1712 } 1713 } 1714 return s.newValue2(s.ssaOp(n.Op, n.Left.Type), Types[TBOOL], a, b) 1715 case OMUL: 1716 a := s.expr(n.Left) 1717 b := s.expr(n.Right) 1718 if n.Type.IsComplex() { 1719 mulop := ssa.OpMul64F 1720 addop := ssa.OpAdd64F 1721 subop := ssa.OpSub64F 1722 pt := floatForComplex(n.Type) // Could be Float32 or Float64 1723 wt := Types[TFLOAT64] // Compute in Float64 to minimize cancellation error 1724 1725 areal := s.newValue1(ssa.OpComplexReal, pt, a) 1726 breal := s.newValue1(ssa.OpComplexReal, pt, b) 1727 aimag := s.newValue1(ssa.OpComplexImag, pt, a) 1728 bimag := s.newValue1(ssa.OpComplexImag, pt, b) 1729 1730 if pt != wt { // Widen for calculation 1731 areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal) 1732 breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal) 1733 aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag) 1734 bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag) 1735 } 1736 1737 xreal := s.newValue2(subop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag)) 1738 ximag := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, bimag), s.newValue2(mulop, wt, aimag, breal)) 1739 1740 if pt != wt { // Narrow to store back 1741 xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal) 1742 ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag) 1743 } 1744 1745 return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag) 1746 } 1747 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1748 1749 case ODIV: 1750 a := s.expr(n.Left) 1751 b := s.expr(n.Right) 1752 if n.Type.IsComplex() { 1753 // TODO this is not executed because the front-end substitutes a runtime call. 1754 // That probably ought to change; with modest optimization the widen/narrow 1755 // conversions could all be elided in larger expression trees. 1756 mulop := ssa.OpMul64F 1757 addop := ssa.OpAdd64F 1758 subop := ssa.OpSub64F 1759 divop := ssa.OpDiv64F 1760 pt := floatForComplex(n.Type) // Could be Float32 or Float64 1761 wt := Types[TFLOAT64] // Compute in Float64 to minimize cancellation error 1762 1763 areal := s.newValue1(ssa.OpComplexReal, pt, a) 1764 breal := s.newValue1(ssa.OpComplexReal, pt, b) 1765 aimag := s.newValue1(ssa.OpComplexImag, pt, a) 1766 bimag := s.newValue1(ssa.OpComplexImag, pt, b) 1767 1768 if pt != wt { // Widen for calculation 1769 areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal) 1770 breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal) 1771 aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag) 1772 bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag) 1773 } 1774 1775 denom := s.newValue2(addop, wt, s.newValue2(mulop, wt, breal, breal), s.newValue2(mulop, wt, bimag, bimag)) 1776 xreal := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag)) 1777 ximag := s.newValue2(subop, wt, s.newValue2(mulop, wt, aimag, breal), s.newValue2(mulop, wt, areal, bimag)) 1778 1779 // TODO not sure if this is best done in wide precision or narrow 1780 // Double-rounding might be an issue. 1781 // Note that the pre-SSA implementation does the entire calculation 1782 // in wide format, so wide is compatible. 1783 xreal = s.newValue2(divop, wt, xreal, denom) 1784 ximag = s.newValue2(divop, wt, ximag, denom) 1785 1786 if pt != wt { // Narrow to store back 1787 xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal) 1788 ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag) 1789 } 1790 return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag) 1791 } 1792 if n.Type.IsFloat() { 1793 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1794 } else { 1795 // do a size-appropriate check for zero 1796 cmp := s.newValue2(s.ssaOp(ONE, n.Type), Types[TBOOL], b, s.zeroVal(n.Type)) 1797 s.check(cmp, panicdivide) 1798 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1799 } 1800 case OMOD: 1801 a := s.expr(n.Left) 1802 b := s.expr(n.Right) 1803 // do a size-appropriate check for zero 1804 cmp := s.newValue2(s.ssaOp(ONE, n.Type), Types[TBOOL], b, s.zeroVal(n.Type)) 1805 s.check(cmp, panicdivide) 1806 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1807 case OADD, OSUB: 1808 a := s.expr(n.Left) 1809 b := s.expr(n.Right) 1810 if n.Type.IsComplex() { 1811 pt := floatForComplex(n.Type) 1812 op := s.ssaOp(n.Op, pt) 1813 return s.newValue2(ssa.OpComplexMake, n.Type, 1814 s.newValue2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)), 1815 s.newValue2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))) 1816 } 1817 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1818 case OAND, OOR, OHMUL, OXOR: 1819 a := s.expr(n.Left) 1820 b := s.expr(n.Right) 1821 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1822 case OLSH, ORSH: 1823 a := s.expr(n.Left) 1824 b := s.expr(n.Right) 1825 return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b) 1826 case OLROT: 1827 a := s.expr(n.Left) 1828 i := n.Right.Int64() 1829 if i <= 0 || i >= n.Type.Size()*8 { 1830 s.Fatalf("Wrong rotate distance for LROT, expected 1 through %d, saw %d", n.Type.Size()*8-1, i) 1831 } 1832 return s.newValue1I(s.ssaRotateOp(n.Op, n.Type), a.Type, i, a) 1833 case OANDAND, OOROR: 1834 // To implement OANDAND (and OOROR), we introduce a 1835 // new temporary variable to hold the result. The 1836 // variable is associated with the OANDAND node in the 1837 // s.vars table (normally variables are only 1838 // associated with ONAME nodes). We convert 1839 // A && B 1840 // to 1841 // var = A 1842 // if var { 1843 // var = B 1844 // } 1845 // Using var in the subsequent block introduces the 1846 // necessary phi variable. 1847 el := s.expr(n.Left) 1848 s.vars[n] = el 1849 1850 b := s.endBlock() 1851 b.Kind = ssa.BlockIf 1852 b.SetControl(el) 1853 // In theory, we should set b.Likely here based on context. 1854 // However, gc only gives us likeliness hints 1855 // in a single place, for plain OIF statements, 1856 // and passing around context is finnicky, so don't bother for now. 1857 1858 bRight := s.f.NewBlock(ssa.BlockPlain) 1859 bResult := s.f.NewBlock(ssa.BlockPlain) 1860 if n.Op == OANDAND { 1861 b.AddEdgeTo(bRight) 1862 b.AddEdgeTo(bResult) 1863 } else if n.Op == OOROR { 1864 b.AddEdgeTo(bResult) 1865 b.AddEdgeTo(bRight) 1866 } 1867 1868 s.startBlock(bRight) 1869 er := s.expr(n.Right) 1870 s.vars[n] = er 1871 1872 b = s.endBlock() 1873 b.AddEdgeTo(bResult) 1874 1875 s.startBlock(bResult) 1876 return s.variable(n, Types[TBOOL]) 1877 case OCOMPLEX: 1878 r := s.expr(n.Left) 1879 i := s.expr(n.Right) 1880 return s.newValue2(ssa.OpComplexMake, n.Type, r, i) 1881 1882 // unary ops 1883 case OMINUS: 1884 a := s.expr(n.Left) 1885 if n.Type.IsComplex() { 1886 tp := floatForComplex(n.Type) 1887 negop := s.ssaOp(n.Op, tp) 1888 return s.newValue2(ssa.OpComplexMake, n.Type, 1889 s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)), 1890 s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a))) 1891 } 1892 return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a) 1893 case ONOT, OCOM, OSQRT: 1894 a := s.expr(n.Left) 1895 return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a) 1896 case OIMAG, OREAL: 1897 a := s.expr(n.Left) 1898 return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a) 1899 case OPLUS: 1900 return s.expr(n.Left) 1901 1902 case OADDR: 1903 return s.addr(n.Left, n.Bounded) 1904 1905 case OINDREG: 1906 if int(n.Reg) != Thearch.REGSP { 1907 s.Unimplementedf("OINDREG of non-SP register %s in expr: %v", obj.Rconv(int(n.Reg)), n) 1908 return nil 1909 } 1910 addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(n.Type), n.Xoffset, s.sp) 1911 return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) 1912 1913 case OIND: 1914 p := s.expr(n.Left) 1915 s.nilCheck(p) 1916 return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) 1917 1918 case ODOT: 1919 t := n.Left.Type 1920 if canSSAType(t) { 1921 v := s.expr(n.Left) 1922 return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v) 1923 } 1924 p := s.addr(n, false) 1925 return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) 1926 1927 case ODOTPTR: 1928 p := s.expr(n.Left) 1929 s.nilCheck(p) 1930 p = s.newValue1I(ssa.OpOffPtr, p.Type, n.Xoffset, p) 1931 return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) 1932 1933 case OINDEX: 1934 switch { 1935 case n.Left.Type.IsString(): 1936 a := s.expr(n.Left) 1937 i := s.expr(n.Right) 1938 i = s.extendIndex(i) 1939 if !n.Bounded { 1940 len := s.newValue1(ssa.OpStringLen, Types[TINT], a) 1941 s.boundsCheck(i, len) 1942 } 1943 ptrtyp := Ptrto(Types[TUINT8]) 1944 ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a) 1945 if Isconst(n.Right, CTINT) { 1946 ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr) 1947 } else { 1948 ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i) 1949 } 1950 return s.newValue2(ssa.OpLoad, Types[TUINT8], ptr, s.mem()) 1951 case n.Left.Type.IsSlice(): 1952 p := s.addr(n, false) 1953 return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem()) 1954 case n.Left.Type.IsArray(): 1955 // TODO: fix when we can SSA arrays of length 1. 1956 p := s.addr(n, false) 1957 return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem()) 1958 default: 1959 s.Fatalf("bad type for index %v", n.Left.Type) 1960 return nil 1961 } 1962 1963 case OLEN, OCAP: 1964 switch { 1965 case n.Left.Type.IsSlice(): 1966 op := ssa.OpSliceLen 1967 if n.Op == OCAP { 1968 op = ssa.OpSliceCap 1969 } 1970 return s.newValue1(op, Types[TINT], s.expr(n.Left)) 1971 case n.Left.Type.IsString(): // string; not reachable for OCAP 1972 return s.newValue1(ssa.OpStringLen, Types[TINT], s.expr(n.Left)) 1973 case n.Left.Type.IsMap(), n.Left.Type.IsChan(): 1974 return s.referenceTypeBuiltin(n, s.expr(n.Left)) 1975 default: // array 1976 return s.constInt(Types[TINT], n.Left.Type.NumElem()) 1977 } 1978 1979 case OSPTR: 1980 a := s.expr(n.Left) 1981 if n.Left.Type.IsSlice() { 1982 return s.newValue1(ssa.OpSlicePtr, n.Type, a) 1983 } else { 1984 return s.newValue1(ssa.OpStringPtr, n.Type, a) 1985 } 1986 1987 case OITAB: 1988 a := s.expr(n.Left) 1989 return s.newValue1(ssa.OpITab, n.Type, a) 1990 1991 case OEFACE: 1992 tab := s.expr(n.Left) 1993 data := s.expr(n.Right) 1994 // The frontend allows putting things like struct{*byte} in 1995 // the data portion of an eface. But we don't want struct{*byte} 1996 // as a register type because (among other reasons) the liveness 1997 // analysis is confused by the "fat" variables that result from 1998 // such types being spilled. 1999 // So here we ensure that we are selecting the underlying pointer 2000 // when we build an eface. 2001 // TODO: get rid of this now that structs can be SSA'd? 2002 for !data.Type.IsPtrShaped() { 2003 switch { 2004 case data.Type.IsArray(): 2005 data = s.newValue1I(ssa.OpArrayIndex, data.Type.ElemType(), 0, data) 2006 case data.Type.IsStruct(): 2007 for i := data.Type.NumFields() - 1; i >= 0; i-- { 2008 f := data.Type.FieldType(i) 2009 if f.Size() == 0 { 2010 // eface type could also be struct{p *byte; q [0]int} 2011 continue 2012 } 2013 data = s.newValue1I(ssa.OpStructSelect, f, int64(i), data) 2014 break 2015 } 2016 default: 2017 s.Fatalf("type being put into an eface isn't a pointer") 2018 } 2019 } 2020 return s.newValue2(ssa.OpIMake, n.Type, tab, data) 2021 2022 case OSLICE, OSLICEARR: 2023 v := s.expr(n.Left) 2024 var i, j *ssa.Value 2025 if n.Right.Left != nil { 2026 i = s.extendIndex(s.expr(n.Right.Left)) 2027 } 2028 if n.Right.Right != nil { 2029 j = s.extendIndex(s.expr(n.Right.Right)) 2030 } 2031 p, l, c := s.slice(n.Left.Type, v, i, j, nil) 2032 return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c) 2033 case OSLICESTR: 2034 v := s.expr(n.Left) 2035 var i, j *ssa.Value 2036 if n.Right.Left != nil { 2037 i = s.extendIndex(s.expr(n.Right.Left)) 2038 } 2039 if n.Right.Right != nil { 2040 j = s.extendIndex(s.expr(n.Right.Right)) 2041 } 2042 p, l, _ := s.slice(n.Left.Type, v, i, j, nil) 2043 return s.newValue2(ssa.OpStringMake, n.Type, p, l) 2044 case OSLICE3, OSLICE3ARR: 2045 v := s.expr(n.Left) 2046 var i *ssa.Value 2047 if n.Right.Left != nil { 2048 i = s.extendIndex(s.expr(n.Right.Left)) 2049 } 2050 j := s.extendIndex(s.expr(n.Right.Right.Left)) 2051 k := s.extendIndex(s.expr(n.Right.Right.Right)) 2052 p, l, c := s.slice(n.Left.Type, v, i, j, k) 2053 return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c) 2054 2055 case OCALLFUNC: 2056 if isIntrinsicCall1(n) { 2057 return s.intrinsicCall1(n) 2058 } 2059 fallthrough 2060 2061 case OCALLINTER, OCALLMETH: 2062 a := s.call(n, callNormal) 2063 return s.newValue2(ssa.OpLoad, n.Type, a, s.mem()) 2064 2065 case OGETG: 2066 return s.newValue1(ssa.OpGetG, n.Type, s.mem()) 2067 2068 case OAPPEND: 2069 // append(s, e1, e2, e3). Compile like: 2070 // ptr,len,cap := s 2071 // newlen := len + 3 2072 // if newlen > s.cap { 2073 // ptr,_,cap = growslice(s, newlen) 2074 // } 2075 // *(ptr+len) = e1 2076 // *(ptr+len+1) = e2 2077 // *(ptr+len+2) = e3 2078 // makeslice(ptr,newlen,cap) 2079 2080 et := n.Type.Elem() 2081 pt := Ptrto(et) 2082 2083 // Evaluate slice 2084 slice := s.expr(n.List.First()) 2085 2086 // Allocate new blocks 2087 grow := s.f.NewBlock(ssa.BlockPlain) 2088 assign := s.f.NewBlock(ssa.BlockPlain) 2089 2090 // Decide if we need to grow 2091 nargs := int64(n.List.Len() - 1) 2092 p := s.newValue1(ssa.OpSlicePtr, pt, slice) 2093 l := s.newValue1(ssa.OpSliceLen, Types[TINT], slice) 2094 c := s.newValue1(ssa.OpSliceCap, Types[TINT], slice) 2095 nl := s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs)) 2096 cmp := s.newValue2(s.ssaOp(OGT, Types[TINT]), Types[TBOOL], nl, c) 2097 s.vars[&ptrVar] = p 2098 s.vars[&capVar] = c 2099 b := s.endBlock() 2100 b.Kind = ssa.BlockIf 2101 b.Likely = ssa.BranchUnlikely 2102 b.SetControl(cmp) 2103 b.AddEdgeTo(grow) 2104 b.AddEdgeTo(assign) 2105 2106 // Call growslice 2107 s.startBlock(grow) 2108 taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Types[TUINTPTR], typenamesym(n.Type)}, s.sb) 2109 2110 r := s.rtcall(growslice, true, []*Type{pt, Types[TINT], Types[TINT]}, taddr, p, l, c, nl) 2111 2112 s.vars[&ptrVar] = r[0] 2113 // Note: we don't need to read r[1], the result's length. It will be nl. 2114 // (or maybe we should, we just have to spill/restore nl otherwise?) 2115 s.vars[&capVar] = r[2] 2116 b = s.endBlock() 2117 b.AddEdgeTo(assign) 2118 2119 // assign new elements to slots 2120 s.startBlock(assign) 2121 2122 // Evaluate args 2123 args := make([]*ssa.Value, 0, nargs) 2124 store := make([]bool, 0, nargs) 2125 for _, n := range n.List.Slice()[1:] { 2126 if canSSAType(n.Type) { 2127 args = append(args, s.expr(n)) 2128 store = append(store, true) 2129 } else { 2130 args = append(args, s.addr(n, false)) 2131 store = append(store, false) 2132 } 2133 } 2134 2135 p = s.variable(&ptrVar, pt) // generates phi for ptr 2136 c = s.variable(&capVar, Types[TINT]) // generates phi for cap 2137 p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l) 2138 // TODO: just one write barrier call for all of these writes? 2139 // TODO: maybe just one writeBarrier.enabled check? 2140 for i, arg := range args { 2141 addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(Types[TINT], int64(i))) 2142 if store[i] { 2143 if haspointers(et) { 2144 s.insertWBstore(et, addr, arg, n.Lineno, 0) 2145 } else { 2146 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, et.Size(), addr, arg, s.mem()) 2147 } 2148 } else { 2149 if haspointers(et) { 2150 s.insertWBmove(et, addr, arg, n.Lineno) 2151 } else { 2152 s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, et.Size(), addr, arg, s.mem()) 2153 } 2154 } 2155 } 2156 2157 // make result 2158 delete(s.vars, &ptrVar) 2159 delete(s.vars, &capVar) 2160 return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c) 2161 2162 default: 2163 s.Unimplementedf("unhandled expr %s", opnames[n.Op]) 2164 return nil 2165 } 2166 } 2167 2168 // condBranch evaluates the boolean expression cond and branches to yes 2169 // if cond is true and no if cond is false. 2170 // This function is intended to handle && and || better than just calling 2171 // s.expr(cond) and branching on the result. 2172 func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) { 2173 if cond.Op == OANDAND { 2174 mid := s.f.NewBlock(ssa.BlockPlain) 2175 s.stmtList(cond.Ninit) 2176 s.condBranch(cond.Left, mid, no, max8(likely, 0)) 2177 s.startBlock(mid) 2178 s.condBranch(cond.Right, yes, no, likely) 2179 return 2180 // Note: if likely==1, then both recursive calls pass 1. 2181 // If likely==-1, then we don't have enough information to decide 2182 // whether the first branch is likely or not. So we pass 0 for 2183 // the likeliness of the first branch. 2184 // TODO: have the frontend give us branch prediction hints for 2185 // OANDAND and OOROR nodes (if it ever has such info). 2186 } 2187 if cond.Op == OOROR { 2188 mid := s.f.NewBlock(ssa.BlockPlain) 2189 s.stmtList(cond.Ninit) 2190 s.condBranch(cond.Left, yes, mid, min8(likely, 0)) 2191 s.startBlock(mid) 2192 s.condBranch(cond.Right, yes, no, likely) 2193 return 2194 // Note: if likely==-1, then both recursive calls pass -1. 2195 // If likely==1, then we don't have enough info to decide 2196 // the likelihood of the first branch. 2197 } 2198 if cond.Op == ONOT { 2199 s.stmtList(cond.Ninit) 2200 s.condBranch(cond.Left, no, yes, -likely) 2201 return 2202 } 2203 c := s.expr(cond) 2204 b := s.endBlock() 2205 b.Kind = ssa.BlockIf 2206 b.SetControl(c) 2207 b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness 2208 b.AddEdgeTo(yes) 2209 b.AddEdgeTo(no) 2210 } 2211 2212 type skipMask uint8 2213 2214 const ( 2215 skipPtr skipMask = 1 << iota 2216 skipLen 2217 skipCap 2218 ) 2219 2220 // assign does left = right. 2221 // Right has already been evaluated to ssa, left has not. 2222 // If deref is true, then we do left = *right instead (and right has already been nil-checked). 2223 // If deref is true and right == nil, just do left = 0. 2224 // Include a write barrier if wb is true. 2225 // skip indicates assignments (at the top level) that can be avoided. 2226 func (s *state) assign(left *Node, right *ssa.Value, wb, deref bool, line int32, skip skipMask) { 2227 if left.Op == ONAME && isblank(left) { 2228 return 2229 } 2230 t := left.Type 2231 dowidth(t) 2232 if s.canSSA(left) { 2233 if deref { 2234 s.Fatalf("can SSA LHS %s but not RHS %s", left, right) 2235 } 2236 if left.Op == ODOT { 2237 // We're assigning to a field of an ssa-able value. 2238 // We need to build a new structure with the new value for the 2239 // field we're assigning and the old values for the other fields. 2240 // For instance: 2241 // type T struct {a, b, c int} 2242 // var T x 2243 // x.b = 5 2244 // For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c} 2245 2246 // Grab information about the structure type. 2247 t := left.Left.Type 2248 nf := t.NumFields() 2249 idx := fieldIdx(left) 2250 2251 // Grab old value of structure. 2252 old := s.expr(left.Left) 2253 2254 // Make new structure. 2255 new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t) 2256 2257 // Add fields as args. 2258 for i := 0; i < nf; i++ { 2259 if i == idx { 2260 new.AddArg(right) 2261 } else { 2262 new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old)) 2263 } 2264 } 2265 2266 // Recursively assign the new value we've made to the base of the dot op. 2267 s.assign(left.Left, new, false, false, line, 0) 2268 // TODO: do we need to update named values here? 2269 return 2270 } 2271 // Update variable assignment. 2272 s.vars[left] = right 2273 s.addNamedValue(left, right) 2274 return 2275 } 2276 // Left is not ssa-able. Compute its address. 2277 addr := s.addr(left, false) 2278 if left.Op == ONAME { 2279 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, left, s.mem()) 2280 } 2281 if deref { 2282 // Treat as a mem->mem move. 2283 if right == nil { 2284 s.vars[&memVar] = s.newValue2I(ssa.OpZero, ssa.TypeMem, t.Size(), addr, s.mem()) 2285 return 2286 } 2287 if wb { 2288 s.insertWBmove(t, addr, right, line) 2289 return 2290 } 2291 s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, t.Size(), addr, right, s.mem()) 2292 return 2293 } 2294 // Treat as a store. 2295 if wb { 2296 if skip&skipPtr != 0 { 2297 // Special case: if we don't write back the pointers, don't bother 2298 // doing the write barrier check. 2299 s.storeTypeScalars(t, addr, right, skip) 2300 return 2301 } 2302 s.insertWBstore(t, addr, right, line, skip) 2303 return 2304 } 2305 if skip != 0 { 2306 if skip&skipPtr == 0 { 2307 s.storeTypePtrs(t, addr, right) 2308 } 2309 s.storeTypeScalars(t, addr, right, skip) 2310 return 2311 } 2312 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), addr, right, s.mem()) 2313 } 2314 2315 // zeroVal returns the zero value for type t. 2316 func (s *state) zeroVal(t *Type) *ssa.Value { 2317 switch { 2318 case t.IsInteger(): 2319 switch t.Size() { 2320 case 1: 2321 return s.constInt8(t, 0) 2322 case 2: 2323 return s.constInt16(t, 0) 2324 case 4: 2325 return s.constInt32(t, 0) 2326 case 8: 2327 return s.constInt64(t, 0) 2328 default: 2329 s.Fatalf("bad sized integer type %s", t) 2330 } 2331 case t.IsFloat(): 2332 switch t.Size() { 2333 case 4: 2334 return s.constFloat32(t, 0) 2335 case 8: 2336 return s.constFloat64(t, 0) 2337 default: 2338 s.Fatalf("bad sized float type %s", t) 2339 } 2340 case t.IsComplex(): 2341 switch t.Size() { 2342 case 8: 2343 z := s.constFloat32(Types[TFLOAT32], 0) 2344 return s.entryNewValue2(ssa.OpComplexMake, t, z, z) 2345 case 16: 2346 z := s.constFloat64(Types[TFLOAT64], 0) 2347 return s.entryNewValue2(ssa.OpComplexMake, t, z, z) 2348 default: 2349 s.Fatalf("bad sized complex type %s", t) 2350 } 2351 2352 case t.IsString(): 2353 return s.constEmptyString(t) 2354 case t.IsPtrShaped(): 2355 return s.constNil(t) 2356 case t.IsBoolean(): 2357 return s.constBool(false) 2358 case t.IsInterface(): 2359 return s.constInterface(t) 2360 case t.IsSlice(): 2361 return s.constSlice(t) 2362 case t.IsStruct(): 2363 n := t.NumFields() 2364 v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t) 2365 for i := 0; i < n; i++ { 2366 v.AddArg(s.zeroVal(t.FieldType(i).(*Type))) 2367 } 2368 return v 2369 } 2370 s.Unimplementedf("zero for type %v not implemented", t) 2371 return nil 2372 } 2373 2374 type callKind int8 2375 2376 const ( 2377 callNormal callKind = iota 2378 callDefer 2379 callGo 2380 ) 2381 2382 // isSSAIntrinsic1 returns true if n is a call to a recognized 1-arg intrinsic 2383 // that can be handled by the SSA backend. 2384 // SSA uses this, but so does the front end to see if should not 2385 // inline a function because it is a candidate for intrinsic 2386 // substitution. 2387 func isSSAIntrinsic1(s *Sym) bool { 2388 // The test below is not quite accurate -- in the event that 2389 // a function is disabled on a per-function basis, for example 2390 // because of hash-keyed binary failure search, SSA might be 2391 // disabled for that function but it would not be noted here, 2392 // and thus an inlining would not occur (in practice, inlining 2393 // so far has only been noticed for Bswap32 and the 16-bit count 2394 // leading/trailing instructions, but heuristics might change 2395 // in the future or on different architectures). 2396 if !ssaEnabled || ssa.IntrinsicsDisable || Thearch.Thechar != '6' { 2397 return false 2398 } 2399 if s != nil && s.Pkg != nil && s.Pkg.Path == "runtime/internal/sys" { 2400 switch s.Name { 2401 case 2402 "Ctz64", "Ctz32", "Ctz16", 2403 "Bswap64", "Bswap32": 2404 return true 2405 } 2406 } 2407 return false 2408 } 2409 2410 func isIntrinsicCall1(n *Node) bool { 2411 if n == nil || n.Left == nil { 2412 return false 2413 } 2414 return isSSAIntrinsic1(n.Left.Sym) 2415 } 2416 2417 // intrinsicFirstArg extracts arg from n.List and eval 2418 func (s *state) intrinsicFirstArg(n *Node) *ssa.Value { 2419 x := n.List.First() 2420 if x.Op == OAS { 2421 x = x.Right 2422 } 2423 return s.expr(x) 2424 } 2425 2426 // intrinsicCall1 converts a call to a recognized 1-arg intrinsic 2427 // into the intrinsic 2428 func (s *state) intrinsicCall1(n *Node) *ssa.Value { 2429 var result *ssa.Value 2430 switch n.Left.Sym.Name { 2431 case "Ctz64": 2432 result = s.newValue1(ssa.OpCtz64, Types[TUINT64], s.intrinsicFirstArg(n)) 2433 case "Ctz32": 2434 result = s.newValue1(ssa.OpCtz32, Types[TUINT32], s.intrinsicFirstArg(n)) 2435 case "Ctz16": 2436 result = s.newValue1(ssa.OpCtz16, Types[TUINT16], s.intrinsicFirstArg(n)) 2437 case "Bswap64": 2438 result = s.newValue1(ssa.OpBswap64, Types[TUINT64], s.intrinsicFirstArg(n)) 2439 case "Bswap32": 2440 result = s.newValue1(ssa.OpBswap32, Types[TUINT32], s.intrinsicFirstArg(n)) 2441 } 2442 if result == nil { 2443 Fatalf("Unknown special call: %v", n.Left.Sym) 2444 } 2445 if ssa.IntrinsicsDebug > 0 { 2446 Warnl(n.Lineno, "intrinsic substitution for %v with %s", n.Left.Sym.Name, result.LongString()) 2447 } 2448 return result 2449 } 2450 2451 // Calls the function n using the specified call type. 2452 // Returns the address of the return value (or nil if none). 2453 func (s *state) call(n *Node, k callKind) *ssa.Value { 2454 var sym *Sym // target symbol (if static) 2455 var closure *ssa.Value // ptr to closure to run (if dynamic) 2456 var codeptr *ssa.Value // ptr to target code (if dynamic) 2457 var rcvr *ssa.Value // receiver to set 2458 fn := n.Left 2459 switch n.Op { 2460 case OCALLFUNC: 2461 if k == callNormal && fn.Op == ONAME && fn.Class == PFUNC { 2462 sym = fn.Sym 2463 break 2464 } 2465 closure = s.expr(fn) 2466 case OCALLMETH: 2467 if fn.Op != ODOTMETH { 2468 Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn) 2469 } 2470 if k == callNormal { 2471 sym = fn.Sym 2472 break 2473 } 2474 n2 := newname(fn.Sym) 2475 n2.Class = PFUNC 2476 n2.Lineno = fn.Lineno 2477 closure = s.expr(n2) 2478 // Note: receiver is already assigned in n.List, so we don't 2479 // want to set it here. 2480 case OCALLINTER: 2481 if fn.Op != ODOTINTER { 2482 Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", Oconv(fn.Op, 0)) 2483 } 2484 i := s.expr(fn.Left) 2485 itab := s.newValue1(ssa.OpITab, Types[TUINTPTR], i) 2486 itabidx := fn.Xoffset + 3*int64(Widthptr) + 8 // offset of fun field in runtime.itab 2487 itab = s.newValue1I(ssa.OpOffPtr, Types[TUINTPTR], itabidx, itab) 2488 if k == callNormal { 2489 codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], itab, s.mem()) 2490 } else { 2491 closure = itab 2492 } 2493 rcvr = s.newValue1(ssa.OpIData, Types[TUINTPTR], i) 2494 } 2495 dowidth(fn.Type) 2496 stksize := fn.Type.ArgWidth() // includes receiver 2497 2498 // Run all argument assignments. The arg slots have already 2499 // been offset by the appropriate amount (+2*widthptr for go/defer, 2500 // +widthptr for interface calls). 2501 // For OCALLMETH, the receiver is set in these statements. 2502 s.stmtList(n.List) 2503 2504 // Set receiver (for interface calls) 2505 if rcvr != nil { 2506 argStart := Ctxt.FixedFrameSize() 2507 if k != callNormal { 2508 argStart += int64(2 * Widthptr) 2509 } 2510 addr := s.entryNewValue1I(ssa.OpOffPtr, Types[TUINTPTR], argStart, s.sp) 2511 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, rcvr, s.mem()) 2512 } 2513 2514 // Defer/go args 2515 if k != callNormal { 2516 // Write argsize and closure (args to Newproc/Deferproc). 2517 argsize := s.constInt32(Types[TUINT32], int32(stksize)) 2518 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, 4, s.sp, argsize, s.mem()) 2519 addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(Types[TUINTPTR]), int64(Widthptr), s.sp) 2520 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, closure, s.mem()) 2521 stksize += 2 * int64(Widthptr) 2522 } 2523 2524 // call target 2525 bNext := s.f.NewBlock(ssa.BlockPlain) 2526 var call *ssa.Value 2527 switch { 2528 case k == callDefer: 2529 call = s.newValue1(ssa.OpDeferCall, ssa.TypeMem, s.mem()) 2530 case k == callGo: 2531 call = s.newValue1(ssa.OpGoCall, ssa.TypeMem, s.mem()) 2532 case closure != nil: 2533 codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], closure, s.mem()) 2534 call = s.newValue3(ssa.OpClosureCall, ssa.TypeMem, codeptr, closure, s.mem()) 2535 case codeptr != nil: 2536 call = s.newValue2(ssa.OpInterCall, ssa.TypeMem, codeptr, s.mem()) 2537 case sym != nil: 2538 call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, sym, s.mem()) 2539 default: 2540 Fatalf("bad call type %s %v", opnames[n.Op], n) 2541 } 2542 call.AuxInt = stksize // Call operations carry the argsize of the callee along with them 2543 2544 // Finish call block 2545 s.vars[&memVar] = call 2546 b := s.endBlock() 2547 b.Kind = ssa.BlockCall 2548 b.SetControl(call) 2549 b.AddEdgeTo(bNext) 2550 if k == callDefer { 2551 // Add recover edge to exit code. 2552 b.Kind = ssa.BlockDefer 2553 r := s.f.NewBlock(ssa.BlockPlain) 2554 s.startBlock(r) 2555 s.exit() 2556 b.AddEdgeTo(r) 2557 b.Likely = ssa.BranchLikely 2558 } 2559 2560 // Start exit block, find address of result. 2561 s.startBlock(bNext) 2562 res := n.Left.Type.Results() 2563 if res.NumFields() == 0 || k != callNormal { 2564 // call has no return value. Continue with the next statement. 2565 return nil 2566 } 2567 fp := res.Field(0) 2568 return s.entryNewValue1I(ssa.OpOffPtr, Ptrto(fp.Type), fp.Offset, s.sp) 2569 } 2570 2571 // etypesign returns the signed-ness of e, for integer/pointer etypes. 2572 // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer. 2573 func etypesign(e EType) int8 { 2574 switch e { 2575 case TINT8, TINT16, TINT32, TINT64, TINT: 2576 return -1 2577 case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR: 2578 return +1 2579 } 2580 return 0 2581 } 2582 2583 // lookupSymbol is used to retrieve the symbol (Extern, Arg or Auto) used for a particular node. 2584 // This improves the effectiveness of cse by using the same Aux values for the 2585 // same symbols. 2586 func (s *state) lookupSymbol(n *Node, sym interface{}) interface{} { 2587 switch sym.(type) { 2588 default: 2589 s.Fatalf("sym %v is of uknown type %T", sym, sym) 2590 case *ssa.ExternSymbol, *ssa.ArgSymbol, *ssa.AutoSymbol: 2591 // these are the only valid types 2592 } 2593 2594 if lsym, ok := s.varsyms[n]; ok { 2595 return lsym 2596 } else { 2597 s.varsyms[n] = sym 2598 return sym 2599 } 2600 } 2601 2602 // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result. 2603 // The value that the returned Value represents is guaranteed to be non-nil. 2604 // If bounded is true then this address does not require a nil check for its operand 2605 // even if that would otherwise be implied. 2606 func (s *state) addr(n *Node, bounded bool) *ssa.Value { 2607 t := Ptrto(n.Type) 2608 switch n.Op { 2609 case ONAME: 2610 switch n.Class { 2611 case PEXTERN: 2612 // global variable 2613 aux := s.lookupSymbol(n, &ssa.ExternSymbol{n.Type, n.Sym}) 2614 v := s.entryNewValue1A(ssa.OpAddr, t, aux, s.sb) 2615 // TODO: Make OpAddr use AuxInt as well as Aux. 2616 if n.Xoffset != 0 { 2617 v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v) 2618 } 2619 return v 2620 case PPARAM: 2621 // parameter slot 2622 v := s.decladdrs[n] 2623 if v != nil { 2624 return v 2625 } 2626 if n.String() == ".fp" { 2627 // Special arg that points to the frame pointer. 2628 // (Used by the race detector, others?) 2629 aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n}) 2630 return s.entryNewValue1A(ssa.OpAddr, t, aux, s.sp) 2631 } 2632 s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs) 2633 return nil 2634 case PAUTO: 2635 aux := s.lookupSymbol(n, &ssa.AutoSymbol{Typ: n.Type, Node: n}) 2636 return s.newValue1A(ssa.OpAddr, t, aux, s.sp) 2637 case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early. 2638 // ensure that we reuse symbols for out parameters so 2639 // that cse works on their addresses 2640 aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n}) 2641 return s.newValue1A(ssa.OpAddr, t, aux, s.sp) 2642 case PAUTO | PHEAP, PPARAM | PHEAP, PPARAMOUT | PHEAP, PPARAMREF: 2643 return s.expr(n.Name.Heapaddr) 2644 default: 2645 s.Unimplementedf("variable address class %v not implemented", n.Class) 2646 return nil 2647 } 2648 case OINDREG: 2649 // indirect off a register 2650 // used for storing/loading arguments/returns to/from callees 2651 if int(n.Reg) != Thearch.REGSP { 2652 s.Unimplementedf("OINDREG of non-SP register %s in addr: %v", obj.Rconv(int(n.Reg)), n) 2653 return nil 2654 } 2655 return s.entryNewValue1I(ssa.OpOffPtr, t, n.Xoffset, s.sp) 2656 case OINDEX: 2657 if n.Left.Type.IsSlice() { 2658 a := s.expr(n.Left) 2659 i := s.expr(n.Right) 2660 i = s.extendIndex(i) 2661 len := s.newValue1(ssa.OpSliceLen, Types[TINT], a) 2662 if !n.Bounded { 2663 s.boundsCheck(i, len) 2664 } 2665 p := s.newValue1(ssa.OpSlicePtr, t, a) 2666 return s.newValue2(ssa.OpPtrIndex, t, p, i) 2667 } else { // array 2668 a := s.addr(n.Left, bounded) 2669 i := s.expr(n.Right) 2670 i = s.extendIndex(i) 2671 len := s.constInt(Types[TINT], n.Left.Type.NumElem()) 2672 if !n.Bounded { 2673 s.boundsCheck(i, len) 2674 } 2675 return s.newValue2(ssa.OpPtrIndex, Ptrto(n.Left.Type.Elem()), a, i) 2676 } 2677 case OIND: 2678 p := s.expr(n.Left) 2679 if !bounded { 2680 s.nilCheck(p) 2681 } 2682 return p 2683 case ODOT: 2684 p := s.addr(n.Left, bounded) 2685 return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p) 2686 case ODOTPTR: 2687 p := s.expr(n.Left) 2688 if !bounded { 2689 s.nilCheck(p) 2690 } 2691 return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p) 2692 case OCLOSUREVAR: 2693 return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, 2694 s.entryNewValue0(ssa.OpGetClosurePtr, Ptrto(Types[TUINT8]))) 2695 case OPARAM: 2696 p := n.Left 2697 if p.Op != ONAME || !(p.Class == PPARAM|PHEAP || p.Class == PPARAMOUT|PHEAP) { 2698 s.Fatalf("OPARAM not of ONAME,{PPARAM,PPARAMOUT}|PHEAP, instead %s", nodedump(p, 0)) 2699 } 2700 2701 // Recover original offset to address passed-in param value. 2702 original_p := *p 2703 original_p.Xoffset = n.Xoffset 2704 aux := &ssa.ArgSymbol{Typ: n.Type, Node: &original_p} 2705 return s.entryNewValue1A(ssa.OpAddr, t, aux, s.sp) 2706 case OCONVNOP: 2707 addr := s.addr(n.Left, bounded) 2708 return s.newValue1(ssa.OpCopy, t, addr) // ensure that addr has the right type 2709 case OCALLFUNC, OCALLINTER, OCALLMETH: 2710 return s.call(n, callNormal) 2711 2712 default: 2713 s.Unimplementedf("unhandled addr %v", Oconv(n.Op, 0)) 2714 return nil 2715 } 2716 } 2717 2718 // canSSA reports whether n is SSA-able. 2719 // n must be an ONAME (or an ODOT sequence with an ONAME base). 2720 func (s *state) canSSA(n *Node) bool { 2721 for n.Op == ODOT { 2722 n = n.Left 2723 } 2724 if n.Op != ONAME { 2725 return false 2726 } 2727 if n.Addrtaken { 2728 return false 2729 } 2730 if n.Class&PHEAP != 0 { 2731 return false 2732 } 2733 switch n.Class { 2734 case PEXTERN, PPARAMREF: 2735 // TODO: maybe treat PPARAMREF with an Arg-like op to read from closure? 2736 return false 2737 case PPARAMOUT: 2738 if hasdefer { 2739 // TODO: handle this case? Named return values must be 2740 // in memory so that the deferred function can see them. 2741 // Maybe do: if !strings.HasPrefix(n.String(), "~") { return false } 2742 return false 2743 } 2744 if s.cgoUnsafeArgs { 2745 // Cgo effectively takes the address of all result args, 2746 // but the compiler can't see that. 2747 return false 2748 } 2749 } 2750 if n.Class == PPARAM && n.String() == ".this" { 2751 // wrappers generated by genwrapper need to update 2752 // the .this pointer in place. 2753 // TODO: treat as a PPARMOUT? 2754 return false 2755 } 2756 return canSSAType(n.Type) 2757 // TODO: try to make more variables SSAable? 2758 } 2759 2760 // canSSA reports whether variables of type t are SSA-able. 2761 func canSSAType(t *Type) bool { 2762 dowidth(t) 2763 if t.Width > int64(4*Widthptr) { 2764 // 4*Widthptr is an arbitrary constant. We want it 2765 // to be at least 3*Widthptr so slices can be registerized. 2766 // Too big and we'll introduce too much register pressure. 2767 return false 2768 } 2769 switch t.Etype { 2770 case TARRAY: 2771 if t.IsSlice() { 2772 return true 2773 } 2774 // We can't do arrays because dynamic indexing is 2775 // not supported on SSA variables. 2776 // TODO: maybe allow if length is <=1? All indexes 2777 // are constant? Might be good for the arrays 2778 // introduced by the compiler for variadic functions. 2779 return false 2780 case TSTRUCT: 2781 if t.NumFields() > ssa.MaxStruct { 2782 return false 2783 } 2784 for _, t1 := range t.Fields().Slice() { 2785 if !canSSAType(t1.Type) { 2786 return false 2787 } 2788 } 2789 return true 2790 default: 2791 return true 2792 } 2793 } 2794 2795 // nilCheck generates nil pointer checking code. 2796 // Starts a new block on return, unless nil checks are disabled. 2797 // Used only for automatically inserted nil checks, 2798 // not for user code like 'x != nil'. 2799 func (s *state) nilCheck(ptr *ssa.Value) { 2800 if Disable_checknil != 0 { 2801 return 2802 } 2803 chk := s.newValue2(ssa.OpNilCheck, ssa.TypeVoid, ptr, s.mem()) 2804 b := s.endBlock() 2805 b.Kind = ssa.BlockCheck 2806 b.SetControl(chk) 2807 bNext := s.f.NewBlock(ssa.BlockPlain) 2808 b.AddEdgeTo(bNext) 2809 s.startBlock(bNext) 2810 } 2811 2812 // boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not. 2813 // Starts a new block on return. 2814 func (s *state) boundsCheck(idx, len *ssa.Value) { 2815 if Debug['B'] != 0 { 2816 return 2817 } 2818 // TODO: convert index to full width? 2819 // TODO: if index is 64-bit and we're compiling to 32-bit, check that high 32 bits are zero. 2820 2821 // bounds check 2822 cmp := s.newValue2(ssa.OpIsInBounds, Types[TBOOL], idx, len) 2823 s.check(cmp, Panicindex) 2824 } 2825 2826 // sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not. 2827 // Starts a new block on return. 2828 func (s *state) sliceBoundsCheck(idx, len *ssa.Value) { 2829 if Debug['B'] != 0 { 2830 return 2831 } 2832 // TODO: convert index to full width? 2833 // TODO: if index is 64-bit and we're compiling to 32-bit, check that high 32 bits are zero. 2834 2835 // bounds check 2836 cmp := s.newValue2(ssa.OpIsSliceInBounds, Types[TBOOL], idx, len) 2837 s.check(cmp, panicslice) 2838 } 2839 2840 // If cmp (a bool) is true, panic using the given function. 2841 func (s *state) check(cmp *ssa.Value, fn *Node) { 2842 b := s.endBlock() 2843 b.Kind = ssa.BlockIf 2844 b.SetControl(cmp) 2845 b.Likely = ssa.BranchLikely 2846 bNext := s.f.NewBlock(ssa.BlockPlain) 2847 line := s.peekLine() 2848 bPanic := s.panics[funcLine{fn, line}] 2849 if bPanic == nil { 2850 bPanic = s.f.NewBlock(ssa.BlockPlain) 2851 s.panics[funcLine{fn, line}] = bPanic 2852 s.startBlock(bPanic) 2853 // The panic call takes/returns memory to ensure that the right 2854 // memory state is observed if the panic happens. 2855 s.rtcall(fn, false, nil) 2856 } 2857 b.AddEdgeTo(bNext) 2858 b.AddEdgeTo(bPanic) 2859 s.startBlock(bNext) 2860 } 2861 2862 // rtcall issues a call to the given runtime function fn with the listed args. 2863 // Returns a slice of results of the given result types. 2864 // The call is added to the end of the current block. 2865 // If returns is false, the block is marked as an exit block. 2866 // If returns is true, the block is marked as a call block. A new block 2867 // is started to load the return values. 2868 func (s *state) rtcall(fn *Node, returns bool, results []*Type, args ...*ssa.Value) []*ssa.Value { 2869 // Write args to the stack 2870 var off int64 // TODO: arch-dependent starting offset? 2871 for _, arg := range args { 2872 t := arg.Type 2873 off = Rnd(off, t.Alignment()) 2874 ptr := s.sp 2875 if off != 0 { 2876 ptr = s.newValue1I(ssa.OpOffPtr, Types[TUINTPTR], off, s.sp) 2877 } 2878 size := t.Size() 2879 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, size, ptr, arg, s.mem()) 2880 off += size 2881 } 2882 off = Rnd(off, int64(Widthptr)) 2883 2884 // Issue call 2885 call := s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, fn.Sym, s.mem()) 2886 s.vars[&memVar] = call 2887 2888 // Finish block 2889 b := s.endBlock() 2890 if !returns { 2891 b.Kind = ssa.BlockExit 2892 b.SetControl(call) 2893 call.AuxInt = off 2894 if len(results) > 0 { 2895 Fatalf("panic call can't have results") 2896 } 2897 return nil 2898 } 2899 b.Kind = ssa.BlockCall 2900 b.SetControl(call) 2901 bNext := s.f.NewBlock(ssa.BlockPlain) 2902 b.AddEdgeTo(bNext) 2903 s.startBlock(bNext) 2904 2905 // Load results 2906 res := make([]*ssa.Value, len(results)) 2907 for i, t := range results { 2908 off = Rnd(off, t.Alignment()) 2909 ptr := s.sp 2910 if off != 0 { 2911 ptr = s.newValue1I(ssa.OpOffPtr, Types[TUINTPTR], off, s.sp) 2912 } 2913 res[i] = s.newValue2(ssa.OpLoad, t, ptr, s.mem()) 2914 off += t.Size() 2915 } 2916 off = Rnd(off, int64(Widthptr)) 2917 2918 // Remember how much callee stack space we needed. 2919 call.AuxInt = off 2920 2921 return res 2922 } 2923 2924 // insertWBmove inserts the assignment *left = *right including a write barrier. 2925 // t is the type being assigned. 2926 func (s *state) insertWBmove(t *Type, left, right *ssa.Value, line int32) { 2927 // if writeBarrier.enabled { 2928 // typedmemmove(&t, left, right) 2929 // } else { 2930 // *left = *right 2931 // } 2932 2933 if s.noWB { 2934 s.Fatalf("write barrier prohibited") 2935 } 2936 if s.WBLineno == 0 { 2937 s.WBLineno = left.Line 2938 } 2939 bThen := s.f.NewBlock(ssa.BlockPlain) 2940 bElse := s.f.NewBlock(ssa.BlockPlain) 2941 bEnd := s.f.NewBlock(ssa.BlockPlain) 2942 2943 aux := &ssa.ExternSymbol{Types[TBOOL], syslook("writeBarrier").Sym} 2944 flagaddr := s.newValue1A(ssa.OpAddr, Ptrto(Types[TUINT32]), aux, s.sb) 2945 // TODO: select the .enabled field. It is currently first, so not needed for now. 2946 // Load word, test byte, avoiding partial register write from load byte. 2947 flag := s.newValue2(ssa.OpLoad, Types[TUINT32], flagaddr, s.mem()) 2948 flag = s.newValue1(ssa.OpTrunc64to8, Types[TBOOL], flag) 2949 b := s.endBlock() 2950 b.Kind = ssa.BlockIf 2951 b.Likely = ssa.BranchUnlikely 2952 b.SetControl(flag) 2953 b.AddEdgeTo(bThen) 2954 b.AddEdgeTo(bElse) 2955 2956 s.startBlock(bThen) 2957 taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Types[TUINTPTR], typenamesym(t)}, s.sb) 2958 s.rtcall(typedmemmove, true, nil, taddr, left, right) 2959 s.endBlock().AddEdgeTo(bEnd) 2960 2961 s.startBlock(bElse) 2962 s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, t.Size(), left, right, s.mem()) 2963 s.endBlock().AddEdgeTo(bEnd) 2964 2965 s.startBlock(bEnd) 2966 2967 if Debug_wb > 0 { 2968 Warnl(line, "write barrier") 2969 } 2970 } 2971 2972 // insertWBstore inserts the assignment *left = right including a write barrier. 2973 // t is the type being assigned. 2974 func (s *state) insertWBstore(t *Type, left, right *ssa.Value, line int32, skip skipMask) { 2975 // store scalar fields 2976 // if writeBarrier.enabled { 2977 // writebarrierptr for pointer fields 2978 // } else { 2979 // store pointer fields 2980 // } 2981 2982 if s.noWB { 2983 s.Fatalf("write barrier prohibited") 2984 } 2985 if s.WBLineno == 0 { 2986 s.WBLineno = left.Line 2987 } 2988 s.storeTypeScalars(t, left, right, skip) 2989 2990 bThen := s.f.NewBlock(ssa.BlockPlain) 2991 bElse := s.f.NewBlock(ssa.BlockPlain) 2992 bEnd := s.f.NewBlock(ssa.BlockPlain) 2993 2994 aux := &ssa.ExternSymbol{Types[TBOOL], syslook("writeBarrier").Sym} 2995 flagaddr := s.newValue1A(ssa.OpAddr, Ptrto(Types[TUINT32]), aux, s.sb) 2996 // TODO: select the .enabled field. It is currently first, so not needed for now. 2997 // Load word, test byte, avoiding partial register write from load byte. 2998 flag := s.newValue2(ssa.OpLoad, Types[TUINT32], flagaddr, s.mem()) 2999 flag = s.newValue1(ssa.OpTrunc64to8, Types[TBOOL], flag) 3000 b := s.endBlock() 3001 b.Kind = ssa.BlockIf 3002 b.Likely = ssa.BranchUnlikely 3003 b.SetControl(flag) 3004 b.AddEdgeTo(bThen) 3005 b.AddEdgeTo(bElse) 3006 3007 // Issue write barriers for pointer writes. 3008 s.startBlock(bThen) 3009 s.storeTypePtrsWB(t, left, right) 3010 s.endBlock().AddEdgeTo(bEnd) 3011 3012 // Issue regular stores for pointer writes. 3013 s.startBlock(bElse) 3014 s.storeTypePtrs(t, left, right) 3015 s.endBlock().AddEdgeTo(bEnd) 3016 3017 s.startBlock(bEnd) 3018 3019 if Debug_wb > 0 { 3020 Warnl(line, "write barrier") 3021 } 3022 } 3023 3024 // do *left = right for all scalar (non-pointer) parts of t. 3025 func (s *state) storeTypeScalars(t *Type, left, right *ssa.Value, skip skipMask) { 3026 switch { 3027 case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex(): 3028 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), left, right, s.mem()) 3029 case t.IsPtrShaped(): 3030 // no scalar fields. 3031 case t.IsString(): 3032 if skip&skipLen != 0 { 3033 return 3034 } 3035 len := s.newValue1(ssa.OpStringLen, Types[TINT], right) 3036 lenAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), s.config.IntSize, left) 3037 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem()) 3038 case t.IsSlice(): 3039 if skip&skipLen == 0 { 3040 len := s.newValue1(ssa.OpSliceLen, Types[TINT], right) 3041 lenAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), s.config.IntSize, left) 3042 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem()) 3043 } 3044 if skip&skipCap == 0 { 3045 cap := s.newValue1(ssa.OpSliceCap, Types[TINT], right) 3046 capAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), 2*s.config.IntSize, left) 3047 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capAddr, cap, s.mem()) 3048 } 3049 case t.IsInterface(): 3050 // itab field doesn't need a write barrier (even though it is a pointer). 3051 itab := s.newValue1(ssa.OpITab, Ptrto(Types[TUINT8]), right) 3052 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, left, itab, s.mem()) 3053 case t.IsStruct(): 3054 n := t.NumFields() 3055 for i := 0; i < n; i++ { 3056 ft := t.FieldType(i) 3057 addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) 3058 val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) 3059 s.storeTypeScalars(ft.(*Type), addr, val, 0) 3060 } 3061 default: 3062 s.Fatalf("bad write barrier type %s", t) 3063 } 3064 } 3065 3066 // do *left = right for all pointer parts of t. 3067 func (s *state) storeTypePtrs(t *Type, left, right *ssa.Value) { 3068 switch { 3069 case t.IsPtrShaped(): 3070 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, right, s.mem()) 3071 case t.IsString(): 3072 ptr := s.newValue1(ssa.OpStringPtr, Ptrto(Types[TUINT8]), right) 3073 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem()) 3074 case t.IsSlice(): 3075 ptr := s.newValue1(ssa.OpSlicePtr, Ptrto(Types[TUINT8]), right) 3076 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem()) 3077 case t.IsInterface(): 3078 // itab field is treated as a scalar. 3079 idata := s.newValue1(ssa.OpIData, Ptrto(Types[TUINT8]), right) 3080 idataAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TUINT8]), s.config.PtrSize, left) 3081 s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, idataAddr, idata, s.mem()) 3082 case t.IsStruct(): 3083 n := t.NumFields() 3084 for i := 0; i < n; i++ { 3085 ft := t.FieldType(i) 3086 if !haspointers(ft.(*Type)) { 3087 continue 3088 } 3089 addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) 3090 val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) 3091 s.storeTypePtrs(ft.(*Type), addr, val) 3092 } 3093 default: 3094 s.Fatalf("bad write barrier type %s", t) 3095 } 3096 } 3097 3098 // do *left = right with a write barrier for all pointer parts of t. 3099 func (s *state) storeTypePtrsWB(t *Type, left, right *ssa.Value) { 3100 switch { 3101 case t.IsPtrShaped(): 3102 s.rtcall(writebarrierptr, true, nil, left, right) 3103 case t.IsString(): 3104 ptr := s.newValue1(ssa.OpStringPtr, Ptrto(Types[TUINT8]), right) 3105 s.rtcall(writebarrierptr, true, nil, left, ptr) 3106 case t.IsSlice(): 3107 ptr := s.newValue1(ssa.OpSlicePtr, Ptrto(Types[TUINT8]), right) 3108 s.rtcall(writebarrierptr, true, nil, left, ptr) 3109 case t.IsInterface(): 3110 idata := s.newValue1(ssa.OpIData, Ptrto(Types[TUINT8]), right) 3111 idataAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TUINT8]), s.config.PtrSize, left) 3112 s.rtcall(writebarrierptr, true, nil, idataAddr, idata) 3113 case t.IsStruct(): 3114 n := t.NumFields() 3115 for i := 0; i < n; i++ { 3116 ft := t.FieldType(i) 3117 if !haspointers(ft.(*Type)) { 3118 continue 3119 } 3120 addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) 3121 val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) 3122 s.storeTypePtrsWB(ft.(*Type), addr, val) 3123 } 3124 default: 3125 s.Fatalf("bad write barrier type %s", t) 3126 } 3127 } 3128 3129 // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result. 3130 // i,j,k may be nil, in which case they are set to their default value. 3131 // t is a slice, ptr to array, or string type. 3132 func (s *state) slice(t *Type, v, i, j, k *ssa.Value) (p, l, c *ssa.Value) { 3133 var elemtype *Type 3134 var ptrtype *Type 3135 var ptr *ssa.Value 3136 var len *ssa.Value 3137 var cap *ssa.Value 3138 zero := s.constInt(Types[TINT], 0) 3139 switch { 3140 case t.IsSlice(): 3141 elemtype = t.Elem() 3142 ptrtype = Ptrto(elemtype) 3143 ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v) 3144 len = s.newValue1(ssa.OpSliceLen, Types[TINT], v) 3145 cap = s.newValue1(ssa.OpSliceCap, Types[TINT], v) 3146 case t.IsString(): 3147 elemtype = Types[TUINT8] 3148 ptrtype = Ptrto(elemtype) 3149 ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v) 3150 len = s.newValue1(ssa.OpStringLen, Types[TINT], v) 3151 cap = len 3152 case t.IsPtr(): 3153 if !t.Elem().IsArray() { 3154 s.Fatalf("bad ptr to array in slice %v\n", t) 3155 } 3156 elemtype = t.Elem().Elem() 3157 ptrtype = Ptrto(elemtype) 3158 s.nilCheck(v) 3159 ptr = v 3160 len = s.constInt(Types[TINT], t.Elem().NumElem()) 3161 cap = len 3162 default: 3163 s.Fatalf("bad type in slice %v\n", t) 3164 } 3165 3166 // Set default values 3167 if i == nil { 3168 i = zero 3169 } 3170 if j == nil { 3171 j = len 3172 } 3173 if k == nil { 3174 k = cap 3175 } 3176 3177 // Panic if slice indices are not in bounds. 3178 s.sliceBoundsCheck(i, j) 3179 if j != k { 3180 s.sliceBoundsCheck(j, k) 3181 } 3182 if k != cap { 3183 s.sliceBoundsCheck(k, cap) 3184 } 3185 3186 // Generate the following code assuming that indexes are in bounds. 3187 // The conditional is to make sure that we don't generate a slice 3188 // that points to the next object in memory. 3189 // rlen = j-i 3190 // rcap = k-i 3191 // delta = i*elemsize 3192 // if rcap == 0 { 3193 // delta = 0 3194 // } 3195 // rptr = p+delta 3196 // result = (SliceMake rptr rlen rcap) 3197 subOp := s.ssaOp(OSUB, Types[TINT]) 3198 eqOp := s.ssaOp(OEQ, Types[TINT]) 3199 mulOp := s.ssaOp(OMUL, Types[TINT]) 3200 rlen := s.newValue2(subOp, Types[TINT], j, i) 3201 var rcap *ssa.Value 3202 switch { 3203 case t.IsString(): 3204 // Capacity of the result is unimportant. However, we use 3205 // rcap to test if we've generated a zero-length slice. 3206 // Use length of strings for that. 3207 rcap = rlen 3208 case j == k: 3209 rcap = rlen 3210 default: 3211 rcap = s.newValue2(subOp, Types[TINT], k, i) 3212 } 3213 3214 // delta = # of elements to offset pointer by. 3215 s.vars[&deltaVar] = i 3216 3217 // Generate code to set delta=0 if the resulting capacity is zero. 3218 if !((i.Op == ssa.OpConst64 && i.AuxInt == 0) || 3219 (i.Op == ssa.OpConst32 && int32(i.AuxInt) == 0)) { 3220 cmp := s.newValue2(eqOp, Types[TBOOL], rcap, zero) 3221 3222 b := s.endBlock() 3223 b.Kind = ssa.BlockIf 3224 b.Likely = ssa.BranchUnlikely 3225 b.SetControl(cmp) 3226 3227 // Generate block which zeros the delta variable. 3228 nz := s.f.NewBlock(ssa.BlockPlain) 3229 b.AddEdgeTo(nz) 3230 s.startBlock(nz) 3231 s.vars[&deltaVar] = zero 3232 s.endBlock() 3233 3234 // All done. 3235 merge := s.f.NewBlock(ssa.BlockPlain) 3236 b.AddEdgeTo(merge) 3237 nz.AddEdgeTo(merge) 3238 s.startBlock(merge) 3239 3240 // TODO: use conditional moves somehow? 3241 } 3242 3243 // Compute rptr = ptr + delta * elemsize 3244 rptr := s.newValue2(ssa.OpAddPtr, ptrtype, ptr, s.newValue2(mulOp, Types[TINT], s.variable(&deltaVar, Types[TINT]), s.constInt(Types[TINT], elemtype.Width))) 3245 delete(s.vars, &deltaVar) 3246 return rptr, rlen, rcap 3247 } 3248 3249 type u2fcvtTab struct { 3250 geq, cvt2F, and, rsh, or, add ssa.Op 3251 one func(*state, ssa.Type, int64) *ssa.Value 3252 } 3253 3254 var u64_f64 u2fcvtTab = u2fcvtTab{ 3255 geq: ssa.OpGeq64, 3256 cvt2F: ssa.OpCvt64to64F, 3257 and: ssa.OpAnd64, 3258 rsh: ssa.OpRsh64Ux64, 3259 or: ssa.OpOr64, 3260 add: ssa.OpAdd64F, 3261 one: (*state).constInt64, 3262 } 3263 3264 var u64_f32 u2fcvtTab = u2fcvtTab{ 3265 geq: ssa.OpGeq64, 3266 cvt2F: ssa.OpCvt64to32F, 3267 and: ssa.OpAnd64, 3268 rsh: ssa.OpRsh64Ux64, 3269 or: ssa.OpOr64, 3270 add: ssa.OpAdd32F, 3271 one: (*state).constInt64, 3272 } 3273 3274 // Excess generality on a machine with 64-bit integer registers. 3275 // Not used on AMD64. 3276 var u32_f32 u2fcvtTab = u2fcvtTab{ 3277 geq: ssa.OpGeq32, 3278 cvt2F: ssa.OpCvt32to32F, 3279 and: ssa.OpAnd32, 3280 rsh: ssa.OpRsh32Ux32, 3281 or: ssa.OpOr32, 3282 add: ssa.OpAdd32F, 3283 one: func(s *state, t ssa.Type, x int64) *ssa.Value { 3284 return s.constInt32(t, int32(x)) 3285 }, 3286 } 3287 3288 func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { 3289 return s.uintTofloat(&u64_f64, n, x, ft, tt) 3290 } 3291 3292 func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { 3293 return s.uintTofloat(&u64_f32, n, x, ft, tt) 3294 } 3295 3296 func (s *state) uintTofloat(cvttab *u2fcvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { 3297 // if x >= 0 { 3298 // result = (floatY) x 3299 // } else { 3300 // y = uintX(x) ; y = x & 1 3301 // z = uintX(x) ; z = z >> 1 3302 // z = z >> 1 3303 // z = z | y 3304 // result = floatY(z) 3305 // result = result + result 3306 // } 3307 // 3308 // Code borrowed from old code generator. 3309 // What's going on: large 64-bit "unsigned" looks like 3310 // negative number to hardware's integer-to-float 3311 // conversion. However, because the mantissa is only 3312 // 63 bits, we don't need the LSB, so instead we do an 3313 // unsigned right shift (divide by two), convert, and 3314 // double. However, before we do that, we need to be 3315 // sure that we do not lose a "1" if that made the 3316 // difference in the resulting rounding. Therefore, we 3317 // preserve it, and OR (not ADD) it back in. The case 3318 // that matters is when the eleven discarded bits are 3319 // equal to 10000000001; that rounds up, and the 1 cannot 3320 // be lost else it would round down if the LSB of the 3321 // candidate mantissa is 0. 3322 cmp := s.newValue2(cvttab.geq, Types[TBOOL], x, s.zeroVal(ft)) 3323 b := s.endBlock() 3324 b.Kind = ssa.BlockIf 3325 b.SetControl(cmp) 3326 b.Likely = ssa.BranchLikely 3327 3328 bThen := s.f.NewBlock(ssa.BlockPlain) 3329 bElse := s.f.NewBlock(ssa.BlockPlain) 3330 bAfter := s.f.NewBlock(ssa.BlockPlain) 3331 3332 b.AddEdgeTo(bThen) 3333 s.startBlock(bThen) 3334 a0 := s.newValue1(cvttab.cvt2F, tt, x) 3335 s.vars[n] = a0 3336 s.endBlock() 3337 bThen.AddEdgeTo(bAfter) 3338 3339 b.AddEdgeTo(bElse) 3340 s.startBlock(bElse) 3341 one := cvttab.one(s, ft, 1) 3342 y := s.newValue2(cvttab.and, ft, x, one) 3343 z := s.newValue2(cvttab.rsh, ft, x, one) 3344 z = s.newValue2(cvttab.or, ft, z, y) 3345 a := s.newValue1(cvttab.cvt2F, tt, z) 3346 a1 := s.newValue2(cvttab.add, tt, a, a) 3347 s.vars[n] = a1 3348 s.endBlock() 3349 bElse.AddEdgeTo(bAfter) 3350 3351 s.startBlock(bAfter) 3352 return s.variable(n, n.Type) 3353 } 3354 3355 // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels. 3356 func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value { 3357 if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() { 3358 s.Fatalf("node must be a map or a channel") 3359 } 3360 // if n == nil { 3361 // return 0 3362 // } else { 3363 // // len 3364 // return *((*int)n) 3365 // // cap 3366 // return *(((*int)n)+1) 3367 // } 3368 lenType := n.Type 3369 nilValue := s.constNil(Types[TUINTPTR]) 3370 cmp := s.newValue2(ssa.OpEqPtr, Types[TBOOL], x, nilValue) 3371 b := s.endBlock() 3372 b.Kind = ssa.BlockIf 3373 b.SetControl(cmp) 3374 b.Likely = ssa.BranchUnlikely 3375 3376 bThen := s.f.NewBlock(ssa.BlockPlain) 3377 bElse := s.f.NewBlock(ssa.BlockPlain) 3378 bAfter := s.f.NewBlock(ssa.BlockPlain) 3379 3380 // length/capacity of a nil map/chan is zero 3381 b.AddEdgeTo(bThen) 3382 s.startBlock(bThen) 3383 s.vars[n] = s.zeroVal(lenType) 3384 s.endBlock() 3385 bThen.AddEdgeTo(bAfter) 3386 3387 b.AddEdgeTo(bElse) 3388 s.startBlock(bElse) 3389 if n.Op == OLEN { 3390 // length is stored in the first word for map/chan 3391 s.vars[n] = s.newValue2(ssa.OpLoad, lenType, x, s.mem()) 3392 } else if n.Op == OCAP { 3393 // capacity is stored in the second word for chan 3394 sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x) 3395 s.vars[n] = s.newValue2(ssa.OpLoad, lenType, sw, s.mem()) 3396 } else { 3397 s.Fatalf("op must be OLEN or OCAP") 3398 } 3399 s.endBlock() 3400 bElse.AddEdgeTo(bAfter) 3401 3402 s.startBlock(bAfter) 3403 return s.variable(n, lenType) 3404 } 3405 3406 type f2uCvtTab struct { 3407 ltf, cvt2U, subf ssa.Op 3408 value func(*state, ssa.Type, float64) *ssa.Value 3409 } 3410 3411 var f32_u64 f2uCvtTab = f2uCvtTab{ 3412 ltf: ssa.OpLess32F, 3413 cvt2U: ssa.OpCvt32Fto64, 3414 subf: ssa.OpSub32F, 3415 value: (*state).constFloat32, 3416 } 3417 3418 var f64_u64 f2uCvtTab = f2uCvtTab{ 3419 ltf: ssa.OpLess64F, 3420 cvt2U: ssa.OpCvt64Fto64, 3421 subf: ssa.OpSub64F, 3422 value: (*state).constFloat64, 3423 } 3424 3425 func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { 3426 return s.floatToUint(&f32_u64, n, x, ft, tt) 3427 } 3428 func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { 3429 return s.floatToUint(&f64_u64, n, x, ft, tt) 3430 } 3431 3432 func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { 3433 // if x < 9223372036854775808.0 { 3434 // result = uintY(x) 3435 // } else { 3436 // y = x - 9223372036854775808.0 3437 // z = uintY(y) 3438 // result = z | -9223372036854775808 3439 // } 3440 twoToThe63 := cvttab.value(s, ft, 9223372036854775808.0) 3441 cmp := s.newValue2(cvttab.ltf, Types[TBOOL], x, twoToThe63) 3442 b := s.endBlock() 3443 b.Kind = ssa.BlockIf 3444 b.SetControl(cmp) 3445 b.Likely = ssa.BranchLikely 3446 3447 bThen := s.f.NewBlock(ssa.BlockPlain) 3448 bElse := s.f.NewBlock(ssa.BlockPlain) 3449 bAfter := s.f.NewBlock(ssa.BlockPlain) 3450 3451 b.AddEdgeTo(bThen) 3452 s.startBlock(bThen) 3453 a0 := s.newValue1(cvttab.cvt2U, tt, x) 3454 s.vars[n] = a0 3455 s.endBlock() 3456 bThen.AddEdgeTo(bAfter) 3457 3458 b.AddEdgeTo(bElse) 3459 s.startBlock(bElse) 3460 y := s.newValue2(cvttab.subf, ft, x, twoToThe63) 3461 y = s.newValue1(cvttab.cvt2U, tt, y) 3462 z := s.constInt64(tt, -9223372036854775808) 3463 a1 := s.newValue2(ssa.OpOr64, tt, y, z) 3464 s.vars[n] = a1 3465 s.endBlock() 3466 bElse.AddEdgeTo(bAfter) 3467 3468 s.startBlock(bAfter) 3469 return s.variable(n, n.Type) 3470 } 3471 3472 // ifaceType returns the value for the word containing the type. 3473 // n is the node for the interface expression. 3474 // v is the corresponding value. 3475 func (s *state) ifaceType(n *Node, v *ssa.Value) *ssa.Value { 3476 byteptr := Ptrto(Types[TUINT8]) // type used in runtime prototypes for runtime type (*byte) 3477 3478 if n.Type.IsEmptyInterface() { 3479 // Have *eface. The type is the first word in the struct. 3480 return s.newValue1(ssa.OpITab, byteptr, v) 3481 } 3482 3483 // Have *iface. 3484 // The first word in the struct is the *itab. 3485 // If the *itab is nil, return 0. 3486 // Otherwise, the second word in the *itab is the type. 3487 3488 tab := s.newValue1(ssa.OpITab, byteptr, v) 3489 s.vars[&typVar] = tab 3490 isnonnil := s.newValue2(ssa.OpNeqPtr, Types[TBOOL], tab, s.constNil(byteptr)) 3491 b := s.endBlock() 3492 b.Kind = ssa.BlockIf 3493 b.SetControl(isnonnil) 3494 b.Likely = ssa.BranchLikely 3495 3496 bLoad := s.f.NewBlock(ssa.BlockPlain) 3497 bEnd := s.f.NewBlock(ssa.BlockPlain) 3498 3499 b.AddEdgeTo(bLoad) 3500 b.AddEdgeTo(bEnd) 3501 bLoad.AddEdgeTo(bEnd) 3502 3503 s.startBlock(bLoad) 3504 off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), tab) 3505 s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem()) 3506 s.endBlock() 3507 3508 s.startBlock(bEnd) 3509 typ := s.variable(&typVar, byteptr) 3510 delete(s.vars, &typVar) 3511 return typ 3512 } 3513 3514 // dottype generates SSA for a type assertion node. 3515 // commaok indicates whether to panic or return a bool. 3516 // If commaok is false, resok will be nil. 3517 func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) { 3518 iface := s.expr(n.Left) 3519 typ := s.ifaceType(n.Left, iface) // actual concrete type 3520 target := s.expr(typename(n.Type)) // target type 3521 if !isdirectiface(n.Type) { 3522 // walk rewrites ODOTTYPE/OAS2DOTTYPE into runtime calls except for this case. 3523 Fatalf("dottype needs a direct iface type %s", n.Type) 3524 } 3525 3526 if Debug_typeassert > 0 { 3527 Warnl(n.Lineno, "type assertion inlined") 3528 } 3529 3530 // TODO: If we have a nonempty interface and its itab field is nil, 3531 // then this test is redundant and ifaceType should just branch directly to bFail. 3532 cond := s.newValue2(ssa.OpEqPtr, Types[TBOOL], typ, target) 3533 b := s.endBlock() 3534 b.Kind = ssa.BlockIf 3535 b.SetControl(cond) 3536 b.Likely = ssa.BranchLikely 3537 3538 byteptr := Ptrto(Types[TUINT8]) 3539 3540 bOk := s.f.NewBlock(ssa.BlockPlain) 3541 bFail := s.f.NewBlock(ssa.BlockPlain) 3542 b.AddEdgeTo(bOk) 3543 b.AddEdgeTo(bFail) 3544 3545 if !commaok { 3546 // on failure, panic by calling panicdottype 3547 s.startBlock(bFail) 3548 taddr := s.newValue1A(ssa.OpAddr, byteptr, &ssa.ExternSymbol{byteptr, typenamesym(n.Left.Type)}, s.sb) 3549 s.rtcall(panicdottype, false, nil, typ, target, taddr) 3550 3551 // on success, return idata field 3552 s.startBlock(bOk) 3553 return s.newValue1(ssa.OpIData, n.Type, iface), nil 3554 } 3555 3556 // commaok is the more complicated case because we have 3557 // a control flow merge point. 3558 bEnd := s.f.NewBlock(ssa.BlockPlain) 3559 3560 // type assertion succeeded 3561 s.startBlock(bOk) 3562 s.vars[&idataVar] = s.newValue1(ssa.OpIData, n.Type, iface) 3563 s.vars[&okVar] = s.constBool(true) 3564 s.endBlock() 3565 bOk.AddEdgeTo(bEnd) 3566 3567 // type assertion failed 3568 s.startBlock(bFail) 3569 s.vars[&idataVar] = s.constNil(byteptr) 3570 s.vars[&okVar] = s.constBool(false) 3571 s.endBlock() 3572 bFail.AddEdgeTo(bEnd) 3573 3574 // merge point 3575 s.startBlock(bEnd) 3576 res = s.variable(&idataVar, byteptr) 3577 resok = s.variable(&okVar, Types[TBOOL]) 3578 delete(s.vars, &idataVar) 3579 delete(s.vars, &okVar) 3580 return res, resok 3581 } 3582 3583 // checkgoto checks that a goto from from to to does not 3584 // jump into a block or jump over variable declarations. 3585 // It is a copy of checkgoto in the pre-SSA backend, 3586 // modified only for line number handling. 3587 // TODO: document how this works and why it is designed the way it is. 3588 func (s *state) checkgoto(from *Node, to *Node) { 3589 if from.Sym == to.Sym { 3590 return 3591 } 3592 3593 nf := 0 3594 for fs := from.Sym; fs != nil; fs = fs.Link { 3595 nf++ 3596 } 3597 nt := 0 3598 for fs := to.Sym; fs != nil; fs = fs.Link { 3599 nt++ 3600 } 3601 fs := from.Sym 3602 for ; nf > nt; nf-- { 3603 fs = fs.Link 3604 } 3605 if fs != to.Sym { 3606 // decide what to complain about. 3607 // prefer to complain about 'into block' over declarations, 3608 // so scan backward to find most recent block or else dcl. 3609 var block *Sym 3610 3611 var dcl *Sym 3612 ts := to.Sym 3613 for ; nt > nf; nt-- { 3614 if ts.Pkg == nil { 3615 block = ts 3616 } else { 3617 dcl = ts 3618 } 3619 ts = ts.Link 3620 } 3621 3622 for ts != fs { 3623 if ts.Pkg == nil { 3624 block = ts 3625 } else { 3626 dcl = ts 3627 } 3628 ts = ts.Link 3629 fs = fs.Link 3630 } 3631 3632 lno := from.Left.Lineno 3633 if block != nil { 3634 yyerrorl(lno, "goto %v jumps into block starting at %v", from.Left.Sym, linestr(block.Lastlineno)) 3635 } else { 3636 yyerrorl(lno, "goto %v jumps over declaration of %v at %v", from.Left.Sym, dcl, linestr(dcl.Lastlineno)) 3637 } 3638 } 3639 } 3640 3641 // variable returns the value of a variable at the current location. 3642 func (s *state) variable(name *Node, t ssa.Type) *ssa.Value { 3643 v := s.vars[name] 3644 if v == nil { 3645 v = s.newValue0A(ssa.OpFwdRef, t, name) 3646 s.fwdRefs = append(s.fwdRefs, v) 3647 s.vars[name] = v 3648 s.addNamedValue(name, v) 3649 } 3650 return v 3651 } 3652 3653 func (s *state) mem() *ssa.Value { 3654 return s.variable(&memVar, ssa.TypeMem) 3655 } 3656 3657 func (s *state) linkForwardReferences() { 3658 // Build SSA graph. Each variable on its first use in a basic block 3659 // leaves a FwdRef in that block representing the incoming value 3660 // of that variable. This function links that ref up with possible definitions, 3661 // inserting Phi values as needed. This is essentially the algorithm 3662 // described by Braun, Buchwald, Hack, Leißa, Mallon, and Zwinkau: 3663 // http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf 3664 // Differences: 3665 // - We use FwdRef nodes to postpone phi building until the CFG is 3666 // completely built. That way we can avoid the notion of "sealed" 3667 // blocks. 3668 // - Phi optimization is a separate pass (in ../ssa/phielim.go). 3669 for len(s.fwdRefs) > 0 { 3670 v := s.fwdRefs[len(s.fwdRefs)-1] 3671 s.fwdRefs = s.fwdRefs[:len(s.fwdRefs)-1] 3672 s.resolveFwdRef(v) 3673 } 3674 } 3675 3676 // resolveFwdRef modifies v to be the variable's value at the start of its block. 3677 // v must be a FwdRef op. 3678 func (s *state) resolveFwdRef(v *ssa.Value) { 3679 b := v.Block 3680 name := v.Aux.(*Node) 3681 v.Aux = nil 3682 if b == s.f.Entry { 3683 // Live variable at start of function. 3684 if s.canSSA(name) { 3685 v.Op = ssa.OpArg 3686 v.Aux = name 3687 return 3688 } 3689 // Not SSAable. Load it. 3690 addr := s.decladdrs[name] 3691 if addr == nil { 3692 // TODO: closure args reach here. 3693 s.Unimplementedf("unhandled closure arg %s at entry to function %s", name, b.Func.Name) 3694 } 3695 if _, ok := addr.Aux.(*ssa.ArgSymbol); !ok { 3696 s.Fatalf("variable live at start of function %s is not an argument %s", b.Func.Name, name) 3697 } 3698 v.Op = ssa.OpLoad 3699 v.AddArgs(addr, s.startmem) 3700 return 3701 } 3702 if len(b.Preds) == 0 { 3703 // This block is dead; we have no predecessors and we're not the entry block. 3704 // It doesn't matter what we use here as long as it is well-formed. 3705 v.Op = ssa.OpUnknown 3706 return 3707 } 3708 // Find variable value on each predecessor. 3709 var argstore [4]*ssa.Value 3710 args := argstore[:0] 3711 for _, p := range b.Preds { 3712 args = append(args, s.lookupVarOutgoing(p, v.Type, name, v.Line)) 3713 } 3714 3715 // Decide if we need a phi or not. We need a phi if there 3716 // are two different args (which are both not v). 3717 var w *ssa.Value 3718 for _, a := range args { 3719 if a == v { 3720 continue // self-reference 3721 } 3722 if a == w { 3723 continue // already have this witness 3724 } 3725 if w != nil { 3726 // two witnesses, need a phi value 3727 v.Op = ssa.OpPhi 3728 v.AddArgs(args...) 3729 return 3730 } 3731 w = a // save witness 3732 } 3733 if w == nil { 3734 s.Fatalf("no witness for reachable phi %s", v) 3735 } 3736 // One witness. Make v a copy of w. 3737 v.Op = ssa.OpCopy 3738 v.AddArg(w) 3739 } 3740 3741 // lookupVarOutgoing finds the variable's value at the end of block b. 3742 func (s *state) lookupVarOutgoing(b *ssa.Block, t ssa.Type, name *Node, line int32) *ssa.Value { 3743 m := s.defvars[b.ID] 3744 if v, ok := m[name]; ok { 3745 return v 3746 } 3747 // The variable is not defined by b and we haven't 3748 // looked it up yet. Generate a FwdRef for the variable and return that. 3749 v := b.NewValue0A(line, ssa.OpFwdRef, t, name) 3750 s.fwdRefs = append(s.fwdRefs, v) 3751 m[name] = v 3752 s.addNamedValue(name, v) 3753 return v 3754 } 3755 3756 func (s *state) addNamedValue(n *Node, v *ssa.Value) { 3757 if n.Class == Pxxx { 3758 // Don't track our dummy nodes (&memVar etc.). 3759 return 3760 } 3761 if strings.HasPrefix(n.Sym.Name, "autotmp_") { 3762 // Don't track autotmp_ variables. 3763 return 3764 } 3765 if n.Class == PPARAMOUT { 3766 // Don't track named output values. This prevents return values 3767 // from being assigned too early. See #14591 and #14762. TODO: allow this. 3768 return 3769 } 3770 if n.Class == PAUTO && n.Xoffset != 0 { 3771 s.Fatalf("AUTO var with offset %s %d", n, n.Xoffset) 3772 } 3773 loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0} 3774 values, ok := s.f.NamedValues[loc] 3775 if !ok { 3776 s.f.Names = append(s.f.Names, loc) 3777 } 3778 s.f.NamedValues[loc] = append(values, v) 3779 } 3780 3781 // Branch is an unresolved branch. 3782 type Branch struct { 3783 P *obj.Prog // branch instruction 3784 B *ssa.Block // target 3785 } 3786 3787 // SSAGenState contains state needed during Prog generation. 3788 type SSAGenState struct { 3789 // Branches remembers all the branch instructions we've seen 3790 // and where they would like to go. 3791 Branches []Branch 3792 3793 // bstart remembers where each block starts (indexed by block ID) 3794 bstart []*obj.Prog 3795 } 3796 3797 // Pc returns the current Prog. 3798 func (s *SSAGenState) Pc() *obj.Prog { 3799 return Pc 3800 } 3801 3802 // SetLineno sets the current source line number. 3803 func (s *SSAGenState) SetLineno(l int32) { 3804 lineno = l 3805 } 3806 3807 // genssa appends entries to ptxt for each instruction in f. 3808 // gcargs and gclocals are filled in with pointer maps for the frame. 3809 func genssa(f *ssa.Func, ptxt *obj.Prog, gcargs, gclocals *Sym) { 3810 var s SSAGenState 3811 3812 e := f.Config.Frontend().(*ssaExport) 3813 // We're about to emit a bunch of Progs. 3814 // Since the only way to get here is to explicitly request it, 3815 // just fail on unimplemented instead of trying to unwind our mess. 3816 e.mustImplement = true 3817 3818 // Remember where each block starts. 3819 s.bstart = make([]*obj.Prog, f.NumBlocks()) 3820 3821 var valueProgs map[*obj.Prog]*ssa.Value 3822 var blockProgs map[*obj.Prog]*ssa.Block 3823 var logProgs = e.log 3824 if logProgs { 3825 valueProgs = make(map[*obj.Prog]*ssa.Value, f.NumValues()) 3826 blockProgs = make(map[*obj.Prog]*ssa.Block, f.NumBlocks()) 3827 f.Logf("genssa %s\n", f.Name) 3828 blockProgs[Pc] = f.Blocks[0] 3829 } 3830 3831 // Emit basic blocks 3832 for i, b := range f.Blocks { 3833 s.bstart[b.ID] = Pc 3834 // Emit values in block 3835 Thearch.SSAMarkMoves(&s, b) 3836 for _, v := range b.Values { 3837 x := Pc 3838 Thearch.SSAGenValue(&s, v) 3839 if logProgs { 3840 for ; x != Pc; x = x.Link { 3841 valueProgs[x] = v 3842 } 3843 } 3844 } 3845 // Emit control flow instructions for block 3846 var next *ssa.Block 3847 if i < len(f.Blocks)-1 && (Debug['N'] == 0 || b.Kind == ssa.BlockCall) { 3848 // If -N, leave next==nil so every block with successors 3849 // ends in a JMP (except call blocks - plive doesn't like 3850 // select{send,recv} followed by a JMP call). Helps keep 3851 // line numbers for otherwise empty blocks. 3852 next = f.Blocks[i+1] 3853 } 3854 x := Pc 3855 Thearch.SSAGenBlock(&s, b, next) 3856 if logProgs { 3857 for ; x != Pc; x = x.Link { 3858 blockProgs[x] = b 3859 } 3860 } 3861 } 3862 3863 // Resolve branches 3864 for _, br := range s.Branches { 3865 br.P.To.Val = s.bstart[br.B.ID] 3866 } 3867 3868 if logProgs { 3869 for p := ptxt; p != nil; p = p.Link { 3870 var s string 3871 if v, ok := valueProgs[p]; ok { 3872 s = v.String() 3873 } else if b, ok := blockProgs[p]; ok { 3874 s = b.String() 3875 } else { 3876 s = " " // most value and branch strings are 2-3 characters long 3877 } 3878 f.Logf("%s\t%s\n", s, p) 3879 } 3880 if f.Config.HTML != nil { 3881 saved := ptxt.Ctxt.LineHist.PrintFilenameOnly 3882 ptxt.Ctxt.LineHist.PrintFilenameOnly = true 3883 var buf bytes.Buffer 3884 buf.WriteString("<code>") 3885 buf.WriteString("<dl class=\"ssa-gen\">") 3886 for p := ptxt; p != nil; p = p.Link { 3887 buf.WriteString("<dt class=\"ssa-prog-src\">") 3888 if v, ok := valueProgs[p]; ok { 3889 buf.WriteString(v.HTML()) 3890 } else if b, ok := blockProgs[p]; ok { 3891 buf.WriteString(b.HTML()) 3892 } 3893 buf.WriteString("</dt>") 3894 buf.WriteString("<dd class=\"ssa-prog\">") 3895 buf.WriteString(html.EscapeString(p.String())) 3896 buf.WriteString("</dd>") 3897 buf.WriteString("</li>") 3898 } 3899 buf.WriteString("</dl>") 3900 buf.WriteString("</code>") 3901 f.Config.HTML.WriteColumn("genssa", buf.String()) 3902 ptxt.Ctxt.LineHist.PrintFilenameOnly = saved 3903 } 3904 } 3905 3906 // Emit static data 3907 if f.StaticData != nil { 3908 for _, n := range f.StaticData.([]*Node) { 3909 if !gen_as_init(n, false) { 3910 Fatalf("non-static data marked as static: %v\n\n", n, f) 3911 } 3912 } 3913 } 3914 3915 // Allocate stack frame 3916 allocauto(ptxt) 3917 3918 // Generate gc bitmaps. 3919 liveness(Curfn, ptxt, gcargs, gclocals) 3920 gcsymdup(gcargs) 3921 gcsymdup(gclocals) 3922 3923 // Add frame prologue. Zero ambiguously live variables. 3924 Thearch.Defframe(ptxt) 3925 if Debug['f'] != 0 { 3926 frame(0) 3927 } 3928 3929 // Remove leftover instrumentation from the instruction stream. 3930 removevardef(ptxt) 3931 3932 f.Config.HTML.Close() 3933 } 3934 3935 // movZero generates a register indirect move with a 0 immediate and keeps track of bytes left and next offset 3936 func movZero(as obj.As, width int64, nbytes int64, offset int64, regnum int16) (nleft int64, noff int64) { 3937 p := Prog(as) 3938 // TODO: use zero register on archs that support it. 3939 p.From.Type = obj.TYPE_CONST 3940 p.From.Offset = 0 3941 p.To.Type = obj.TYPE_MEM 3942 p.To.Reg = regnum 3943 p.To.Offset = offset 3944 offset += width 3945 nleft = nbytes - width 3946 return nleft, offset 3947 } 3948 3949 type FloatingEQNEJump struct { 3950 Jump obj.As 3951 Index int 3952 } 3953 3954 func oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump, likely ssa.BranchPrediction, branches []Branch) []Branch { 3955 p := Prog(jumps.Jump) 3956 p.To.Type = obj.TYPE_BRANCH 3957 to := jumps.Index 3958 branches = append(branches, Branch{p, b.Succs[to]}) 3959 if to == 1 { 3960 likely = -likely 3961 } 3962 // liblink reorders the instruction stream as it sees fit. 3963 // Pass along what we know so liblink can make use of it. 3964 // TODO: Once we've fully switched to SSA, 3965 // make liblink leave our output alone. 3966 switch likely { 3967 case ssa.BranchUnlikely: 3968 p.From.Type = obj.TYPE_CONST 3969 p.From.Offset = 0 3970 case ssa.BranchLikely: 3971 p.From.Type = obj.TYPE_CONST 3972 p.From.Offset = 1 3973 } 3974 return branches 3975 } 3976 3977 func SSAGenFPJump(s *SSAGenState, b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) { 3978 likely := b.Likely 3979 switch next { 3980 case b.Succs[0]: 3981 s.Branches = oneFPJump(b, &jumps[0][0], likely, s.Branches) 3982 s.Branches = oneFPJump(b, &jumps[0][1], likely, s.Branches) 3983 case b.Succs[1]: 3984 s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches) 3985 s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches) 3986 default: 3987 s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches) 3988 s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches) 3989 q := Prog(obj.AJMP) 3990 q.To.Type = obj.TYPE_BRANCH 3991 s.Branches = append(s.Branches, Branch{q, b.Succs[1]}) 3992 } 3993 } 3994 3995 // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a. 3996 func AddAux(a *obj.Addr, v *ssa.Value) { 3997 AddAux2(a, v, v.AuxInt) 3998 } 3999 func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) { 4000 if a.Type != obj.TYPE_MEM { 4001 v.Fatalf("bad AddAux addr %s", a) 4002 } 4003 // add integer offset 4004 a.Offset += offset 4005 4006 // If no additional symbol offset, we're done. 4007 if v.Aux == nil { 4008 return 4009 } 4010 // Add symbol's offset from its base register. 4011 switch sym := v.Aux.(type) { 4012 case *ssa.ExternSymbol: 4013 a.Name = obj.NAME_EXTERN 4014 switch s := sym.Sym.(type) { 4015 case *Sym: 4016 a.Sym = Linksym(s) 4017 case *obj.LSym: 4018 a.Sym = s 4019 default: 4020 v.Fatalf("ExternSymbol.Sym is %T", s) 4021 } 4022 case *ssa.ArgSymbol: 4023 n := sym.Node.(*Node) 4024 a.Name = obj.NAME_PARAM 4025 a.Node = n 4026 a.Sym = Linksym(n.Orig.Sym) 4027 a.Offset += n.Xoffset // TODO: why do I have to add this here? I don't for auto variables. 4028 case *ssa.AutoSymbol: 4029 n := sym.Node.(*Node) 4030 a.Name = obj.NAME_AUTO 4031 a.Node = n 4032 a.Sym = Linksym(n.Sym) 4033 default: 4034 v.Fatalf("aux in %s not implemented %#v", v, v.Aux) 4035 } 4036 } 4037 4038 // extendIndex extends v to a full int width. 4039 func (s *state) extendIndex(v *ssa.Value) *ssa.Value { 4040 size := v.Type.Size() 4041 if size == s.config.IntSize { 4042 return v 4043 } 4044 if size > s.config.IntSize { 4045 // TODO: truncate 64-bit indexes on 32-bit pointer archs. We'd need to test 4046 // the high word and branch to out-of-bounds failure if it is not 0. 4047 s.Unimplementedf("64->32 index truncation not implemented") 4048 return v 4049 } 4050 4051 // Extend value to the required size 4052 var op ssa.Op 4053 if v.Type.IsSigned() { 4054 switch 10*size + s.config.IntSize { 4055 case 14: 4056 op = ssa.OpSignExt8to32 4057 case 18: 4058 op = ssa.OpSignExt8to64 4059 case 24: 4060 op = ssa.OpSignExt16to32 4061 case 28: 4062 op = ssa.OpSignExt16to64 4063 case 48: 4064 op = ssa.OpSignExt32to64 4065 default: 4066 s.Fatalf("bad signed index extension %s", v.Type) 4067 } 4068 } else { 4069 switch 10*size + s.config.IntSize { 4070 case 14: 4071 op = ssa.OpZeroExt8to32 4072 case 18: 4073 op = ssa.OpZeroExt8to64 4074 case 24: 4075 op = ssa.OpZeroExt16to32 4076 case 28: 4077 op = ssa.OpZeroExt16to64 4078 case 48: 4079 op = ssa.OpZeroExt32to64 4080 default: 4081 s.Fatalf("bad unsigned index extension %s", v.Type) 4082 } 4083 } 4084 return s.newValue1(op, Types[TINT], v) 4085 } 4086 4087 // SSARegNum returns the register (in cmd/internal/obj numbering) to 4088 // which v has been allocated. Panics if v is not assigned to a 4089 // register. 4090 // TODO: Make this panic again once it stops happening routinely. 4091 func SSARegNum(v *ssa.Value) int16 { 4092 reg := v.Block.Func.RegAlloc[v.ID] 4093 if reg == nil { 4094 v.Unimplementedf("nil regnum for value: %s\n%s\n", v.LongString(), v.Block.Func) 4095 return 0 4096 } 4097 return Thearch.SSARegToReg[reg.(*ssa.Register).Num] 4098 } 4099 4100 // AutoVar returns a *Node and int64 representing the auto variable and offset within it 4101 // where v should be spilled. 4102 func AutoVar(v *ssa.Value) (*Node, int64) { 4103 loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot) 4104 if v.Type.Size() > loc.Type.Size() { 4105 v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type) 4106 } 4107 return loc.N.(*Node), loc.Off 4108 } 4109 4110 // fieldIdx finds the index of the field referred to by the ODOT node n. 4111 func fieldIdx(n *Node) int { 4112 t := n.Left.Type 4113 f := n.Sym 4114 if !t.IsStruct() { 4115 panic("ODOT's LHS is not a struct") 4116 } 4117 4118 var i int 4119 for _, t1 := range t.Fields().Slice() { 4120 if t1.Sym != f { 4121 i++ 4122 continue 4123 } 4124 if t1.Offset != n.Xoffset { 4125 panic("field offset doesn't match") 4126 } 4127 return i 4128 } 4129 panic(fmt.Sprintf("can't find field in expr %s\n", n)) 4130 4131 // TODO: keep the result of this function somewhere in the ODOT Node 4132 // so we don't have to recompute it each time we need it. 4133 } 4134 4135 // ssaExport exports a bunch of compiler services for the ssa backend. 4136 type ssaExport struct { 4137 log bool 4138 unimplemented bool 4139 mustImplement bool 4140 } 4141 4142 func (s *ssaExport) TypeBool() ssa.Type { return Types[TBOOL] } 4143 func (s *ssaExport) TypeInt8() ssa.Type { return Types[TINT8] } 4144 func (s *ssaExport) TypeInt16() ssa.Type { return Types[TINT16] } 4145 func (s *ssaExport) TypeInt32() ssa.Type { return Types[TINT32] } 4146 func (s *ssaExport) TypeInt64() ssa.Type { return Types[TINT64] } 4147 func (s *ssaExport) TypeUInt8() ssa.Type { return Types[TUINT8] } 4148 func (s *ssaExport) TypeUInt16() ssa.Type { return Types[TUINT16] } 4149 func (s *ssaExport) TypeUInt32() ssa.Type { return Types[TUINT32] } 4150 func (s *ssaExport) TypeUInt64() ssa.Type { return Types[TUINT64] } 4151 func (s *ssaExport) TypeFloat32() ssa.Type { return Types[TFLOAT32] } 4152 func (s *ssaExport) TypeFloat64() ssa.Type { return Types[TFLOAT64] } 4153 func (s *ssaExport) TypeInt() ssa.Type { return Types[TINT] } 4154 func (s *ssaExport) TypeUintptr() ssa.Type { return Types[TUINTPTR] } 4155 func (s *ssaExport) TypeString() ssa.Type { return Types[TSTRING] } 4156 func (s *ssaExport) TypeBytePtr() ssa.Type { return Ptrto(Types[TUINT8]) } 4157 4158 // StringData returns a symbol (a *Sym wrapped in an interface) which 4159 // is the data component of a global string constant containing s. 4160 func (*ssaExport) StringData(s string) interface{} { 4161 // TODO: is idealstring correct? It might not matter... 4162 _, data := stringsym(s) 4163 return &ssa.ExternSymbol{Typ: idealstring, Sym: data} 4164 } 4165 4166 func (e *ssaExport) Auto(t ssa.Type) ssa.GCNode { 4167 n := temp(t.(*Type)) // Note: adds new auto to Curfn.Func.Dcl list 4168 e.mustImplement = true // This modifies the input to SSA, so we want to make sure we succeed from here! 4169 return n 4170 } 4171 4172 func (e *ssaExport) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 4173 n := name.N.(*Node) 4174 ptrType := Ptrto(Types[TUINT8]) 4175 lenType := Types[TINT] 4176 if n.Class == PAUTO && !n.Addrtaken { 4177 // Split this string up into two separate variables. 4178 p := e.namedAuto(n.Sym.Name+".ptr", ptrType) 4179 l := e.namedAuto(n.Sym.Name+".len", lenType) 4180 return ssa.LocalSlot{p, ptrType, 0}, ssa.LocalSlot{l, lenType, 0} 4181 } 4182 // Return the two parts of the larger variable. 4183 return ssa.LocalSlot{n, ptrType, name.Off}, ssa.LocalSlot{n, lenType, name.Off + int64(Widthptr)} 4184 } 4185 4186 func (e *ssaExport) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 4187 n := name.N.(*Node) 4188 t := Ptrto(Types[TUINT8]) 4189 if n.Class == PAUTO && !n.Addrtaken { 4190 // Split this interface up into two separate variables. 4191 f := ".itab" 4192 if n.Type.IsEmptyInterface() { 4193 f = ".type" 4194 } 4195 c := e.namedAuto(n.Sym.Name+f, t) 4196 d := e.namedAuto(n.Sym.Name+".data", t) 4197 return ssa.LocalSlot{c, t, 0}, ssa.LocalSlot{d, t, 0} 4198 } 4199 // Return the two parts of the larger variable. 4200 return ssa.LocalSlot{n, t, name.Off}, ssa.LocalSlot{n, t, name.Off + int64(Widthptr)} 4201 } 4202 4203 func (e *ssaExport) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) { 4204 n := name.N.(*Node) 4205 ptrType := Ptrto(n.Type.Type) 4206 lenType := Types[TINT] 4207 if n.Class == PAUTO && !n.Addrtaken { 4208 // Split this slice up into three separate variables. 4209 p := e.namedAuto(n.Sym.Name+".ptr", ptrType) 4210 l := e.namedAuto(n.Sym.Name+".len", lenType) 4211 c := e.namedAuto(n.Sym.Name+".cap", lenType) 4212 return ssa.LocalSlot{p, ptrType, 0}, ssa.LocalSlot{l, lenType, 0}, ssa.LocalSlot{c, lenType, 0} 4213 } 4214 // Return the three parts of the larger variable. 4215 return ssa.LocalSlot{n, ptrType, name.Off}, 4216 ssa.LocalSlot{n, lenType, name.Off + int64(Widthptr)}, 4217 ssa.LocalSlot{n, lenType, name.Off + int64(2*Widthptr)} 4218 } 4219 4220 func (e *ssaExport) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 4221 n := name.N.(*Node) 4222 s := name.Type.Size() / 2 4223 var t *Type 4224 if s == 8 { 4225 t = Types[TFLOAT64] 4226 } else { 4227 t = Types[TFLOAT32] 4228 } 4229 if n.Class == PAUTO && !n.Addrtaken { 4230 // Split this complex up into two separate variables. 4231 c := e.namedAuto(n.Sym.Name+".real", t) 4232 d := e.namedAuto(n.Sym.Name+".imag", t) 4233 return ssa.LocalSlot{c, t, 0}, ssa.LocalSlot{d, t, 0} 4234 } 4235 // Return the two parts of the larger variable. 4236 return ssa.LocalSlot{n, t, name.Off}, ssa.LocalSlot{n, t, name.Off + s} 4237 } 4238 4239 // namedAuto returns a new AUTO variable with the given name and type. 4240 func (e *ssaExport) namedAuto(name string, typ ssa.Type) ssa.GCNode { 4241 t := typ.(*Type) 4242 s := Lookup(name) 4243 n := Nod(ONAME, nil, nil) 4244 s.Def = n 4245 s.Def.Used = true 4246 n.Sym = s 4247 n.Type = t 4248 n.Class = PAUTO 4249 n.Addable = true 4250 n.Ullman = 1 4251 n.Esc = EscNever 4252 n.Xoffset = 0 4253 n.Name.Curfn = Curfn 4254 Curfn.Func.Dcl = append(Curfn.Func.Dcl, n) 4255 4256 dowidth(t) 4257 e.mustImplement = true 4258 4259 return n 4260 } 4261 4262 func (e *ssaExport) CanSSA(t ssa.Type) bool { 4263 return canSSAType(t.(*Type)) 4264 } 4265 4266 func (e *ssaExport) Line(line int32) string { 4267 return linestr(line) 4268 } 4269 4270 // Log logs a message from the compiler. 4271 func (e *ssaExport) Logf(msg string, args ...interface{}) { 4272 // If e was marked as unimplemented, anything could happen. Ignore. 4273 if e.log && !e.unimplemented { 4274 fmt.Printf(msg, args...) 4275 } 4276 } 4277 4278 func (e *ssaExport) Log() bool { 4279 return e.log 4280 } 4281 4282 // Fatal reports a compiler error and exits. 4283 func (e *ssaExport) Fatalf(line int32, msg string, args ...interface{}) { 4284 // If e was marked as unimplemented, anything could happen. Ignore. 4285 if !e.unimplemented { 4286 lineno = line 4287 Fatalf(msg, args...) 4288 } 4289 } 4290 4291 // Unimplemented reports that the function cannot be compiled. 4292 // It will be removed once SSA work is complete. 4293 func (e *ssaExport) Unimplementedf(line int32, msg string, args ...interface{}) { 4294 if e.mustImplement { 4295 lineno = line 4296 Fatalf(msg, args...) 4297 } 4298 const alwaysLog = false // enable to calculate top unimplemented features 4299 if !e.unimplemented && (e.log || alwaysLog) { 4300 // first implementation failure, print explanation 4301 fmt.Printf("SSA unimplemented: "+msg+"\n", args...) 4302 } 4303 e.unimplemented = true 4304 } 4305 4306 // Warnl reports a "warning", which is usually flag-triggered 4307 // logging output for the benefit of tests. 4308 func (e *ssaExport) Warnl(line int32, fmt_ string, args ...interface{}) { 4309 Warnl(line, fmt_, args...) 4310 } 4311 4312 func (e *ssaExport) Debug_checknil() bool { 4313 return Debug_checknil != 0 4314 } 4315 4316 func (n *Node) Typ() ssa.Type { 4317 return n.Type 4318 }