github.com/miolini/go@v0.0.0-20160405192216-fca68c8cb408/src/crypto/ecdsa/ecdsa.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as 6 // defined in FIPS 186-3. 7 // 8 // This implementation derives the nonce from an AES-CTR CSPRNG keyed by 9 // ChopMD(256, SHA2-512(priv.D || entropy || hash)). The CSPRNG key is IRO by 10 // a result of Coron; the AES-CTR stream is IRO under standard assumptions. 11 package ecdsa 12 13 // References: 14 // [NSA]: Suite B implementer's guide to FIPS 186-3, 15 // http://www.nsa.gov/ia/_files/ecdsa.pdf 16 // [SECG]: SECG, SEC1 17 // http://www.secg.org/sec1-v2.pdf 18 19 import ( 20 "crypto" 21 "crypto/aes" 22 "crypto/cipher" 23 "crypto/elliptic" 24 "crypto/sha512" 25 "encoding/asn1" 26 "io" 27 "math/big" 28 ) 29 30 // A invertible implements fast inverse mod Curve.Params().N 31 type invertible interface { 32 // Inverse returns the inverse of k in GF(P) 33 Inverse(k *big.Int) *big.Int 34 } 35 36 // combinedMult implements fast multiplication S1*g + S2*p (g - generator, p - arbitrary point) 37 type combinedMult interface { 38 CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) 39 } 40 41 const ( 42 aesIV = "IV for ECDSA CTR" 43 ) 44 45 // PublicKey represents an ECDSA public key. 46 type PublicKey struct { 47 elliptic.Curve 48 X, Y *big.Int 49 } 50 51 // PrivateKey represents a ECDSA private key. 52 type PrivateKey struct { 53 PublicKey 54 D *big.Int 55 } 56 57 type ecdsaSignature struct { 58 R, S *big.Int 59 } 60 61 // Public returns the public key corresponding to priv. 62 func (priv *PrivateKey) Public() crypto.PublicKey { 63 return &priv.PublicKey 64 } 65 66 // Sign signs msg with priv, reading randomness from rand. This method is 67 // intended to support keys where the private part is kept in, for example, a 68 // hardware module. Common uses should use the Sign function in this package 69 // directly. 70 func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) { 71 r, s, err := Sign(rand, priv, msg) 72 if err != nil { 73 return nil, err 74 } 75 76 return asn1.Marshal(ecdsaSignature{r, s}) 77 } 78 79 var one = new(big.Int).SetInt64(1) 80 81 // randFieldElement returns a random element of the field underlying the given 82 // curve using the procedure given in [NSA] A.2.1. 83 func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { 84 params := c.Params() 85 b := make([]byte, params.BitSize/8+8) 86 _, err = io.ReadFull(rand, b) 87 if err != nil { 88 return 89 } 90 91 k = new(big.Int).SetBytes(b) 92 n := new(big.Int).Sub(params.N, one) 93 k.Mod(k, n) 94 k.Add(k, one) 95 return 96 } 97 98 // GenerateKey generates a public and private key pair. 99 func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) { 100 k, err := randFieldElement(c, rand) 101 if err != nil { 102 return nil, err 103 } 104 105 priv := new(PrivateKey) 106 priv.PublicKey.Curve = c 107 priv.D = k 108 priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) 109 return priv, nil 110 } 111 112 // hashToInt converts a hash value to an integer. There is some disagreement 113 // about how this is done. [NSA] suggests that this is done in the obvious 114 // manner, but [SECG] truncates the hash to the bit-length of the curve order 115 // first. We follow [SECG] because that's what OpenSSL does. Additionally, 116 // OpenSSL right shifts excess bits from the number if the hash is too large 117 // and we mirror that too. 118 func hashToInt(hash []byte, c elliptic.Curve) *big.Int { 119 orderBits := c.Params().N.BitLen() 120 orderBytes := (orderBits + 7) / 8 121 if len(hash) > orderBytes { 122 hash = hash[:orderBytes] 123 } 124 125 ret := new(big.Int).SetBytes(hash) 126 excess := len(hash)*8 - orderBits 127 if excess > 0 { 128 ret.Rsh(ret, uint(excess)) 129 } 130 return ret 131 } 132 133 // fermatInverse calculates the inverse of k in GF(P) using Fermat's method. 134 // This has better constant-time properties than Euclid's method (implemented 135 // in math/big.Int.ModInverse) although math/big itself isn't strictly 136 // constant-time so it's not perfect. 137 func fermatInverse(k, N *big.Int) *big.Int { 138 two := big.NewInt(2) 139 nMinus2 := new(big.Int).Sub(N, two) 140 return new(big.Int).Exp(k, nMinus2, N) 141 } 142 143 // Sign signs an arbitrary length hash (which should be the result of hashing a 144 // larger message) using the private key, priv. It returns the signature as a 145 // pair of integers. The security of the private key depends on the entropy of 146 // rand. 147 func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { 148 // Get max(log2(q) / 2, 256) bits of entropy from rand. 149 entropylen := (priv.Curve.Params().BitSize + 7) / 16 150 if entropylen > 32 { 151 entropylen = 32 152 } 153 entropy := make([]byte, entropylen) 154 _, err = io.ReadFull(rand, entropy) 155 if err != nil { 156 return 157 } 158 159 // Initialize an SHA-512 hash context; digest ... 160 md := sha512.New() 161 md.Write(priv.D.Bytes()) // the private key, 162 md.Write(entropy) // the entropy, 163 md.Write(hash) // and the input hash; 164 key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512), 165 // which is an indifferentiable MAC. 166 167 // Create an AES-CTR instance to use as a CSPRNG. 168 block, err := aes.NewCipher(key) 169 if err != nil { 170 return nil, nil, err 171 } 172 173 // Create a CSPRNG that xors a stream of zeros with 174 // the output of the AES-CTR instance. 175 csprng := cipher.StreamReader{ 176 R: zeroReader, 177 S: cipher.NewCTR(block, []byte(aesIV)), 178 } 179 180 // See [NSA] 3.4.1 181 c := priv.PublicKey.Curve 182 N := c.Params().N 183 184 var k, kInv *big.Int 185 for { 186 for { 187 k, err = randFieldElement(c, csprng) 188 if err != nil { 189 r = nil 190 return 191 } 192 193 if in, ok := priv.Curve.(invertible); ok { 194 kInv = in.Inverse(k) 195 } else { 196 kInv = fermatInverse(k, N) 197 } 198 199 r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) 200 r.Mod(r, N) 201 if r.Sign() != 0 { 202 break 203 } 204 } 205 206 e := hashToInt(hash, c) 207 s = new(big.Int).Mul(priv.D, r) 208 s.Add(s, e) 209 s.Mul(s, kInv) 210 s.Mod(s, N) 211 if s.Sign() != 0 { 212 break 213 } 214 } 215 216 return 217 } 218 219 // Verify verifies the signature in r, s of hash using the public key, pub. Its 220 // return value records whether the signature is valid. 221 func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { 222 // See [NSA] 3.4.2 223 c := pub.Curve 224 N := c.Params().N 225 226 if r.Sign() == 0 || s.Sign() == 0 { 227 return false 228 } 229 if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { 230 return false 231 } 232 e := hashToInt(hash, c) 233 234 var w *big.Int 235 if in, ok := c.(invertible); ok { 236 w = in.Inverse(s) 237 } else { 238 w = new(big.Int).ModInverse(s, N) 239 } 240 241 u1 := e.Mul(e, w) 242 u1.Mod(u1, N) 243 u2 := w.Mul(r, w) 244 u2.Mod(u2, N) 245 246 // Check if implements S1*g + S2*p 247 var x, y *big.Int 248 if opt, ok := c.(combinedMult); ok { 249 x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes()) 250 } else { 251 x1, y1 := c.ScalarBaseMult(u1.Bytes()) 252 x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) 253 x, y = c.Add(x1, y1, x2, y2) 254 } 255 256 if x.Sign() == 0 && y.Sign() == 0 { 257 return false 258 } 259 x.Mod(x, N) 260 return x.Cmp(r) == 0 261 } 262 263 type zr struct { 264 io.Reader 265 } 266 267 // Read replaces the contents of dst with zeros. 268 func (z *zr) Read(dst []byte) (n int, err error) { 269 for i := range dst { 270 dst[i] = 0 271 } 272 return len(dst), nil 273 } 274 275 var zeroReader = &zr{}