github.com/miolini/go@v0.0.0-20160405192216-fca68c8cb408/src/crypto/tls/conn.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // TLS low level connection and record layer
     6  
     7  package tls
     8  
     9  import (
    10  	"bytes"
    11  	"crypto/cipher"
    12  	"crypto/subtle"
    13  	"crypto/x509"
    14  	"errors"
    15  	"fmt"
    16  	"io"
    17  	"net"
    18  	"sync"
    19  	"sync/atomic"
    20  	"time"
    21  )
    22  
    23  // A Conn represents a secured connection.
    24  // It implements the net.Conn interface.
    25  type Conn struct {
    26  	// constant
    27  	conn     net.Conn
    28  	isClient bool
    29  
    30  	// constant after handshake; protected by handshakeMutex
    31  	handshakeMutex    sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
    32  	handshakeErr      error      // error resulting from handshake
    33  	vers              uint16     // TLS version
    34  	haveVers          bool       // version has been negotiated
    35  	config            *Config    // configuration passed to constructor
    36  	handshakeComplete bool
    37  	didResume         bool // whether this connection was a session resumption
    38  	cipherSuite       uint16
    39  	ocspResponse      []byte   // stapled OCSP response
    40  	scts              [][]byte // signed certificate timestamps from server
    41  	peerCertificates  []*x509.Certificate
    42  	// verifiedChains contains the certificate chains that we built, as
    43  	// opposed to the ones presented by the server.
    44  	verifiedChains [][]*x509.Certificate
    45  	// serverName contains the server name indicated by the client, if any.
    46  	serverName string
    47  	// firstFinished contains the first Finished hash sent during the
    48  	// handshake. This is the "tls-unique" channel binding value.
    49  	firstFinished [12]byte
    50  
    51  	clientProtocol         string
    52  	clientProtocolFallback bool
    53  
    54  	// input/output
    55  	in, out  halfConn     // in.Mutex < out.Mutex
    56  	rawInput *block       // raw input, right off the wire
    57  	input    *block       // application data waiting to be read
    58  	hand     bytes.Buffer // handshake data waiting to be read
    59  
    60  	// bytesSent counts the number of bytes of application data that have
    61  	// been sent.
    62  	bytesSent int64
    63  
    64  	// activeCall is an atomic int32; the low bit is whether Close has
    65  	// been called. the rest of the bits are the number of goroutines
    66  	// in Conn.Write.
    67  	activeCall int32
    68  
    69  	tmp [16]byte
    70  }
    71  
    72  // Access to net.Conn methods.
    73  // Cannot just embed net.Conn because that would
    74  // export the struct field too.
    75  
    76  // LocalAddr returns the local network address.
    77  func (c *Conn) LocalAddr() net.Addr {
    78  	return c.conn.LocalAddr()
    79  }
    80  
    81  // RemoteAddr returns the remote network address.
    82  func (c *Conn) RemoteAddr() net.Addr {
    83  	return c.conn.RemoteAddr()
    84  }
    85  
    86  // SetDeadline sets the read and write deadlines associated with the connection.
    87  // A zero value for t means Read and Write will not time out.
    88  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
    89  func (c *Conn) SetDeadline(t time.Time) error {
    90  	return c.conn.SetDeadline(t)
    91  }
    92  
    93  // SetReadDeadline sets the read deadline on the underlying connection.
    94  // A zero value for t means Read will not time out.
    95  func (c *Conn) SetReadDeadline(t time.Time) error {
    96  	return c.conn.SetReadDeadline(t)
    97  }
    98  
    99  // SetWriteDeadline sets the write deadline on the underlying connection.
   100  // A zero value for t means Write will not time out.
   101  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   102  func (c *Conn) SetWriteDeadline(t time.Time) error {
   103  	return c.conn.SetWriteDeadline(t)
   104  }
   105  
   106  // A halfConn represents one direction of the record layer
   107  // connection, either sending or receiving.
   108  type halfConn struct {
   109  	sync.Mutex
   110  
   111  	err            error       // first permanent error
   112  	version        uint16      // protocol version
   113  	cipher         interface{} // cipher algorithm
   114  	mac            macFunction
   115  	seq            [8]byte  // 64-bit sequence number
   116  	bfree          *block   // list of free blocks
   117  	additionalData [13]byte // to avoid allocs; interface method args escape
   118  
   119  	nextCipher interface{} // next encryption state
   120  	nextMac    macFunction // next MAC algorithm
   121  
   122  	// used to save allocating a new buffer for each MAC.
   123  	inDigestBuf, outDigestBuf []byte
   124  }
   125  
   126  func (hc *halfConn) setErrorLocked(err error) error {
   127  	hc.err = err
   128  	return err
   129  }
   130  
   131  func (hc *halfConn) error() error {
   132  	hc.Lock()
   133  	err := hc.err
   134  	hc.Unlock()
   135  	return err
   136  }
   137  
   138  // prepareCipherSpec sets the encryption and MAC states
   139  // that a subsequent changeCipherSpec will use.
   140  func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
   141  	hc.version = version
   142  	hc.nextCipher = cipher
   143  	hc.nextMac = mac
   144  }
   145  
   146  // changeCipherSpec changes the encryption and MAC states
   147  // to the ones previously passed to prepareCipherSpec.
   148  func (hc *halfConn) changeCipherSpec() error {
   149  	if hc.nextCipher == nil {
   150  		return alertInternalError
   151  	}
   152  	hc.cipher = hc.nextCipher
   153  	hc.mac = hc.nextMac
   154  	hc.nextCipher = nil
   155  	hc.nextMac = nil
   156  	for i := range hc.seq {
   157  		hc.seq[i] = 0
   158  	}
   159  	return nil
   160  }
   161  
   162  // incSeq increments the sequence number.
   163  func (hc *halfConn) incSeq() {
   164  	for i := 7; i >= 0; i-- {
   165  		hc.seq[i]++
   166  		if hc.seq[i] != 0 {
   167  			return
   168  		}
   169  	}
   170  
   171  	// Not allowed to let sequence number wrap.
   172  	// Instead, must renegotiate before it does.
   173  	// Not likely enough to bother.
   174  	panic("TLS: sequence number wraparound")
   175  }
   176  
   177  // removePadding returns an unpadded slice, in constant time, which is a prefix
   178  // of the input. It also returns a byte which is equal to 255 if the padding
   179  // was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
   180  func removePadding(payload []byte) ([]byte, byte) {
   181  	if len(payload) < 1 {
   182  		return payload, 0
   183  	}
   184  
   185  	paddingLen := payload[len(payload)-1]
   186  	t := uint(len(payload)-1) - uint(paddingLen)
   187  	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
   188  	good := byte(int32(^t) >> 31)
   189  
   190  	toCheck := 255 // the maximum possible padding length
   191  	// The length of the padded data is public, so we can use an if here
   192  	if toCheck+1 > len(payload) {
   193  		toCheck = len(payload) - 1
   194  	}
   195  
   196  	for i := 0; i < toCheck; i++ {
   197  		t := uint(paddingLen) - uint(i)
   198  		// if i <= paddingLen then the MSB of t is zero
   199  		mask := byte(int32(^t) >> 31)
   200  		b := payload[len(payload)-1-i]
   201  		good &^= mask&paddingLen ^ mask&b
   202  	}
   203  
   204  	// We AND together the bits of good and replicate the result across
   205  	// all the bits.
   206  	good &= good << 4
   207  	good &= good << 2
   208  	good &= good << 1
   209  	good = uint8(int8(good) >> 7)
   210  
   211  	toRemove := good&paddingLen + 1
   212  	return payload[:len(payload)-int(toRemove)], good
   213  }
   214  
   215  // removePaddingSSL30 is a replacement for removePadding in the case that the
   216  // protocol version is SSLv3. In this version, the contents of the padding
   217  // are random and cannot be checked.
   218  func removePaddingSSL30(payload []byte) ([]byte, byte) {
   219  	if len(payload) < 1 {
   220  		return payload, 0
   221  	}
   222  
   223  	paddingLen := int(payload[len(payload)-1]) + 1
   224  	if paddingLen > len(payload) {
   225  		return payload, 0
   226  	}
   227  
   228  	return payload[:len(payload)-paddingLen], 255
   229  }
   230  
   231  func roundUp(a, b int) int {
   232  	return a + (b-a%b)%b
   233  }
   234  
   235  // cbcMode is an interface for block ciphers using cipher block chaining.
   236  type cbcMode interface {
   237  	cipher.BlockMode
   238  	SetIV([]byte)
   239  }
   240  
   241  // decrypt checks and strips the mac and decrypts the data in b. Returns a
   242  // success boolean, the number of bytes to skip from the start of the record in
   243  // order to get the application payload, and an optional alert value.
   244  func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
   245  	// pull out payload
   246  	payload := b.data[recordHeaderLen:]
   247  
   248  	macSize := 0
   249  	if hc.mac != nil {
   250  		macSize = hc.mac.Size()
   251  	}
   252  
   253  	paddingGood := byte(255)
   254  	explicitIVLen := 0
   255  
   256  	// decrypt
   257  	if hc.cipher != nil {
   258  		switch c := hc.cipher.(type) {
   259  		case cipher.Stream:
   260  			c.XORKeyStream(payload, payload)
   261  		case cipher.AEAD:
   262  			explicitIVLen = 8
   263  			if len(payload) < explicitIVLen {
   264  				return false, 0, alertBadRecordMAC
   265  			}
   266  			nonce := payload[:8]
   267  			payload = payload[8:]
   268  
   269  			copy(hc.additionalData[:], hc.seq[:])
   270  			copy(hc.additionalData[8:], b.data[:3])
   271  			n := len(payload) - c.Overhead()
   272  			hc.additionalData[11] = byte(n >> 8)
   273  			hc.additionalData[12] = byte(n)
   274  			var err error
   275  			payload, err = c.Open(payload[:0], nonce, payload, hc.additionalData[:])
   276  			if err != nil {
   277  				return false, 0, alertBadRecordMAC
   278  			}
   279  			b.resize(recordHeaderLen + explicitIVLen + len(payload))
   280  		case cbcMode:
   281  			blockSize := c.BlockSize()
   282  			if hc.version >= VersionTLS11 {
   283  				explicitIVLen = blockSize
   284  			}
   285  
   286  			if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
   287  				return false, 0, alertBadRecordMAC
   288  			}
   289  
   290  			if explicitIVLen > 0 {
   291  				c.SetIV(payload[:explicitIVLen])
   292  				payload = payload[explicitIVLen:]
   293  			}
   294  			c.CryptBlocks(payload, payload)
   295  			if hc.version == VersionSSL30 {
   296  				payload, paddingGood = removePaddingSSL30(payload)
   297  			} else {
   298  				payload, paddingGood = removePadding(payload)
   299  			}
   300  			b.resize(recordHeaderLen + explicitIVLen + len(payload))
   301  
   302  			// note that we still have a timing side-channel in the
   303  			// MAC check, below. An attacker can align the record
   304  			// so that a correct padding will cause one less hash
   305  			// block to be calculated. Then they can iteratively
   306  			// decrypt a record by breaking each byte. See
   307  			// "Password Interception in a SSL/TLS Channel", Brice
   308  			// Canvel et al.
   309  			//
   310  			// However, our behavior matches OpenSSL, so we leak
   311  			// only as much as they do.
   312  		default:
   313  			panic("unknown cipher type")
   314  		}
   315  	}
   316  
   317  	// check, strip mac
   318  	if hc.mac != nil {
   319  		if len(payload) < macSize {
   320  			return false, 0, alertBadRecordMAC
   321  		}
   322  
   323  		// strip mac off payload, b.data
   324  		n := len(payload) - macSize
   325  		b.data[3] = byte(n >> 8)
   326  		b.data[4] = byte(n)
   327  		b.resize(recordHeaderLen + explicitIVLen + n)
   328  		remoteMAC := payload[n:]
   329  		localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n])
   330  
   331  		if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
   332  			return false, 0, alertBadRecordMAC
   333  		}
   334  		hc.inDigestBuf = localMAC
   335  	}
   336  	hc.incSeq()
   337  
   338  	return true, recordHeaderLen + explicitIVLen, 0
   339  }
   340  
   341  // padToBlockSize calculates the needed padding block, if any, for a payload.
   342  // On exit, prefix aliases payload and extends to the end of the last full
   343  // block of payload. finalBlock is a fresh slice which contains the contents of
   344  // any suffix of payload as well as the needed padding to make finalBlock a
   345  // full block.
   346  func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) {
   347  	overrun := len(payload) % blockSize
   348  	paddingLen := blockSize - overrun
   349  	prefix = payload[:len(payload)-overrun]
   350  	finalBlock = make([]byte, blockSize)
   351  	copy(finalBlock, payload[len(payload)-overrun:])
   352  	for i := overrun; i < blockSize; i++ {
   353  		finalBlock[i] = byte(paddingLen - 1)
   354  	}
   355  	return
   356  }
   357  
   358  // encrypt encrypts and macs the data in b.
   359  func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
   360  	// mac
   361  	if hc.mac != nil {
   362  		mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:])
   363  
   364  		n := len(b.data)
   365  		b.resize(n + len(mac))
   366  		copy(b.data[n:], mac)
   367  		hc.outDigestBuf = mac
   368  	}
   369  
   370  	payload := b.data[recordHeaderLen:]
   371  
   372  	// encrypt
   373  	if hc.cipher != nil {
   374  		switch c := hc.cipher.(type) {
   375  		case cipher.Stream:
   376  			c.XORKeyStream(payload, payload)
   377  		case cipher.AEAD:
   378  			payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
   379  			b.resize(len(b.data) + c.Overhead())
   380  			nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
   381  			payload := b.data[recordHeaderLen+explicitIVLen:]
   382  			payload = payload[:payloadLen]
   383  
   384  			copy(hc.additionalData[:], hc.seq[:])
   385  			copy(hc.additionalData[8:], b.data[:3])
   386  			hc.additionalData[11] = byte(payloadLen >> 8)
   387  			hc.additionalData[12] = byte(payloadLen)
   388  
   389  			c.Seal(payload[:0], nonce, payload, hc.additionalData[:])
   390  		case cbcMode:
   391  			blockSize := c.BlockSize()
   392  			if explicitIVLen > 0 {
   393  				c.SetIV(payload[:explicitIVLen])
   394  				payload = payload[explicitIVLen:]
   395  			}
   396  			prefix, finalBlock := padToBlockSize(payload, blockSize)
   397  			b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
   398  			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
   399  			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
   400  		default:
   401  			panic("unknown cipher type")
   402  		}
   403  	}
   404  
   405  	// update length to include MAC and any block padding needed.
   406  	n := len(b.data) - recordHeaderLen
   407  	b.data[3] = byte(n >> 8)
   408  	b.data[4] = byte(n)
   409  	hc.incSeq()
   410  
   411  	return true, 0
   412  }
   413  
   414  // A block is a simple data buffer.
   415  type block struct {
   416  	data []byte
   417  	off  int // index for Read
   418  	link *block
   419  }
   420  
   421  // resize resizes block to be n bytes, growing if necessary.
   422  func (b *block) resize(n int) {
   423  	if n > cap(b.data) {
   424  		b.reserve(n)
   425  	}
   426  	b.data = b.data[0:n]
   427  }
   428  
   429  // reserve makes sure that block contains a capacity of at least n bytes.
   430  func (b *block) reserve(n int) {
   431  	if cap(b.data) >= n {
   432  		return
   433  	}
   434  	m := cap(b.data)
   435  	if m == 0 {
   436  		m = 1024
   437  	}
   438  	for m < n {
   439  		m *= 2
   440  	}
   441  	data := make([]byte, len(b.data), m)
   442  	copy(data, b.data)
   443  	b.data = data
   444  }
   445  
   446  // readFromUntil reads from r into b until b contains at least n bytes
   447  // or else returns an error.
   448  func (b *block) readFromUntil(r io.Reader, n int) error {
   449  	// quick case
   450  	if len(b.data) >= n {
   451  		return nil
   452  	}
   453  
   454  	// read until have enough.
   455  	b.reserve(n)
   456  	for {
   457  		m, err := r.Read(b.data[len(b.data):cap(b.data)])
   458  		b.data = b.data[0 : len(b.data)+m]
   459  		if len(b.data) >= n {
   460  			// TODO(bradfitz,agl): slightly suspicious
   461  			// that we're throwing away r.Read's err here.
   462  			break
   463  		}
   464  		if err != nil {
   465  			return err
   466  		}
   467  	}
   468  	return nil
   469  }
   470  
   471  func (b *block) Read(p []byte) (n int, err error) {
   472  	n = copy(p, b.data[b.off:])
   473  	b.off += n
   474  	return
   475  }
   476  
   477  // newBlock allocates a new block, from hc's free list if possible.
   478  func (hc *halfConn) newBlock() *block {
   479  	b := hc.bfree
   480  	if b == nil {
   481  		return new(block)
   482  	}
   483  	hc.bfree = b.link
   484  	b.link = nil
   485  	b.resize(0)
   486  	return b
   487  }
   488  
   489  // freeBlock returns a block to hc's free list.
   490  // The protocol is such that each side only has a block or two on
   491  // its free list at a time, so there's no need to worry about
   492  // trimming the list, etc.
   493  func (hc *halfConn) freeBlock(b *block) {
   494  	b.link = hc.bfree
   495  	hc.bfree = b
   496  }
   497  
   498  // splitBlock splits a block after the first n bytes,
   499  // returning a block with those n bytes and a
   500  // block with the remainder.  the latter may be nil.
   501  func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
   502  	if len(b.data) <= n {
   503  		return b, nil
   504  	}
   505  	bb := hc.newBlock()
   506  	bb.resize(len(b.data) - n)
   507  	copy(bb.data, b.data[n:])
   508  	b.data = b.data[0:n]
   509  	return b, bb
   510  }
   511  
   512  // RecordHeaderError results when a TLS record header is invalid.
   513  type RecordHeaderError struct {
   514  	// Msg contains a human readable string that describes the error.
   515  	Msg string
   516  	// RecordHeader contains the five bytes of TLS record header that
   517  	// triggered the error.
   518  	RecordHeader [5]byte
   519  }
   520  
   521  func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
   522  
   523  func (c *Conn) newRecordHeaderError(msg string) (err RecordHeaderError) {
   524  	err.Msg = msg
   525  	copy(err.RecordHeader[:], c.rawInput.data)
   526  	return err
   527  }
   528  
   529  // readRecord reads the next TLS record from the connection
   530  // and updates the record layer state.
   531  // c.in.Mutex <= L; c.input == nil.
   532  func (c *Conn) readRecord(want recordType) error {
   533  	// Caller must be in sync with connection:
   534  	// handshake data if handshake not yet completed,
   535  	// else application data.  (We don't support renegotiation.)
   536  	switch want {
   537  	default:
   538  		c.sendAlert(alertInternalError)
   539  		return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
   540  	case recordTypeHandshake, recordTypeChangeCipherSpec:
   541  		if c.handshakeComplete {
   542  			c.sendAlert(alertInternalError)
   543  			return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested after handshake complete"))
   544  		}
   545  	case recordTypeApplicationData:
   546  		if !c.handshakeComplete {
   547  			c.sendAlert(alertInternalError)
   548  			return c.in.setErrorLocked(errors.New("tls: application data record requested before handshake complete"))
   549  		}
   550  	}
   551  
   552  Again:
   553  	if c.rawInput == nil {
   554  		c.rawInput = c.in.newBlock()
   555  	}
   556  	b := c.rawInput
   557  
   558  	// Read header, payload.
   559  	if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
   560  		// RFC suggests that EOF without an alertCloseNotify is
   561  		// an error, but popular web sites seem to do this,
   562  		// so we can't make it an error.
   563  		// if err == io.EOF {
   564  		// 	err = io.ErrUnexpectedEOF
   565  		// }
   566  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   567  			c.in.setErrorLocked(err)
   568  		}
   569  		return err
   570  	}
   571  	typ := recordType(b.data[0])
   572  
   573  	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
   574  	// start with a uint16 length where the MSB is set and the first record
   575  	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
   576  	// an SSLv2 client.
   577  	if want == recordTypeHandshake && typ == 0x80 {
   578  		c.sendAlert(alertProtocolVersion)
   579  		return c.in.setErrorLocked(c.newRecordHeaderError("unsupported SSLv2 handshake received"))
   580  	}
   581  
   582  	vers := uint16(b.data[1])<<8 | uint16(b.data[2])
   583  	n := int(b.data[3])<<8 | int(b.data[4])
   584  	if c.haveVers && vers != c.vers {
   585  		c.sendAlert(alertProtocolVersion)
   586  		msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers)
   587  		return c.in.setErrorLocked(c.newRecordHeaderError(msg))
   588  	}
   589  	if n > maxCiphertext {
   590  		c.sendAlert(alertRecordOverflow)
   591  		msg := fmt.Sprintf("oversized record received with length %d", n)
   592  		return c.in.setErrorLocked(c.newRecordHeaderError(msg))
   593  	}
   594  	if !c.haveVers {
   595  		// First message, be extra suspicious: this might not be a TLS
   596  		// client. Bail out before reading a full 'body', if possible.
   597  		// The current max version is 3.3 so if the version is >= 16.0,
   598  		// it's probably not real.
   599  		if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 {
   600  			c.sendAlert(alertUnexpectedMessage)
   601  			return c.in.setErrorLocked(c.newRecordHeaderError("first record does not look like a TLS handshake"))
   602  		}
   603  	}
   604  	if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
   605  		if err == io.EOF {
   606  			err = io.ErrUnexpectedEOF
   607  		}
   608  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   609  			c.in.setErrorLocked(err)
   610  		}
   611  		return err
   612  	}
   613  
   614  	// Process message.
   615  	b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
   616  	ok, off, err := c.in.decrypt(b)
   617  	if !ok {
   618  		c.in.setErrorLocked(c.sendAlert(err))
   619  	}
   620  	b.off = off
   621  	data := b.data[b.off:]
   622  	if len(data) > maxPlaintext {
   623  		err := c.sendAlert(alertRecordOverflow)
   624  		c.in.freeBlock(b)
   625  		return c.in.setErrorLocked(err)
   626  	}
   627  
   628  	switch typ {
   629  	default:
   630  		c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   631  
   632  	case recordTypeAlert:
   633  		if len(data) != 2 {
   634  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   635  			break
   636  		}
   637  		if alert(data[1]) == alertCloseNotify {
   638  			c.in.setErrorLocked(io.EOF)
   639  			break
   640  		}
   641  		switch data[0] {
   642  		case alertLevelWarning:
   643  			// drop on the floor
   644  			c.in.freeBlock(b)
   645  			goto Again
   646  		case alertLevelError:
   647  			c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   648  		default:
   649  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   650  		}
   651  
   652  	case recordTypeChangeCipherSpec:
   653  		if typ != want || len(data) != 1 || data[0] != 1 {
   654  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   655  			break
   656  		}
   657  		err := c.in.changeCipherSpec()
   658  		if err != nil {
   659  			c.in.setErrorLocked(c.sendAlert(err.(alert)))
   660  		}
   661  
   662  	case recordTypeApplicationData:
   663  		if typ != want {
   664  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   665  			break
   666  		}
   667  		c.input = b
   668  		b = nil
   669  
   670  	case recordTypeHandshake:
   671  		// TODO(rsc): Should at least pick off connection close.
   672  		if typ != want {
   673  			return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
   674  		}
   675  		c.hand.Write(data)
   676  	}
   677  
   678  	if b != nil {
   679  		c.in.freeBlock(b)
   680  	}
   681  	return c.in.err
   682  }
   683  
   684  // sendAlert sends a TLS alert message.
   685  // c.out.Mutex <= L.
   686  func (c *Conn) sendAlertLocked(err alert) error {
   687  	switch err {
   688  	case alertNoRenegotiation, alertCloseNotify:
   689  		c.tmp[0] = alertLevelWarning
   690  	default:
   691  		c.tmp[0] = alertLevelError
   692  	}
   693  	c.tmp[1] = byte(err)
   694  
   695  	_, writeErr := c.writeRecord(recordTypeAlert, c.tmp[0:2])
   696  	if err == alertCloseNotify {
   697  		// closeNotify is a special case in that it isn't an error.
   698  		return writeErr
   699  	}
   700  
   701  	return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
   702  }
   703  
   704  // sendAlert sends a TLS alert message.
   705  // L < c.out.Mutex.
   706  func (c *Conn) sendAlert(err alert) error {
   707  	c.out.Lock()
   708  	defer c.out.Unlock()
   709  	return c.sendAlertLocked(err)
   710  }
   711  
   712  const (
   713  	// tcpMSSEstimate is a conservative estimate of the TCP maximum segment
   714  	// size (MSS). A constant is used, rather than querying the kernel for
   715  	// the actual MSS, to avoid complexity. The value here is the IPv6
   716  	// minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
   717  	// bytes) and a TCP header with timestamps (32 bytes).
   718  	tcpMSSEstimate = 1208
   719  
   720  	// recordSizeBoostThreshold is the number of bytes of application data
   721  	// sent after which the TLS record size will be increased to the
   722  	// maximum.
   723  	recordSizeBoostThreshold = 1 * 1024 * 1024
   724  )
   725  
   726  // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
   727  // next application data record. There is the following trade-off:
   728  //
   729  //   - For latency-sensitive applications, such as web browsing, each TLS
   730  //     record should fit in one TCP segment.
   731  //   - For throughput-sensitive applications, such as large file transfers,
   732  //     larger TLS records better amortize framing and encryption overheads.
   733  //
   734  // A simple heuristic that works well in practice is to use small records for
   735  // the first 1MB of data, then use larger records for subsequent data, and
   736  // reset back to smaller records after the connection becomes idle. See "High
   737  // Performance Web Networking", Chapter 4, or:
   738  // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
   739  //
   740  // In the interests of simplicity and determinism, this code does not attempt
   741  // to reset the record size once the connection is idle, however.
   742  //
   743  // c.out.Mutex <= L.
   744  func (c *Conn) maxPayloadSizeForWrite(typ recordType, explicitIVLen int) int {
   745  	if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
   746  		return maxPlaintext
   747  	}
   748  
   749  	if c.bytesSent >= recordSizeBoostThreshold {
   750  		return maxPlaintext
   751  	}
   752  
   753  	// Subtract TLS overheads to get the maximum payload size.
   754  	macSize := 0
   755  	if c.out.mac != nil {
   756  		macSize = c.out.mac.Size()
   757  	}
   758  
   759  	payloadBytes := tcpMSSEstimate - recordHeaderLen - explicitIVLen
   760  	if c.out.cipher != nil {
   761  		switch ciph := c.out.cipher.(type) {
   762  		case cipher.Stream:
   763  			payloadBytes -= macSize
   764  		case cipher.AEAD:
   765  			payloadBytes -= ciph.Overhead()
   766  		case cbcMode:
   767  			blockSize := ciph.BlockSize()
   768  			// The payload must fit in a multiple of blockSize, with
   769  			// room for at least one padding byte.
   770  			payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
   771  			// The MAC is appended before padding so affects the
   772  			// payload size directly.
   773  			payloadBytes -= macSize
   774  		default:
   775  			panic("unknown cipher type")
   776  		}
   777  	}
   778  
   779  	return payloadBytes
   780  }
   781  
   782  // writeRecord writes a TLS record with the given type and payload
   783  // to the connection and updates the record layer state.
   784  // c.out.Mutex <= L.
   785  func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) {
   786  	b := c.out.newBlock()
   787  	defer c.out.freeBlock(b)
   788  
   789  	var n int
   790  	for len(data) > 0 {
   791  		explicitIVLen := 0
   792  		explicitIVIsSeq := false
   793  
   794  		var cbc cbcMode
   795  		if c.out.version >= VersionTLS11 {
   796  			var ok bool
   797  			if cbc, ok = c.out.cipher.(cbcMode); ok {
   798  				explicitIVLen = cbc.BlockSize()
   799  			}
   800  		}
   801  		if explicitIVLen == 0 {
   802  			if _, ok := c.out.cipher.(cipher.AEAD); ok {
   803  				explicitIVLen = 8
   804  				// The AES-GCM construction in TLS has an
   805  				// explicit nonce so that the nonce can be
   806  				// random. However, the nonce is only 8 bytes
   807  				// which is too small for a secure, random
   808  				// nonce. Therefore we use the sequence number
   809  				// as the nonce.
   810  				explicitIVIsSeq = true
   811  			}
   812  		}
   813  		m := len(data)
   814  		if maxPayload := c.maxPayloadSizeForWrite(typ, explicitIVLen); m > maxPayload {
   815  			m = maxPayload
   816  		}
   817  		b.resize(recordHeaderLen + explicitIVLen + m)
   818  		b.data[0] = byte(typ)
   819  		vers := c.vers
   820  		if vers == 0 {
   821  			// Some TLS servers fail if the record version is
   822  			// greater than TLS 1.0 for the initial ClientHello.
   823  			vers = VersionTLS10
   824  		}
   825  		b.data[1] = byte(vers >> 8)
   826  		b.data[2] = byte(vers)
   827  		b.data[3] = byte(m >> 8)
   828  		b.data[4] = byte(m)
   829  		if explicitIVLen > 0 {
   830  			explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
   831  			if explicitIVIsSeq {
   832  				copy(explicitIV, c.out.seq[:])
   833  			} else {
   834  				if _, err := io.ReadFull(c.config.rand(), explicitIV); err != nil {
   835  					return n, err
   836  				}
   837  			}
   838  		}
   839  		copy(b.data[recordHeaderLen+explicitIVLen:], data)
   840  		c.out.encrypt(b, explicitIVLen)
   841  		if _, err := c.conn.Write(b.data); err != nil {
   842  			return n, err
   843  		}
   844  		c.bytesSent += int64(m)
   845  		n += m
   846  		data = data[m:]
   847  	}
   848  
   849  	if typ == recordTypeChangeCipherSpec {
   850  		if err := c.out.changeCipherSpec(); err != nil {
   851  			return n, c.sendAlertLocked(err.(alert))
   852  		}
   853  	}
   854  
   855  	return n, nil
   856  }
   857  
   858  // readHandshake reads the next handshake message from
   859  // the record layer.
   860  // c.in.Mutex < L; c.out.Mutex < L.
   861  func (c *Conn) readHandshake() (interface{}, error) {
   862  	for c.hand.Len() < 4 {
   863  		if err := c.in.err; err != nil {
   864  			return nil, err
   865  		}
   866  		if err := c.readRecord(recordTypeHandshake); err != nil {
   867  			return nil, err
   868  		}
   869  	}
   870  
   871  	data := c.hand.Bytes()
   872  	n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
   873  	if n > maxHandshake {
   874  		c.sendAlertLocked(alertInternalError)
   875  		return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
   876  	}
   877  	for c.hand.Len() < 4+n {
   878  		if err := c.in.err; err != nil {
   879  			return nil, err
   880  		}
   881  		if err := c.readRecord(recordTypeHandshake); err != nil {
   882  			return nil, err
   883  		}
   884  	}
   885  	data = c.hand.Next(4 + n)
   886  	var m handshakeMessage
   887  	switch data[0] {
   888  	case typeClientHello:
   889  		m = new(clientHelloMsg)
   890  	case typeServerHello:
   891  		m = new(serverHelloMsg)
   892  	case typeNewSessionTicket:
   893  		m = new(newSessionTicketMsg)
   894  	case typeCertificate:
   895  		m = new(certificateMsg)
   896  	case typeCertificateRequest:
   897  		m = &certificateRequestMsg{
   898  			hasSignatureAndHash: c.vers >= VersionTLS12,
   899  		}
   900  	case typeCertificateStatus:
   901  		m = new(certificateStatusMsg)
   902  	case typeServerKeyExchange:
   903  		m = new(serverKeyExchangeMsg)
   904  	case typeServerHelloDone:
   905  		m = new(serverHelloDoneMsg)
   906  	case typeClientKeyExchange:
   907  		m = new(clientKeyExchangeMsg)
   908  	case typeCertificateVerify:
   909  		m = &certificateVerifyMsg{
   910  			hasSignatureAndHash: c.vers >= VersionTLS12,
   911  		}
   912  	case typeNextProtocol:
   913  		m = new(nextProtoMsg)
   914  	case typeFinished:
   915  		m = new(finishedMsg)
   916  	default:
   917  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   918  	}
   919  
   920  	// The handshake message unmarshallers
   921  	// expect to be able to keep references to data,
   922  	// so pass in a fresh copy that won't be overwritten.
   923  	data = append([]byte(nil), data...)
   924  
   925  	if !m.unmarshal(data) {
   926  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   927  	}
   928  	return m, nil
   929  }
   930  
   931  var errClosed = errors.New("crypto/tls: use of closed connection")
   932  
   933  // Write writes data to the connection.
   934  func (c *Conn) Write(b []byte) (int, error) {
   935  	// interlock with Close below
   936  	for {
   937  		x := atomic.LoadInt32(&c.activeCall)
   938  		if x&1 != 0 {
   939  			return 0, errClosed
   940  		}
   941  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) {
   942  			defer atomic.AddInt32(&c.activeCall, -2)
   943  			break
   944  		}
   945  	}
   946  
   947  	if err := c.Handshake(); err != nil {
   948  		return 0, err
   949  	}
   950  
   951  	c.out.Lock()
   952  	defer c.out.Unlock()
   953  
   954  	if err := c.out.err; err != nil {
   955  		return 0, err
   956  	}
   957  
   958  	if !c.handshakeComplete {
   959  		return 0, alertInternalError
   960  	}
   961  
   962  	// SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
   963  	// attack when using block mode ciphers due to predictable IVs.
   964  	// This can be prevented by splitting each Application Data
   965  	// record into two records, effectively randomizing the IV.
   966  	//
   967  	// http://www.openssl.org/~bodo/tls-cbc.txt
   968  	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
   969  	// http://www.imperialviolet.org/2012/01/15/beastfollowup.html
   970  
   971  	var m int
   972  	if len(b) > 1 && c.vers <= VersionTLS10 {
   973  		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
   974  			n, err := c.writeRecord(recordTypeApplicationData, b[:1])
   975  			if err != nil {
   976  				return n, c.out.setErrorLocked(err)
   977  			}
   978  			m, b = 1, b[1:]
   979  		}
   980  	}
   981  
   982  	n, err := c.writeRecord(recordTypeApplicationData, b)
   983  	return n + m, c.out.setErrorLocked(err)
   984  }
   985  
   986  // Read can be made to time out and return a net.Error with Timeout() == true
   987  // after a fixed time limit; see SetDeadline and SetReadDeadline.
   988  func (c *Conn) Read(b []byte) (n int, err error) {
   989  	if err = c.Handshake(); err != nil {
   990  		return
   991  	}
   992  	if len(b) == 0 {
   993  		// Put this after Handshake, in case people were calling
   994  		// Read(nil) for the side effect of the Handshake.
   995  		return
   996  	}
   997  
   998  	c.in.Lock()
   999  	defer c.in.Unlock()
  1000  
  1001  	// Some OpenSSL servers send empty records in order to randomize the
  1002  	// CBC IV. So this loop ignores a limited number of empty records.
  1003  	const maxConsecutiveEmptyRecords = 100
  1004  	for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
  1005  		for c.input == nil && c.in.err == nil {
  1006  			if err := c.readRecord(recordTypeApplicationData); err != nil {
  1007  				// Soft error, like EAGAIN
  1008  				return 0, err
  1009  			}
  1010  		}
  1011  		if err := c.in.err; err != nil {
  1012  			return 0, err
  1013  		}
  1014  
  1015  		n, err = c.input.Read(b)
  1016  		if c.input.off >= len(c.input.data) {
  1017  			c.in.freeBlock(c.input)
  1018  			c.input = nil
  1019  		}
  1020  
  1021  		// If a close-notify alert is waiting, read it so that
  1022  		// we can return (n, EOF) instead of (n, nil), to signal
  1023  		// to the HTTP response reading goroutine that the
  1024  		// connection is now closed. This eliminates a race
  1025  		// where the HTTP response reading goroutine would
  1026  		// otherwise not observe the EOF until its next read,
  1027  		// by which time a client goroutine might have already
  1028  		// tried to reuse the HTTP connection for a new
  1029  		// request.
  1030  		// See https://codereview.appspot.com/76400046
  1031  		// and https://golang.org/issue/3514
  1032  		if ri := c.rawInput; ri != nil &&
  1033  			n != 0 && err == nil &&
  1034  			c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
  1035  			if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
  1036  				err = recErr // will be io.EOF on closeNotify
  1037  			}
  1038  		}
  1039  
  1040  		if n != 0 || err != nil {
  1041  			return n, err
  1042  		}
  1043  	}
  1044  
  1045  	return 0, io.ErrNoProgress
  1046  }
  1047  
  1048  // Close closes the connection.
  1049  func (c *Conn) Close() error {
  1050  	// Interlock with Conn.Write above.
  1051  	var x int32
  1052  	for {
  1053  		x = atomic.LoadInt32(&c.activeCall)
  1054  		if x&1 != 0 {
  1055  			return errClosed
  1056  		}
  1057  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) {
  1058  			break
  1059  		}
  1060  	}
  1061  	if x != 0 {
  1062  		// io.Writer and io.Closer should not be used concurrently.
  1063  		// If Close is called while a Write is currently in-flight,
  1064  		// interpret that as a sign that this Close is really just
  1065  		// being used to break the Write and/or clean up resources and
  1066  		// avoid sending the alertCloseNotify, which may block
  1067  		// waiting on handshakeMutex or the c.out mutex.
  1068  		return c.conn.Close()
  1069  	}
  1070  
  1071  	var alertErr error
  1072  
  1073  	c.handshakeMutex.Lock()
  1074  	defer c.handshakeMutex.Unlock()
  1075  	if c.handshakeComplete {
  1076  		alertErr = c.sendAlert(alertCloseNotify)
  1077  	}
  1078  
  1079  	if err := c.conn.Close(); err != nil {
  1080  		return err
  1081  	}
  1082  	return alertErr
  1083  }
  1084  
  1085  // Handshake runs the client or server handshake
  1086  // protocol if it has not yet been run.
  1087  // Most uses of this package need not call Handshake
  1088  // explicitly: the first Read or Write will call it automatically.
  1089  func (c *Conn) Handshake() error {
  1090  	c.handshakeMutex.Lock()
  1091  	defer c.handshakeMutex.Unlock()
  1092  	if err := c.handshakeErr; err != nil {
  1093  		return err
  1094  	}
  1095  	if c.handshakeComplete {
  1096  		return nil
  1097  	}
  1098  
  1099  	if c.isClient {
  1100  		c.handshakeErr = c.clientHandshake()
  1101  	} else {
  1102  		c.handshakeErr = c.serverHandshake()
  1103  	}
  1104  	return c.handshakeErr
  1105  }
  1106  
  1107  // ConnectionState returns basic TLS details about the connection.
  1108  func (c *Conn) ConnectionState() ConnectionState {
  1109  	c.handshakeMutex.Lock()
  1110  	defer c.handshakeMutex.Unlock()
  1111  
  1112  	var state ConnectionState
  1113  	state.HandshakeComplete = c.handshakeComplete
  1114  	if c.handshakeComplete {
  1115  		state.Version = c.vers
  1116  		state.NegotiatedProtocol = c.clientProtocol
  1117  		state.DidResume = c.didResume
  1118  		state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
  1119  		state.CipherSuite = c.cipherSuite
  1120  		state.PeerCertificates = c.peerCertificates
  1121  		state.VerifiedChains = c.verifiedChains
  1122  		state.ServerName = c.serverName
  1123  		state.SignedCertificateTimestamps = c.scts
  1124  		state.OCSPResponse = c.ocspResponse
  1125  		if !c.didResume {
  1126  			state.TLSUnique = c.firstFinished[:]
  1127  		}
  1128  	}
  1129  
  1130  	return state
  1131  }
  1132  
  1133  // OCSPResponse returns the stapled OCSP response from the TLS server, if
  1134  // any. (Only valid for client connections.)
  1135  func (c *Conn) OCSPResponse() []byte {
  1136  	c.handshakeMutex.Lock()
  1137  	defer c.handshakeMutex.Unlock()
  1138  
  1139  	return c.ocspResponse
  1140  }
  1141  
  1142  // VerifyHostname checks that the peer certificate chain is valid for
  1143  // connecting to host. If so, it returns nil; if not, it returns an error
  1144  // describing the problem.
  1145  func (c *Conn) VerifyHostname(host string) error {
  1146  	c.handshakeMutex.Lock()
  1147  	defer c.handshakeMutex.Unlock()
  1148  	if !c.isClient {
  1149  		return errors.New("tls: VerifyHostname called on TLS server connection")
  1150  	}
  1151  	if !c.handshakeComplete {
  1152  		return errors.New("tls: handshake has not yet been performed")
  1153  	}
  1154  	if len(c.verifiedChains) == 0 {
  1155  		return errors.New("tls: handshake did not verify certificate chain")
  1156  	}
  1157  	return c.peerCertificates[0].VerifyHostname(host)
  1158  }