github.com/miolini/go@v0.0.0-20160405192216-fca68c8cb408/src/compress/flate/deflate.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package flate
     6  
     7  import (
     8  	"fmt"
     9  	"io"
    10  	"math"
    11  )
    12  
    13  const (
    14  	NoCompression      = 0
    15  	BestSpeed          = 1
    16  	BestCompression    = 9
    17  	DefaultCompression = -1
    18  	HuffmanOnly        = -2 // Disables match search and only does Huffman entropy reduction.
    19  	logWindowSize      = 15
    20  	windowSize         = 1 << logWindowSize
    21  	windowMask         = windowSize - 1
    22  	logMaxOffsetSize   = 15  // Standard DEFLATE
    23  	minMatchLength     = 4   // The smallest match that the compressor looks for
    24  	maxMatchLength     = 258 // The longest match for the compressor
    25  	minOffsetSize      = 1   // The shortest offset that makes any sense
    26  
    27  	// The maximum number of tokens we put into a single flat block, just to
    28  	// stop things from getting too large.
    29  	maxFlateBlockTokens = 1 << 14
    30  	maxStoreBlockSize   = 65535
    31  	hashBits            = 17 // After 17 performance degrades
    32  	hashSize            = 1 << hashBits
    33  	hashMask            = (1 << hashBits) - 1
    34  	maxHashOffset       = 1 << 24
    35  
    36  	skipNever = math.MaxInt32
    37  )
    38  
    39  type compressionLevel struct {
    40  	level, good, lazy, nice, chain, fastSkipHashing int
    41  }
    42  
    43  var levels = []compressionLevel{
    44  	{}, // 0
    45  	// For levels 1-3 we don't bother trying with lazy matches
    46  	{1, 4, 0, 8, 4, 4},
    47  	{2, 4, 0, 16, 8, 5},
    48  	{3, 4, 0, 32, 32, 6},
    49  	// Levels 4-9 use increasingly more lazy matching
    50  	// and increasingly stringent conditions for "good enough".
    51  	{4, 4, 4, 16, 16, skipNever},
    52  	{5, 8, 16, 32, 32, skipNever},
    53  	{6, 8, 16, 128, 128, skipNever},
    54  	{7, 8, 32, 128, 256, skipNever},
    55  	{8, 32, 128, 258, 1024, skipNever},
    56  	{9, 32, 258, 258, 4096, skipNever},
    57  }
    58  
    59  type compressor struct {
    60  	compressionLevel
    61  
    62  	w          *huffmanBitWriter
    63  	bulkHasher func([]byte, []uint32)
    64  
    65  	// compression algorithm
    66  	fill func(*compressor, []byte) int // copy data to window
    67  	step func(*compressor)             // process window
    68  	sync bool                          // requesting flush
    69  
    70  	// Input hash chains
    71  	// hashHead[hashValue] contains the largest inputIndex with the specified hash value
    72  	// If hashHead[hashValue] is within the current window, then
    73  	// hashPrev[hashHead[hashValue] & windowMask] contains the previous index
    74  	// with the same hash value.
    75  	chainHead  int
    76  	hashHead   []uint32
    77  	hashPrev   []uint32
    78  	hashOffset int
    79  
    80  	// input window: unprocessed data is window[index:windowEnd]
    81  	index         int
    82  	window        []byte
    83  	windowEnd     int
    84  	blockStart    int  // window index where current tokens start
    85  	byteAvailable bool // if true, still need to process window[index-1].
    86  
    87  	// queued output tokens
    88  	tokens []token
    89  
    90  	// deflate state
    91  	length         int
    92  	offset         int
    93  	hash           uint32
    94  	maxInsertIndex int
    95  	err            error
    96  
    97  	// hashMatch must be able to contain hashes for the maximum match length.
    98  	hashMatch [maxMatchLength - 1]uint32
    99  }
   100  
   101  func (d *compressor) fillDeflate(b []byte) int {
   102  	if d.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
   103  		// shift the window by windowSize
   104  		copy(d.window, d.window[windowSize:2*windowSize])
   105  		d.index -= windowSize
   106  		d.windowEnd -= windowSize
   107  		if d.blockStart >= windowSize {
   108  			d.blockStart -= windowSize
   109  		} else {
   110  			d.blockStart = math.MaxInt32
   111  		}
   112  		d.hashOffset += windowSize
   113  		if d.hashOffset > maxHashOffset {
   114  			delta := d.hashOffset - 1
   115  			d.hashOffset -= delta
   116  			d.chainHead -= delta
   117  			for i, v := range d.hashPrev {
   118  				if int(v) > delta {
   119  					d.hashPrev[i] = uint32(int(v) - delta)
   120  				} else {
   121  					d.hashPrev[i] = 0
   122  				}
   123  			}
   124  			for i, v := range d.hashHead {
   125  				if int(v) > delta {
   126  					d.hashHead[i] = uint32(int(v) - delta)
   127  				} else {
   128  					d.hashHead[i] = 0
   129  				}
   130  			}
   131  		}
   132  	}
   133  	n := copy(d.window[d.windowEnd:], b)
   134  	d.windowEnd += n
   135  	return n
   136  }
   137  
   138  func (d *compressor) writeBlock(tokens []token, index int) error {
   139  	if index > 0 {
   140  		var window []byte
   141  		if d.blockStart <= index {
   142  			window = d.window[d.blockStart:index]
   143  		}
   144  		d.blockStart = index
   145  		d.w.writeBlock(tokens, false, window)
   146  		return d.w.err
   147  	}
   148  	return nil
   149  }
   150  
   151  // fillWindow will fill the current window with the supplied
   152  // dictionary and calculate all hashes.
   153  // This is much faster than doing a full encode.
   154  // Should only be used after a reset.
   155  func (d *compressor) fillWindow(b []byte) {
   156  	// Do not fill window if we are in store-only mode.
   157  	if d.compressionLevel.level == 0 {
   158  		return
   159  	}
   160  	if d.index != 0 || d.windowEnd != 0 {
   161  		panic("internal error: fillWindow called with stale data")
   162  	}
   163  
   164  	// If we are given too much, cut it.
   165  	if len(b) > windowSize {
   166  		b = b[len(b)-windowSize:]
   167  	}
   168  	// Add all to window.
   169  	n := copy(d.window, b)
   170  
   171  	// Calculate 256 hashes at the time (more L1 cache hits)
   172  	loops := (n + 256 - minMatchLength) / 256
   173  	for j := 0; j < loops; j++ {
   174  		index := j * 256
   175  		end := index + 256 + minMatchLength - 1
   176  		if end > n {
   177  			end = n
   178  		}
   179  		toCheck := d.window[index:end]
   180  		dstSize := len(toCheck) - minMatchLength + 1
   181  
   182  		if dstSize <= 0 {
   183  			continue
   184  		}
   185  
   186  		dst := d.hashMatch[:dstSize]
   187  		d.bulkHasher(toCheck, dst)
   188  		var newH uint32
   189  		for i, val := range dst {
   190  			di := i + index
   191  			newH = val & hashMask
   192  			// Get previous value with the same hash.
   193  			// Our chain should point to the previous value.
   194  			d.hashPrev[di&windowMask] = d.hashHead[newH]
   195  			// Set the head of the hash chain to us.
   196  			d.hashHead[newH] = uint32(di + d.hashOffset)
   197  		}
   198  		d.hash = newH
   199  	}
   200  	// Update window information.
   201  	d.windowEnd = n
   202  	d.index = n
   203  }
   204  
   205  // Try to find a match starting at index whose length is greater than prevSize.
   206  // We only look at chainCount possibilities before giving up.
   207  func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {
   208  	minMatchLook := maxMatchLength
   209  	if lookahead < minMatchLook {
   210  		minMatchLook = lookahead
   211  	}
   212  
   213  	win := d.window[0 : pos+minMatchLook]
   214  
   215  	// We quit when we get a match that's at least nice long
   216  	nice := len(win) - pos
   217  	if d.nice < nice {
   218  		nice = d.nice
   219  	}
   220  
   221  	// If we've got a match that's good enough, only look in 1/4 the chain.
   222  	tries := d.chain
   223  	length = prevLength
   224  	if length >= d.good {
   225  		tries >>= 2
   226  	}
   227  
   228  	wEnd := win[pos+length]
   229  	wPos := win[pos:]
   230  	minIndex := pos - windowSize
   231  
   232  	for i := prevHead; tries > 0; tries-- {
   233  		if wEnd == win[i+length] {
   234  			n := matchLen(win[i:], wPos, minMatchLook)
   235  
   236  			if n > length && (n > minMatchLength || pos-i <= 4096) {
   237  				length = n
   238  				offset = pos - i
   239  				ok = true
   240  				if n >= nice {
   241  					// The match is good enough that we don't try to find a better one.
   242  					break
   243  				}
   244  				wEnd = win[pos+n]
   245  			}
   246  		}
   247  		if i == minIndex {
   248  			// hashPrev[i & windowMask] has already been overwritten, so stop now.
   249  			break
   250  		}
   251  		i = int(d.hashPrev[i&windowMask]) - d.hashOffset
   252  		if i < minIndex || i < 0 {
   253  			break
   254  		}
   255  	}
   256  	return
   257  }
   258  
   259  func (d *compressor) writeStoredBlock(buf []byte) error {
   260  	if d.w.writeStoredHeader(len(buf), false); d.w.err != nil {
   261  		return d.w.err
   262  	}
   263  	d.w.writeBytes(buf)
   264  	return d.w.err
   265  }
   266  
   267  const hashmul = 0x1e35a7bd
   268  
   269  // hash4 returns a hash representation of the first 4 bytes
   270  // of the supplied slice.
   271  // The caller must ensure that len(b) >= 4.
   272  func hash4(b []byte) uint32 {
   273  	return ((uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24) * hashmul) >> (32 - hashBits)
   274  }
   275  
   276  // bulkHash4 will compute hashes using the same
   277  // algorithm as hash4
   278  func bulkHash4(b []byte, dst []uint32) {
   279  	if len(b) < minMatchLength {
   280  		return
   281  	}
   282  	hb := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
   283  	dst[0] = (hb * hashmul) >> (32 - hashBits)
   284  	end := len(b) - minMatchLength + 1
   285  	for i := 1; i < end; i++ {
   286  		hb = (hb << 8) | uint32(b[i+3])
   287  		dst[i] = (hb * hashmul) >> (32 - hashBits)
   288  	}
   289  }
   290  
   291  // matchLen returns the number of matching bytes in a and b
   292  // up to length 'max'. Both slices must be at least 'max'
   293  // bytes in size.
   294  func matchLen(a, b []byte, max int) int {
   295  	a = a[:max]
   296  	for i, av := range a {
   297  		if b[i] != av {
   298  			return i
   299  		}
   300  	}
   301  	return max
   302  }
   303  
   304  func (d *compressor) initDeflate() {
   305  	d.hashHead = make([]uint32, hashSize)
   306  	d.hashPrev = make([]uint32, windowSize)
   307  	d.window = make([]byte, 2*windowSize)
   308  	d.hashOffset = 1
   309  	d.tokens = make([]token, 0, maxFlateBlockTokens+1)
   310  	d.length = minMatchLength - 1
   311  	d.offset = 0
   312  	d.byteAvailable = false
   313  	d.index = 0
   314  	d.hash = 0
   315  	d.chainHead = -1
   316  	d.bulkHasher = bulkHash4
   317  }
   318  
   319  func (d *compressor) deflate() {
   320  	if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
   321  		return
   322  	}
   323  
   324  	d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
   325  	if d.index < d.maxInsertIndex {
   326  		d.hash = hash4(d.window[d.index : d.index+minMatchLength])
   327  	}
   328  
   329  Loop:
   330  	for {
   331  		if d.index > d.windowEnd {
   332  			panic("index > windowEnd")
   333  		}
   334  		lookahead := d.windowEnd - d.index
   335  		if lookahead < minMatchLength+maxMatchLength {
   336  			if !d.sync {
   337  				break Loop
   338  			}
   339  			if d.index > d.windowEnd {
   340  				panic("index > windowEnd")
   341  			}
   342  			if lookahead == 0 {
   343  				// Flush current output block if any.
   344  				if d.byteAvailable {
   345  					// There is still one pending token that needs to be flushed
   346  					d.tokens = append(d.tokens, literalToken(uint32(d.window[d.index-1])))
   347  					d.byteAvailable = false
   348  				}
   349  				if len(d.tokens) > 0 {
   350  					if d.err = d.writeBlock(d.tokens, d.index); d.err != nil {
   351  						return
   352  					}
   353  					d.tokens = d.tokens[:0]
   354  				}
   355  				break Loop
   356  			}
   357  		}
   358  		if d.index < d.maxInsertIndex {
   359  			// Update the hash
   360  			d.hash = hash4(d.window[d.index : d.index+minMatchLength])
   361  			d.chainHead = int(d.hashHead[d.hash])
   362  			d.hashPrev[d.index&windowMask] = uint32(d.chainHead)
   363  			d.hashHead[d.hash] = uint32(d.index + d.hashOffset)
   364  		}
   365  		prevLength := d.length
   366  		prevOffset := d.offset
   367  		d.length = minMatchLength - 1
   368  		d.offset = 0
   369  		minIndex := d.index - windowSize
   370  		if minIndex < 0 {
   371  			minIndex = 0
   372  		}
   373  
   374  		if d.chainHead-d.hashOffset >= minIndex &&
   375  			(d.fastSkipHashing != skipNever && lookahead > minMatchLength-1 ||
   376  				d.fastSkipHashing == skipNever && lookahead > prevLength && prevLength < d.lazy) {
   377  			if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
   378  				d.length = newLength
   379  				d.offset = newOffset
   380  			}
   381  		}
   382  		if d.fastSkipHashing != skipNever && d.length >= minMatchLength ||
   383  			d.fastSkipHashing == skipNever && prevLength >= minMatchLength && d.length <= prevLength {
   384  			// There was a match at the previous step, and the current match is
   385  			// not better. Output the previous match.
   386  			if d.fastSkipHashing != skipNever {
   387  				d.tokens = append(d.tokens, matchToken(uint32(d.length-3), uint32(d.offset-minOffsetSize)))
   388  			} else {
   389  				d.tokens = append(d.tokens, matchToken(uint32(prevLength-3), uint32(prevOffset-minOffsetSize)))
   390  			}
   391  			// Insert in the hash table all strings up to the end of the match.
   392  			// index and index-1 are already inserted. If there is not enough
   393  			// lookahead, the last two strings are not inserted into the hash
   394  			// table.
   395  			if d.length <= d.fastSkipHashing {
   396  				var newIndex int
   397  				if d.fastSkipHashing != skipNever {
   398  					newIndex = d.index + d.length
   399  				} else {
   400  					newIndex = d.index + prevLength - 1
   401  				}
   402  				for d.index++; d.index < newIndex; d.index++ {
   403  					if d.index < d.maxInsertIndex {
   404  						d.hash = hash4(d.window[d.index : d.index+minMatchLength])
   405  						// Get previous value with the same hash.
   406  						// Our chain should point to the previous value.
   407  						d.hashPrev[d.index&windowMask] = d.hashHead[d.hash]
   408  						// Set the head of the hash chain to us.
   409  						d.hashHead[d.hash] = uint32(d.index + d.hashOffset)
   410  					}
   411  				}
   412  				if d.fastSkipHashing == skipNever {
   413  					d.byteAvailable = false
   414  					d.length = minMatchLength - 1
   415  				}
   416  			} else {
   417  				// For matches this long, we don't bother inserting each individual
   418  				// item into the table.
   419  				d.index += d.length
   420  				if d.index < d.maxInsertIndex {
   421  					d.hash = hash4(d.window[d.index : d.index+minMatchLength])
   422  				}
   423  			}
   424  			if len(d.tokens) == maxFlateBlockTokens {
   425  				// The block includes the current character
   426  				if d.err = d.writeBlock(d.tokens, d.index); d.err != nil {
   427  					return
   428  				}
   429  				d.tokens = d.tokens[:0]
   430  			}
   431  		} else {
   432  			if d.fastSkipHashing != skipNever || d.byteAvailable {
   433  				i := d.index - 1
   434  				if d.fastSkipHashing != skipNever {
   435  					i = d.index
   436  				}
   437  				d.tokens = append(d.tokens, literalToken(uint32(d.window[i])))
   438  				if len(d.tokens) == maxFlateBlockTokens {
   439  					if d.err = d.writeBlock(d.tokens, i+1); d.err != nil {
   440  						return
   441  					}
   442  					d.tokens = d.tokens[:0]
   443  				}
   444  			}
   445  			d.index++
   446  			if d.fastSkipHashing == skipNever {
   447  				d.byteAvailable = true
   448  			}
   449  		}
   450  	}
   451  }
   452  
   453  func (d *compressor) fillStore(b []byte) int {
   454  	n := copy(d.window[d.windowEnd:], b)
   455  	d.windowEnd += n
   456  	return n
   457  }
   458  
   459  func (d *compressor) store() {
   460  	if d.windowEnd > 0 {
   461  		d.err = d.writeStoredBlock(d.window[:d.windowEnd])
   462  	}
   463  	d.windowEnd = 0
   464  }
   465  
   466  // storeHuff compresses and stores the currently added data
   467  // when the d.window is full or we are at the end of the stream.
   468  // Any error that occurred will be in d.err
   469  func (d *compressor) storeHuff() {
   470  	if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 {
   471  		return
   472  	}
   473  	d.w.writeBlockHuff(false, d.window[:d.windowEnd])
   474  	d.err = d.w.err
   475  	d.windowEnd = 0
   476  }
   477  
   478  func (d *compressor) write(b []byte) (n int, err error) {
   479  	if d.err != nil {
   480  		return 0, d.err
   481  	}
   482  	n = len(b)
   483  	for len(b) > 0 {
   484  		d.step(d)
   485  		b = b[d.fill(d, b):]
   486  		if d.err != nil {
   487  			return 0, d.err
   488  		}
   489  	}
   490  	return n, nil
   491  }
   492  
   493  func (d *compressor) syncFlush() error {
   494  	if d.err != nil {
   495  		return d.err
   496  	}
   497  	d.sync = true
   498  	d.step(d)
   499  	if d.err == nil {
   500  		d.w.writeStoredHeader(0, false)
   501  		d.w.flush()
   502  		d.err = d.w.err
   503  	}
   504  	d.sync = false
   505  	return d.err
   506  }
   507  
   508  func (d *compressor) init(w io.Writer, level int) (err error) {
   509  	d.w = newHuffmanBitWriter(w)
   510  
   511  	switch {
   512  	case level == NoCompression:
   513  		d.window = make([]byte, maxStoreBlockSize)
   514  		d.fill = (*compressor).fillStore
   515  		d.step = (*compressor).store
   516  	case level == HuffmanOnly:
   517  		d.window = make([]byte, maxStoreBlockSize)
   518  		d.fill = (*compressor).fillStore
   519  		d.step = (*compressor).storeHuff
   520  	case level == DefaultCompression:
   521  		level = 6
   522  		fallthrough
   523  	case 1 <= level && level <= 9:
   524  		d.compressionLevel = levels[level]
   525  		d.initDeflate()
   526  		d.fill = (*compressor).fillDeflate
   527  		d.step = (*compressor).deflate
   528  	default:
   529  		return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level)
   530  	}
   531  	return nil
   532  }
   533  
   534  // hzeroes is used for zeroing the hash slice.
   535  var hzeroes [256]uint32
   536  
   537  func (d *compressor) reset(w io.Writer) {
   538  	d.w.reset(w)
   539  	d.sync = false
   540  	d.err = nil
   541  	switch d.compressionLevel.level {
   542  	case NoCompression:
   543  		d.windowEnd = 0
   544  	default:
   545  		d.chainHead = -1
   546  		for s := d.hashHead; len(s) > 0; {
   547  			n := copy(s, hzeroes[:])
   548  			s = s[n:]
   549  		}
   550  		for s := d.hashPrev; len(s) > 0; s = s[len(hzeroes):] {
   551  			copy(s, hzeroes[:])
   552  		}
   553  		d.hashOffset = 1
   554  
   555  		d.index, d.windowEnd = 0, 0
   556  		d.blockStart, d.byteAvailable = 0, false
   557  		d.tokens = d.tokens[:0]
   558  		d.length = minMatchLength - 1
   559  		d.offset = 0
   560  		d.hash = 0
   561  		d.maxInsertIndex = 0
   562  	}
   563  }
   564  
   565  func (d *compressor) close() error {
   566  	if d.err != nil {
   567  		return d.err
   568  	}
   569  	d.sync = true
   570  	d.step(d)
   571  	if d.err != nil {
   572  		return d.err
   573  	}
   574  	if d.w.writeStoredHeader(0, true); d.w.err != nil {
   575  		return d.w.err
   576  	}
   577  	d.w.flush()
   578  	return d.w.err
   579  }
   580  
   581  // NewWriter returns a new Writer compressing data at the given level.
   582  // Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression);
   583  // higher levels typically run slower but compress more. Level 0
   584  // (NoCompression) does not attempt any compression; it only adds the
   585  // necessary DEFLATE framing.
   586  // Level -1 (DefaultCompression) uses the default compression level.
   587  // Level -2 (HuffmanOnly) will use Huffman compression only, giving
   588  // a very fast compression for all types of input, but sacrificing considerable
   589  // compression efficiency.
   590  //
   591  //
   592  // If level is in the range [-2, 9] then the error returned will be nil.
   593  // Otherwise the error returned will be non-nil.
   594  func NewWriter(w io.Writer, level int) (*Writer, error) {
   595  	var dw Writer
   596  	if err := dw.d.init(w, level); err != nil {
   597  		return nil, err
   598  	}
   599  	return &dw, nil
   600  }
   601  
   602  // NewWriterDict is like NewWriter but initializes the new
   603  // Writer with a preset dictionary. The returned Writer behaves
   604  // as if the dictionary had been written to it without producing
   605  // any compressed output. The compressed data written to w
   606  // can only be decompressed by a Reader initialized with the
   607  // same dictionary.
   608  func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
   609  	dw := &dictWriter{w}
   610  	zw, err := NewWriter(dw, level)
   611  	if err != nil {
   612  		return nil, err
   613  	}
   614  	zw.d.fillWindow(dict)
   615  	zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method.
   616  	return zw, err
   617  }
   618  
   619  type dictWriter struct {
   620  	w io.Writer
   621  }
   622  
   623  func (w *dictWriter) Write(b []byte) (n int, err error) {
   624  	return w.w.Write(b)
   625  }
   626  
   627  // A Writer takes data written to it and writes the compressed
   628  // form of that data to an underlying writer (see NewWriter).
   629  type Writer struct {
   630  	d    compressor
   631  	dict []byte
   632  }
   633  
   634  // Write writes data to w, which will eventually write the
   635  // compressed form of data to its underlying writer.
   636  func (w *Writer) Write(data []byte) (n int, err error) {
   637  	return w.d.write(data)
   638  }
   639  
   640  // Flush flushes any pending compressed data to the underlying writer.
   641  // It is useful mainly in compressed network protocols, to ensure that
   642  // a remote reader has enough data to reconstruct a packet.
   643  // Flush does not return until the data has been written.
   644  // If the underlying writer returns an error, Flush returns that error.
   645  //
   646  // In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
   647  func (w *Writer) Flush() error {
   648  	// For more about flushing:
   649  	// http://www.bolet.org/~pornin/deflate-flush.html
   650  	return w.d.syncFlush()
   651  }
   652  
   653  // Close flushes and closes the writer.
   654  func (w *Writer) Close() error {
   655  	return w.d.close()
   656  }
   657  
   658  // Reset discards the writer's state and makes it equivalent to
   659  // the result of NewWriter or NewWriterDict called with dst
   660  // and w's level and dictionary.
   661  func (w *Writer) Reset(dst io.Writer) {
   662  	if dw, ok := w.d.w.w.(*dictWriter); ok {
   663  		// w was created with NewWriterDict
   664  		dw.w = dst
   665  		w.d.reset(dw)
   666  		w.d.fillWindow(w.dict)
   667  	} else {
   668  		// w was created with NewWriter
   669  		w.d.reset(dst)
   670  	}
   671  }