github.com/miolini/go@v0.0.0-20160405192216-fca68c8cb408/src/encoding/json/encode.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package json implements encoding and decoding of JSON objects as defined in
     6  // RFC 4627. The mapping between JSON objects and Go values is described
     7  // in the documentation for the Marshal and Unmarshal functions.
     8  //
     9  // See "JSON and Go" for an introduction to this package:
    10  // https://golang.org/doc/articles/json_and_go.html
    11  package json
    12  
    13  import (
    14  	"bytes"
    15  	"encoding"
    16  	"encoding/base64"
    17  	"fmt"
    18  	"math"
    19  	"reflect"
    20  	"runtime"
    21  	"sort"
    22  	"strconv"
    23  	"strings"
    24  	"sync"
    25  	"unicode"
    26  	"unicode/utf8"
    27  )
    28  
    29  // Marshal returns the JSON encoding of v.
    30  //
    31  // Marshal traverses the value v recursively.
    32  // If an encountered value implements the Marshaler interface
    33  // and is not a nil pointer, Marshal calls its MarshalJSON method
    34  // to produce JSON. If no MarshalJSON method is present but the
    35  // value implements encoding.TextMarshaler instead, Marshal calls
    36  // its MarshalText method.
    37  // The nil pointer exception is not strictly necessary
    38  // but mimics a similar, necessary exception in the behavior of
    39  // UnmarshalJSON.
    40  //
    41  // Otherwise, Marshal uses the following type-dependent default encodings:
    42  //
    43  // Boolean values encode as JSON booleans.
    44  //
    45  // Floating point, integer, and Number values encode as JSON numbers.
    46  //
    47  // String values encode as JSON strings coerced to valid UTF-8,
    48  // replacing invalid bytes with the Unicode replacement rune.
    49  // The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e"
    50  // to keep some browsers from misinterpreting JSON output as HTML.
    51  // Ampersand "&" is also escaped to "\u0026" for the same reason.
    52  //
    53  // Array and slice values encode as JSON arrays, except that
    54  // []byte encodes as a base64-encoded string, and a nil slice
    55  // encodes as the null JSON object.
    56  //
    57  // Struct values encode as JSON objects. Each exported struct field
    58  // becomes a member of the object unless
    59  //   - the field's tag is "-", or
    60  //   - the field is empty and its tag specifies the "omitempty" option.
    61  // The empty values are false, 0, any
    62  // nil pointer or interface value, and any array, slice, map, or string of
    63  // length zero. The object's default key string is the struct field name
    64  // but can be specified in the struct field's tag value. The "json" key in
    65  // the struct field's tag value is the key name, followed by an optional comma
    66  // and options. Examples:
    67  //
    68  //   // Field is ignored by this package.
    69  //   Field int `json:"-"`
    70  //
    71  //   // Field appears in JSON as key "myName".
    72  //   Field int `json:"myName"`
    73  //
    74  //   // Field appears in JSON as key "myName" and
    75  //   // the field is omitted from the object if its value is empty,
    76  //   // as defined above.
    77  //   Field int `json:"myName,omitempty"`
    78  //
    79  //   // Field appears in JSON as key "Field" (the default), but
    80  //   // the field is skipped if empty.
    81  //   // Note the leading comma.
    82  //   Field int `json:",omitempty"`
    83  //
    84  // The "string" option signals that a field is stored as JSON inside a
    85  // JSON-encoded string. It applies only to fields of string, floating point,
    86  // integer, or boolean types. This extra level of encoding is sometimes used
    87  // when communicating with JavaScript programs:
    88  //
    89  //    Int64String int64 `json:",string"`
    90  //
    91  // The key name will be used if it's a non-empty string consisting of
    92  // only Unicode letters, digits, dollar signs, percent signs, hyphens,
    93  // underscores and slashes.
    94  //
    95  // Anonymous struct fields are usually marshaled as if their inner exported fields
    96  // were fields in the outer struct, subject to the usual Go visibility rules amended
    97  // as described in the next paragraph.
    98  // An anonymous struct field with a name given in its JSON tag is treated as
    99  // having that name, rather than being anonymous.
   100  // An anonymous struct field of interface type is treated the same as having
   101  // that type as its name, rather than being anonymous.
   102  //
   103  // The Go visibility rules for struct fields are amended for JSON when
   104  // deciding which field to marshal or unmarshal. If there are
   105  // multiple fields at the same level, and that level is the least
   106  // nested (and would therefore be the nesting level selected by the
   107  // usual Go rules), the following extra rules apply:
   108  //
   109  // 1) Of those fields, if any are JSON-tagged, only tagged fields are considered,
   110  // even if there are multiple untagged fields that would otherwise conflict.
   111  // 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
   112  // 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
   113  //
   114  // Handling of anonymous struct fields is new in Go 1.1.
   115  // Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of
   116  // an anonymous struct field in both current and earlier versions, give the field
   117  // a JSON tag of "-".
   118  //
   119  // Map values encode as JSON objects. The map's key type must either be a string
   120  // or implement encoding.TextMarshaler.  The map keys are used as JSON object
   121  // keys, subject to the UTF-8 coercion described for string values above.
   122  //
   123  // Pointer values encode as the value pointed to.
   124  // A nil pointer encodes as the null JSON object.
   125  //
   126  // Interface values encode as the value contained in the interface.
   127  // A nil interface value encodes as the null JSON object.
   128  //
   129  // Channel, complex, and function values cannot be encoded in JSON.
   130  // Attempting to encode such a value causes Marshal to return
   131  // an UnsupportedTypeError.
   132  //
   133  // JSON cannot represent cyclic data structures and Marshal does not
   134  // handle them. Passing cyclic structures to Marshal will result in
   135  // an infinite recursion.
   136  //
   137  func Marshal(v interface{}) ([]byte, error) {
   138  	e := &encodeState{}
   139  	err := e.marshal(v)
   140  	if err != nil {
   141  		return nil, err
   142  	}
   143  	return e.Bytes(), nil
   144  }
   145  
   146  // MarshalIndent is like Marshal but applies Indent to format the output.
   147  func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
   148  	b, err := Marshal(v)
   149  	if err != nil {
   150  		return nil, err
   151  	}
   152  	var buf bytes.Buffer
   153  	err = Indent(&buf, b, prefix, indent)
   154  	if err != nil {
   155  		return nil, err
   156  	}
   157  	return buf.Bytes(), nil
   158  }
   159  
   160  // HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029
   161  // characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029
   162  // so that the JSON will be safe to embed inside HTML <script> tags.
   163  // For historical reasons, web browsers don't honor standard HTML
   164  // escaping within <script> tags, so an alternative JSON encoding must
   165  // be used.
   166  func HTMLEscape(dst *bytes.Buffer, src []byte) {
   167  	// The characters can only appear in string literals,
   168  	// so just scan the string one byte at a time.
   169  	start := 0
   170  	for i, c := range src {
   171  		if c == '<' || c == '>' || c == '&' {
   172  			if start < i {
   173  				dst.Write(src[start:i])
   174  			}
   175  			dst.WriteString(`\u00`)
   176  			dst.WriteByte(hex[c>>4])
   177  			dst.WriteByte(hex[c&0xF])
   178  			start = i + 1
   179  		}
   180  		// Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9).
   181  		if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 {
   182  			if start < i {
   183  				dst.Write(src[start:i])
   184  			}
   185  			dst.WriteString(`\u202`)
   186  			dst.WriteByte(hex[src[i+2]&0xF])
   187  			start = i + 3
   188  		}
   189  	}
   190  	if start < len(src) {
   191  		dst.Write(src[start:])
   192  	}
   193  }
   194  
   195  // Marshaler is the interface implemented by objects that
   196  // can marshal themselves into valid JSON.
   197  type Marshaler interface {
   198  	MarshalJSON() ([]byte, error)
   199  }
   200  
   201  // An UnsupportedTypeError is returned by Marshal when attempting
   202  // to encode an unsupported value type.
   203  type UnsupportedTypeError struct {
   204  	Type reflect.Type
   205  }
   206  
   207  func (e *UnsupportedTypeError) Error() string {
   208  	return "json: unsupported type: " + e.Type.String()
   209  }
   210  
   211  type UnsupportedValueError struct {
   212  	Value reflect.Value
   213  	Str   string
   214  }
   215  
   216  func (e *UnsupportedValueError) Error() string {
   217  	return "json: unsupported value: " + e.Str
   218  }
   219  
   220  // Before Go 1.2, an InvalidUTF8Error was returned by Marshal when
   221  // attempting to encode a string value with invalid UTF-8 sequences.
   222  // As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by
   223  // replacing invalid bytes with the Unicode replacement rune U+FFFD.
   224  // This error is no longer generated but is kept for backwards compatibility
   225  // with programs that might mention it.
   226  type InvalidUTF8Error struct {
   227  	S string // the whole string value that caused the error
   228  }
   229  
   230  func (e *InvalidUTF8Error) Error() string {
   231  	return "json: invalid UTF-8 in string: " + strconv.Quote(e.S)
   232  }
   233  
   234  type MarshalerError struct {
   235  	Type reflect.Type
   236  	Err  error
   237  }
   238  
   239  func (e *MarshalerError) Error() string {
   240  	return "json: error calling MarshalJSON for type " + e.Type.String() + ": " + e.Err.Error()
   241  }
   242  
   243  var hex = "0123456789abcdef"
   244  
   245  // An encodeState encodes JSON into a bytes.Buffer.
   246  type encodeState struct {
   247  	bytes.Buffer // accumulated output
   248  	scratch      [64]byte
   249  }
   250  
   251  var encodeStatePool sync.Pool
   252  
   253  func newEncodeState() *encodeState {
   254  	if v := encodeStatePool.Get(); v != nil {
   255  		e := v.(*encodeState)
   256  		e.Reset()
   257  		return e
   258  	}
   259  	return new(encodeState)
   260  }
   261  
   262  func (e *encodeState) marshal(v interface{}) (err error) {
   263  	defer func() {
   264  		if r := recover(); r != nil {
   265  			if _, ok := r.(runtime.Error); ok {
   266  				panic(r)
   267  			}
   268  			if s, ok := r.(string); ok {
   269  				panic(s)
   270  			}
   271  			err = r.(error)
   272  		}
   273  	}()
   274  	e.reflectValue(reflect.ValueOf(v))
   275  	return nil
   276  }
   277  
   278  func (e *encodeState) error(err error) {
   279  	panic(err)
   280  }
   281  
   282  func isEmptyValue(v reflect.Value) bool {
   283  	switch v.Kind() {
   284  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   285  		return v.Len() == 0
   286  	case reflect.Bool:
   287  		return !v.Bool()
   288  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   289  		return v.Int() == 0
   290  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   291  		return v.Uint() == 0
   292  	case reflect.Float32, reflect.Float64:
   293  		return v.Float() == 0
   294  	case reflect.Interface, reflect.Ptr:
   295  		return v.IsNil()
   296  	}
   297  	return false
   298  }
   299  
   300  func (e *encodeState) reflectValue(v reflect.Value) {
   301  	valueEncoder(v)(e, v, false)
   302  }
   303  
   304  type encoderFunc func(e *encodeState, v reflect.Value, quoted bool)
   305  
   306  var encoderCache struct {
   307  	sync.RWMutex
   308  	m map[reflect.Type]encoderFunc
   309  }
   310  
   311  func valueEncoder(v reflect.Value) encoderFunc {
   312  	if !v.IsValid() {
   313  		return invalidValueEncoder
   314  	}
   315  	return typeEncoder(v.Type())
   316  }
   317  
   318  func typeEncoder(t reflect.Type) encoderFunc {
   319  	encoderCache.RLock()
   320  	f := encoderCache.m[t]
   321  	encoderCache.RUnlock()
   322  	if f != nil {
   323  		return f
   324  	}
   325  
   326  	// To deal with recursive types, populate the map with an
   327  	// indirect func before we build it. This type waits on the
   328  	// real func (f) to be ready and then calls it. This indirect
   329  	// func is only used for recursive types.
   330  	encoderCache.Lock()
   331  	if encoderCache.m == nil {
   332  		encoderCache.m = make(map[reflect.Type]encoderFunc)
   333  	}
   334  	var wg sync.WaitGroup
   335  	wg.Add(1)
   336  	encoderCache.m[t] = func(e *encodeState, v reflect.Value, quoted bool) {
   337  		wg.Wait()
   338  		f(e, v, quoted)
   339  	}
   340  	encoderCache.Unlock()
   341  
   342  	// Compute fields without lock.
   343  	// Might duplicate effort but won't hold other computations back.
   344  	f = newTypeEncoder(t, true)
   345  	wg.Done()
   346  	encoderCache.Lock()
   347  	encoderCache.m[t] = f
   348  	encoderCache.Unlock()
   349  	return f
   350  }
   351  
   352  var (
   353  	marshalerType     = reflect.TypeOf(new(Marshaler)).Elem()
   354  	textMarshalerType = reflect.TypeOf(new(encoding.TextMarshaler)).Elem()
   355  )
   356  
   357  // newTypeEncoder constructs an encoderFunc for a type.
   358  // The returned encoder only checks CanAddr when allowAddr is true.
   359  func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
   360  	if t.Implements(marshalerType) {
   361  		return marshalerEncoder
   362  	}
   363  	if t.Kind() != reflect.Ptr && allowAddr {
   364  		if reflect.PtrTo(t).Implements(marshalerType) {
   365  			return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
   366  		}
   367  	}
   368  
   369  	if t.Implements(textMarshalerType) {
   370  		return textMarshalerEncoder
   371  	}
   372  	if t.Kind() != reflect.Ptr && allowAddr {
   373  		if reflect.PtrTo(t).Implements(textMarshalerType) {
   374  			return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
   375  		}
   376  	}
   377  
   378  	switch t.Kind() {
   379  	case reflect.Bool:
   380  		return boolEncoder
   381  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   382  		return intEncoder
   383  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   384  		return uintEncoder
   385  	case reflect.Float32:
   386  		return float32Encoder
   387  	case reflect.Float64:
   388  		return float64Encoder
   389  	case reflect.String:
   390  		return stringEncoder
   391  	case reflect.Interface:
   392  		return interfaceEncoder
   393  	case reflect.Struct:
   394  		return newStructEncoder(t)
   395  	case reflect.Map:
   396  		return newMapEncoder(t)
   397  	case reflect.Slice:
   398  		return newSliceEncoder(t)
   399  	case reflect.Array:
   400  		return newArrayEncoder(t)
   401  	case reflect.Ptr:
   402  		return newPtrEncoder(t)
   403  	default:
   404  		return unsupportedTypeEncoder
   405  	}
   406  }
   407  
   408  func invalidValueEncoder(e *encodeState, v reflect.Value, quoted bool) {
   409  	e.WriteString("null")
   410  }
   411  
   412  func marshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   413  	if v.Kind() == reflect.Ptr && v.IsNil() {
   414  		e.WriteString("null")
   415  		return
   416  	}
   417  	m := v.Interface().(Marshaler)
   418  	b, err := m.MarshalJSON()
   419  	if err == nil {
   420  		// copy JSON into buffer, checking validity.
   421  		err = compact(&e.Buffer, b, true)
   422  	}
   423  	if err != nil {
   424  		e.error(&MarshalerError{v.Type(), err})
   425  	}
   426  }
   427  
   428  func addrMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   429  	va := v.Addr()
   430  	if va.IsNil() {
   431  		e.WriteString("null")
   432  		return
   433  	}
   434  	m := va.Interface().(Marshaler)
   435  	b, err := m.MarshalJSON()
   436  	if err == nil {
   437  		// copy JSON into buffer, checking validity.
   438  		err = compact(&e.Buffer, b, true)
   439  	}
   440  	if err != nil {
   441  		e.error(&MarshalerError{v.Type(), err})
   442  	}
   443  }
   444  
   445  func textMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   446  	if v.Kind() == reflect.Ptr && v.IsNil() {
   447  		e.WriteString("null")
   448  		return
   449  	}
   450  	m := v.Interface().(encoding.TextMarshaler)
   451  	b, err := m.MarshalText()
   452  	if err != nil {
   453  		e.error(&MarshalerError{v.Type(), err})
   454  	}
   455  	e.stringBytes(b)
   456  }
   457  
   458  func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   459  	va := v.Addr()
   460  	if va.IsNil() {
   461  		e.WriteString("null")
   462  		return
   463  	}
   464  	m := va.Interface().(encoding.TextMarshaler)
   465  	b, err := m.MarshalText()
   466  	if err != nil {
   467  		e.error(&MarshalerError{v.Type(), err})
   468  	}
   469  	e.stringBytes(b)
   470  }
   471  
   472  func boolEncoder(e *encodeState, v reflect.Value, quoted bool) {
   473  	if quoted {
   474  		e.WriteByte('"')
   475  	}
   476  	if v.Bool() {
   477  		e.WriteString("true")
   478  	} else {
   479  		e.WriteString("false")
   480  	}
   481  	if quoted {
   482  		e.WriteByte('"')
   483  	}
   484  }
   485  
   486  func intEncoder(e *encodeState, v reflect.Value, quoted bool) {
   487  	b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
   488  	if quoted {
   489  		e.WriteByte('"')
   490  	}
   491  	e.Write(b)
   492  	if quoted {
   493  		e.WriteByte('"')
   494  	}
   495  }
   496  
   497  func uintEncoder(e *encodeState, v reflect.Value, quoted bool) {
   498  	b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
   499  	if quoted {
   500  		e.WriteByte('"')
   501  	}
   502  	e.Write(b)
   503  	if quoted {
   504  		e.WriteByte('"')
   505  	}
   506  }
   507  
   508  type floatEncoder int // number of bits
   509  
   510  func (bits floatEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
   511  	f := v.Float()
   512  	if math.IsInf(f, 0) || math.IsNaN(f) {
   513  		e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
   514  	}
   515  	b := strconv.AppendFloat(e.scratch[:0], f, 'g', -1, int(bits))
   516  	if quoted {
   517  		e.WriteByte('"')
   518  	}
   519  	e.Write(b)
   520  	if quoted {
   521  		e.WriteByte('"')
   522  	}
   523  }
   524  
   525  var (
   526  	float32Encoder = (floatEncoder(32)).encode
   527  	float64Encoder = (floatEncoder(64)).encode
   528  )
   529  
   530  func stringEncoder(e *encodeState, v reflect.Value, quoted bool) {
   531  	if v.Type() == numberType {
   532  		numStr := v.String()
   533  		// In Go1.5 the empty string encodes to "0", while this is not a valid number literal
   534  		// we keep compatibility so check validity after this.
   535  		if numStr == "" {
   536  			numStr = "0" // Number's zero-val
   537  		}
   538  		if !isValidNumber(numStr) {
   539  			e.error(fmt.Errorf("json: invalid number literal %q", numStr))
   540  		}
   541  		e.WriteString(numStr)
   542  		return
   543  	}
   544  	if quoted {
   545  		sb, err := Marshal(v.String())
   546  		if err != nil {
   547  			e.error(err)
   548  		}
   549  		e.string(string(sb))
   550  	} else {
   551  		e.string(v.String())
   552  	}
   553  }
   554  
   555  func interfaceEncoder(e *encodeState, v reflect.Value, quoted bool) {
   556  	if v.IsNil() {
   557  		e.WriteString("null")
   558  		return
   559  	}
   560  	e.reflectValue(v.Elem())
   561  }
   562  
   563  func unsupportedTypeEncoder(e *encodeState, v reflect.Value, quoted bool) {
   564  	e.error(&UnsupportedTypeError{v.Type()})
   565  }
   566  
   567  type structEncoder struct {
   568  	fields    []field
   569  	fieldEncs []encoderFunc
   570  }
   571  
   572  func (se *structEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
   573  	e.WriteByte('{')
   574  	first := true
   575  	for i, f := range se.fields {
   576  		fv := fieldByIndex(v, f.index)
   577  		if !fv.IsValid() || f.omitEmpty && isEmptyValue(fv) {
   578  			continue
   579  		}
   580  		if first {
   581  			first = false
   582  		} else {
   583  			e.WriteByte(',')
   584  		}
   585  		e.string(f.name)
   586  		e.WriteByte(':')
   587  		se.fieldEncs[i](e, fv, f.quoted)
   588  	}
   589  	e.WriteByte('}')
   590  }
   591  
   592  func newStructEncoder(t reflect.Type) encoderFunc {
   593  	fields := cachedTypeFields(t)
   594  	se := &structEncoder{
   595  		fields:    fields,
   596  		fieldEncs: make([]encoderFunc, len(fields)),
   597  	}
   598  	for i, f := range fields {
   599  		se.fieldEncs[i] = typeEncoder(typeByIndex(t, f.index))
   600  	}
   601  	return se.encode
   602  }
   603  
   604  type mapEncoder struct {
   605  	elemEnc encoderFunc
   606  }
   607  
   608  func (me *mapEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
   609  	if v.IsNil() {
   610  		e.WriteString("null")
   611  		return
   612  	}
   613  	e.WriteByte('{')
   614  
   615  	// Extract and sort the keys.
   616  	keys := v.MapKeys()
   617  	sv := make([]reflectWithString, len(keys))
   618  	for i, v := range keys {
   619  		sv[i].v = v
   620  		if err := sv[i].resolve(); err != nil {
   621  			e.error(&MarshalerError{v.Type(), err})
   622  		}
   623  	}
   624  	sort.Sort(byString(sv))
   625  
   626  	for i, kv := range sv {
   627  		if i > 0 {
   628  			e.WriteByte(',')
   629  		}
   630  		e.string(kv.s)
   631  		e.WriteByte(':')
   632  		me.elemEnc(e, v.MapIndex(kv.v), false)
   633  	}
   634  	e.WriteByte('}')
   635  }
   636  
   637  func newMapEncoder(t reflect.Type) encoderFunc {
   638  	if t.Key().Kind() != reflect.String && !t.Key().Implements(textMarshalerType) {
   639  		return unsupportedTypeEncoder
   640  	}
   641  	me := &mapEncoder{typeEncoder(t.Elem())}
   642  	return me.encode
   643  }
   644  
   645  func encodeByteSlice(e *encodeState, v reflect.Value, _ bool) {
   646  	if v.IsNil() {
   647  		e.WriteString("null")
   648  		return
   649  	}
   650  	s := v.Bytes()
   651  	e.WriteByte('"')
   652  	if len(s) < 1024 {
   653  		// for small buffers, using Encode directly is much faster.
   654  		dst := make([]byte, base64.StdEncoding.EncodedLen(len(s)))
   655  		base64.StdEncoding.Encode(dst, s)
   656  		e.Write(dst)
   657  	} else {
   658  		// for large buffers, avoid unnecessary extra temporary
   659  		// buffer space.
   660  		enc := base64.NewEncoder(base64.StdEncoding, e)
   661  		enc.Write(s)
   662  		enc.Close()
   663  	}
   664  	e.WriteByte('"')
   665  }
   666  
   667  // sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
   668  type sliceEncoder struct {
   669  	arrayEnc encoderFunc
   670  }
   671  
   672  func (se *sliceEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
   673  	if v.IsNil() {
   674  		e.WriteString("null")
   675  		return
   676  	}
   677  	se.arrayEnc(e, v, false)
   678  }
   679  
   680  func newSliceEncoder(t reflect.Type) encoderFunc {
   681  	// Byte slices get special treatment; arrays don't.
   682  	if t.Elem().Kind() == reflect.Uint8 {
   683  		return encodeByteSlice
   684  	}
   685  	enc := &sliceEncoder{newArrayEncoder(t)}
   686  	return enc.encode
   687  }
   688  
   689  type arrayEncoder struct {
   690  	elemEnc encoderFunc
   691  }
   692  
   693  func (ae *arrayEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
   694  	e.WriteByte('[')
   695  	n := v.Len()
   696  	for i := 0; i < n; i++ {
   697  		if i > 0 {
   698  			e.WriteByte(',')
   699  		}
   700  		ae.elemEnc(e, v.Index(i), false)
   701  	}
   702  	e.WriteByte(']')
   703  }
   704  
   705  func newArrayEncoder(t reflect.Type) encoderFunc {
   706  	enc := &arrayEncoder{typeEncoder(t.Elem())}
   707  	return enc.encode
   708  }
   709  
   710  type ptrEncoder struct {
   711  	elemEnc encoderFunc
   712  }
   713  
   714  func (pe *ptrEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
   715  	if v.IsNil() {
   716  		e.WriteString("null")
   717  		return
   718  	}
   719  	pe.elemEnc(e, v.Elem(), quoted)
   720  }
   721  
   722  func newPtrEncoder(t reflect.Type) encoderFunc {
   723  	enc := &ptrEncoder{typeEncoder(t.Elem())}
   724  	return enc.encode
   725  }
   726  
   727  type condAddrEncoder struct {
   728  	canAddrEnc, elseEnc encoderFunc
   729  }
   730  
   731  func (ce *condAddrEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
   732  	if v.CanAddr() {
   733  		ce.canAddrEnc(e, v, quoted)
   734  	} else {
   735  		ce.elseEnc(e, v, quoted)
   736  	}
   737  }
   738  
   739  // newCondAddrEncoder returns an encoder that checks whether its value
   740  // CanAddr and delegates to canAddrEnc if so, else to elseEnc.
   741  func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
   742  	enc := &condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
   743  	return enc.encode
   744  }
   745  
   746  func isValidTag(s string) bool {
   747  	if s == "" {
   748  		return false
   749  	}
   750  	for _, c := range s {
   751  		switch {
   752  		case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c):
   753  			// Backslash and quote chars are reserved, but
   754  			// otherwise any punctuation chars are allowed
   755  			// in a tag name.
   756  		default:
   757  			if !unicode.IsLetter(c) && !unicode.IsDigit(c) {
   758  				return false
   759  			}
   760  		}
   761  	}
   762  	return true
   763  }
   764  
   765  func fieldByIndex(v reflect.Value, index []int) reflect.Value {
   766  	for _, i := range index {
   767  		if v.Kind() == reflect.Ptr {
   768  			if v.IsNil() {
   769  				return reflect.Value{}
   770  			}
   771  			v = v.Elem()
   772  		}
   773  		v = v.Field(i)
   774  	}
   775  	return v
   776  }
   777  
   778  func typeByIndex(t reflect.Type, index []int) reflect.Type {
   779  	for _, i := range index {
   780  		if t.Kind() == reflect.Ptr {
   781  			t = t.Elem()
   782  		}
   783  		t = t.Field(i).Type
   784  	}
   785  	return t
   786  }
   787  
   788  type reflectWithString struct {
   789  	v reflect.Value
   790  	s string
   791  }
   792  
   793  func (w *reflectWithString) resolve() error {
   794  	if w.v.Kind() == reflect.String {
   795  		w.s = w.v.String()
   796  		return nil
   797  	}
   798  	buf, err := w.v.Interface().(encoding.TextMarshaler).MarshalText()
   799  	w.s = string(buf)
   800  	return err
   801  }
   802  
   803  // byString is a slice of reflectWithString where the reflect.Value is either
   804  // a string or an encoding.TextMarshaler.
   805  // It implements the methods to sort by string.
   806  type byString []reflectWithString
   807  
   808  func (sv byString) Len() int           { return len(sv) }
   809  func (sv byString) Swap(i, j int)      { sv[i], sv[j] = sv[j], sv[i] }
   810  func (sv byString) Less(i, j int) bool { return sv[i].s < sv[j].s }
   811  
   812  // NOTE: keep in sync with stringBytes below.
   813  func (e *encodeState) string(s string) int {
   814  	len0 := e.Len()
   815  	e.WriteByte('"')
   816  	start := 0
   817  	for i := 0; i < len(s); {
   818  		if b := s[i]; b < utf8.RuneSelf {
   819  			if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
   820  				i++
   821  				continue
   822  			}
   823  			if start < i {
   824  				e.WriteString(s[start:i])
   825  			}
   826  			switch b {
   827  			case '\\', '"':
   828  				e.WriteByte('\\')
   829  				e.WriteByte(b)
   830  			case '\n':
   831  				e.WriteByte('\\')
   832  				e.WriteByte('n')
   833  			case '\r':
   834  				e.WriteByte('\\')
   835  				e.WriteByte('r')
   836  			case '\t':
   837  				e.WriteByte('\\')
   838  				e.WriteByte('t')
   839  			default:
   840  				// This encodes bytes < 0x20 except for \n and \r,
   841  				// as well as <, > and &. The latter are escaped because they
   842  				// can lead to security holes when user-controlled strings
   843  				// are rendered into JSON and served to some browsers.
   844  				e.WriteString(`\u00`)
   845  				e.WriteByte(hex[b>>4])
   846  				e.WriteByte(hex[b&0xF])
   847  			}
   848  			i++
   849  			start = i
   850  			continue
   851  		}
   852  		c, size := utf8.DecodeRuneInString(s[i:])
   853  		if c == utf8.RuneError && size == 1 {
   854  			if start < i {
   855  				e.WriteString(s[start:i])
   856  			}
   857  			e.WriteString(`\ufffd`)
   858  			i += size
   859  			start = i
   860  			continue
   861  		}
   862  		// U+2028 is LINE SEPARATOR.
   863  		// U+2029 is PARAGRAPH SEPARATOR.
   864  		// They are both technically valid characters in JSON strings,
   865  		// but don't work in JSONP, which has to be evaluated as JavaScript,
   866  		// and can lead to security holes there. It is valid JSON to
   867  		// escape them, so we do so unconditionally.
   868  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
   869  		if c == '\u2028' || c == '\u2029' {
   870  			if start < i {
   871  				e.WriteString(s[start:i])
   872  			}
   873  			e.WriteString(`\u202`)
   874  			e.WriteByte(hex[c&0xF])
   875  			i += size
   876  			start = i
   877  			continue
   878  		}
   879  		i += size
   880  	}
   881  	if start < len(s) {
   882  		e.WriteString(s[start:])
   883  	}
   884  	e.WriteByte('"')
   885  	return e.Len() - len0
   886  }
   887  
   888  // NOTE: keep in sync with string above.
   889  func (e *encodeState) stringBytes(s []byte) int {
   890  	len0 := e.Len()
   891  	e.WriteByte('"')
   892  	start := 0
   893  	for i := 0; i < len(s); {
   894  		if b := s[i]; b < utf8.RuneSelf {
   895  			if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
   896  				i++
   897  				continue
   898  			}
   899  			if start < i {
   900  				e.Write(s[start:i])
   901  			}
   902  			switch b {
   903  			case '\\', '"':
   904  				e.WriteByte('\\')
   905  				e.WriteByte(b)
   906  			case '\n':
   907  				e.WriteByte('\\')
   908  				e.WriteByte('n')
   909  			case '\r':
   910  				e.WriteByte('\\')
   911  				e.WriteByte('r')
   912  			case '\t':
   913  				e.WriteByte('\\')
   914  				e.WriteByte('t')
   915  			default:
   916  				// This encodes bytes < 0x20 except for \n and \r,
   917  				// as well as <, >, and &. The latter are escaped because they
   918  				// can lead to security holes when user-controlled strings
   919  				// are rendered into JSON and served to some browsers.
   920  				e.WriteString(`\u00`)
   921  				e.WriteByte(hex[b>>4])
   922  				e.WriteByte(hex[b&0xF])
   923  			}
   924  			i++
   925  			start = i
   926  			continue
   927  		}
   928  		c, size := utf8.DecodeRune(s[i:])
   929  		if c == utf8.RuneError && size == 1 {
   930  			if start < i {
   931  				e.Write(s[start:i])
   932  			}
   933  			e.WriteString(`\ufffd`)
   934  			i += size
   935  			start = i
   936  			continue
   937  		}
   938  		// U+2028 is LINE SEPARATOR.
   939  		// U+2029 is PARAGRAPH SEPARATOR.
   940  		// They are both technically valid characters in JSON strings,
   941  		// but don't work in JSONP, which has to be evaluated as JavaScript,
   942  		// and can lead to security holes there. It is valid JSON to
   943  		// escape them, so we do so unconditionally.
   944  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
   945  		if c == '\u2028' || c == '\u2029' {
   946  			if start < i {
   947  				e.Write(s[start:i])
   948  			}
   949  			e.WriteString(`\u202`)
   950  			e.WriteByte(hex[c&0xF])
   951  			i += size
   952  			start = i
   953  			continue
   954  		}
   955  		i += size
   956  	}
   957  	if start < len(s) {
   958  		e.Write(s[start:])
   959  	}
   960  	e.WriteByte('"')
   961  	return e.Len() - len0
   962  }
   963  
   964  // A field represents a single field found in a struct.
   965  type field struct {
   966  	name      string
   967  	nameBytes []byte                 // []byte(name)
   968  	equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent
   969  
   970  	tag       bool
   971  	index     []int
   972  	typ       reflect.Type
   973  	omitEmpty bool
   974  	quoted    bool
   975  }
   976  
   977  func fillField(f field) field {
   978  	f.nameBytes = []byte(f.name)
   979  	f.equalFold = foldFunc(f.nameBytes)
   980  	return f
   981  }
   982  
   983  // byName sorts field by name, breaking ties with depth,
   984  // then breaking ties with "name came from json tag", then
   985  // breaking ties with index sequence.
   986  type byName []field
   987  
   988  func (x byName) Len() int { return len(x) }
   989  
   990  func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
   991  
   992  func (x byName) Less(i, j int) bool {
   993  	if x[i].name != x[j].name {
   994  		return x[i].name < x[j].name
   995  	}
   996  	if len(x[i].index) != len(x[j].index) {
   997  		return len(x[i].index) < len(x[j].index)
   998  	}
   999  	if x[i].tag != x[j].tag {
  1000  		return x[i].tag
  1001  	}
  1002  	return byIndex(x).Less(i, j)
  1003  }
  1004  
  1005  // byIndex sorts field by index sequence.
  1006  type byIndex []field
  1007  
  1008  func (x byIndex) Len() int { return len(x) }
  1009  
  1010  func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
  1011  
  1012  func (x byIndex) Less(i, j int) bool {
  1013  	for k, xik := range x[i].index {
  1014  		if k >= len(x[j].index) {
  1015  			return false
  1016  		}
  1017  		if xik != x[j].index[k] {
  1018  			return xik < x[j].index[k]
  1019  		}
  1020  	}
  1021  	return len(x[i].index) < len(x[j].index)
  1022  }
  1023  
  1024  // typeFields returns a list of fields that JSON should recognize for the given type.
  1025  // The algorithm is breadth-first search over the set of structs to include - the top struct
  1026  // and then any reachable anonymous structs.
  1027  func typeFields(t reflect.Type) []field {
  1028  	// Anonymous fields to explore at the current level and the next.
  1029  	current := []field{}
  1030  	next := []field{{typ: t}}
  1031  
  1032  	// Count of queued names for current level and the next.
  1033  	count := map[reflect.Type]int{}
  1034  	nextCount := map[reflect.Type]int{}
  1035  
  1036  	// Types already visited at an earlier level.
  1037  	visited := map[reflect.Type]bool{}
  1038  
  1039  	// Fields found.
  1040  	var fields []field
  1041  
  1042  	for len(next) > 0 {
  1043  		current, next = next, current[:0]
  1044  		count, nextCount = nextCount, map[reflect.Type]int{}
  1045  
  1046  		for _, f := range current {
  1047  			if visited[f.typ] {
  1048  				continue
  1049  			}
  1050  			visited[f.typ] = true
  1051  
  1052  			// Scan f.typ for fields to include.
  1053  			for i := 0; i < f.typ.NumField(); i++ {
  1054  				sf := f.typ.Field(i)
  1055  				if sf.PkgPath != "" && !sf.Anonymous { // unexported
  1056  					continue
  1057  				}
  1058  				tag := sf.Tag.Get("json")
  1059  				if tag == "-" {
  1060  					continue
  1061  				}
  1062  				name, opts := parseTag(tag)
  1063  				if !isValidTag(name) {
  1064  					name = ""
  1065  				}
  1066  				index := make([]int, len(f.index)+1)
  1067  				copy(index, f.index)
  1068  				index[len(f.index)] = i
  1069  
  1070  				ft := sf.Type
  1071  				if ft.Name() == "" && ft.Kind() == reflect.Ptr {
  1072  					// Follow pointer.
  1073  					ft = ft.Elem()
  1074  				}
  1075  
  1076  				// Only strings, floats, integers, and booleans can be quoted.
  1077  				quoted := false
  1078  				if opts.Contains("string") {
  1079  					switch ft.Kind() {
  1080  					case reflect.Bool,
  1081  						reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
  1082  						reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64,
  1083  						reflect.Float32, reflect.Float64,
  1084  						reflect.String:
  1085  						quoted = true
  1086  					}
  1087  				}
  1088  
  1089  				// Record found field and index sequence.
  1090  				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
  1091  					tagged := name != ""
  1092  					if name == "" {
  1093  						name = sf.Name
  1094  					}
  1095  					fields = append(fields, fillField(field{
  1096  						name:      name,
  1097  						tag:       tagged,
  1098  						index:     index,
  1099  						typ:       ft,
  1100  						omitEmpty: opts.Contains("omitempty"),
  1101  						quoted:    quoted,
  1102  					}))
  1103  					if count[f.typ] > 1 {
  1104  						// If there were multiple instances, add a second,
  1105  						// so that the annihilation code will see a duplicate.
  1106  						// It only cares about the distinction between 1 or 2,
  1107  						// so don't bother generating any more copies.
  1108  						fields = append(fields, fields[len(fields)-1])
  1109  					}
  1110  					continue
  1111  				}
  1112  
  1113  				// Record new anonymous struct to explore in next round.
  1114  				nextCount[ft]++
  1115  				if nextCount[ft] == 1 {
  1116  					next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft}))
  1117  				}
  1118  			}
  1119  		}
  1120  	}
  1121  
  1122  	sort.Sort(byName(fields))
  1123  
  1124  	// Delete all fields that are hidden by the Go rules for embedded fields,
  1125  	// except that fields with JSON tags are promoted.
  1126  
  1127  	// The fields are sorted in primary order of name, secondary order
  1128  	// of field index length. Loop over names; for each name, delete
  1129  	// hidden fields by choosing the one dominant field that survives.
  1130  	out := fields[:0]
  1131  	for advance, i := 0, 0; i < len(fields); i += advance {
  1132  		// One iteration per name.
  1133  		// Find the sequence of fields with the name of this first field.
  1134  		fi := fields[i]
  1135  		name := fi.name
  1136  		for advance = 1; i+advance < len(fields); advance++ {
  1137  			fj := fields[i+advance]
  1138  			if fj.name != name {
  1139  				break
  1140  			}
  1141  		}
  1142  		if advance == 1 { // Only one field with this name
  1143  			out = append(out, fi)
  1144  			continue
  1145  		}
  1146  		dominant, ok := dominantField(fields[i : i+advance])
  1147  		if ok {
  1148  			out = append(out, dominant)
  1149  		}
  1150  	}
  1151  
  1152  	fields = out
  1153  	sort.Sort(byIndex(fields))
  1154  
  1155  	return fields
  1156  }
  1157  
  1158  // dominantField looks through the fields, all of which are known to
  1159  // have the same name, to find the single field that dominates the
  1160  // others using Go's embedding rules, modified by the presence of
  1161  // JSON tags. If there are multiple top-level fields, the boolean
  1162  // will be false: This condition is an error in Go and we skip all
  1163  // the fields.
  1164  func dominantField(fields []field) (field, bool) {
  1165  	// The fields are sorted in increasing index-length order. The winner
  1166  	// must therefore be one with the shortest index length. Drop all
  1167  	// longer entries, which is easy: just truncate the slice.
  1168  	length := len(fields[0].index)
  1169  	tagged := -1 // Index of first tagged field.
  1170  	for i, f := range fields {
  1171  		if len(f.index) > length {
  1172  			fields = fields[:i]
  1173  			break
  1174  		}
  1175  		if f.tag {
  1176  			if tagged >= 0 {
  1177  				// Multiple tagged fields at the same level: conflict.
  1178  				// Return no field.
  1179  				return field{}, false
  1180  			}
  1181  			tagged = i
  1182  		}
  1183  	}
  1184  	if tagged >= 0 {
  1185  		return fields[tagged], true
  1186  	}
  1187  	// All remaining fields have the same length. If there's more than one,
  1188  	// we have a conflict (two fields named "X" at the same level) and we
  1189  	// return no field.
  1190  	if len(fields) > 1 {
  1191  		return field{}, false
  1192  	}
  1193  	return fields[0], true
  1194  }
  1195  
  1196  var fieldCache struct {
  1197  	sync.RWMutex
  1198  	m map[reflect.Type][]field
  1199  }
  1200  
  1201  // cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
  1202  func cachedTypeFields(t reflect.Type) []field {
  1203  	fieldCache.RLock()
  1204  	f := fieldCache.m[t]
  1205  	fieldCache.RUnlock()
  1206  	if f != nil {
  1207  		return f
  1208  	}
  1209  
  1210  	// Compute fields without lock.
  1211  	// Might duplicate effort but won't hold other computations back.
  1212  	f = typeFields(t)
  1213  	if f == nil {
  1214  		f = []field{}
  1215  	}
  1216  
  1217  	fieldCache.Lock()
  1218  	if fieldCache.m == nil {
  1219  		fieldCache.m = map[reflect.Type][]field{}
  1220  	}
  1221  	fieldCache.m[t] = f
  1222  	fieldCache.Unlock()
  1223  	return f
  1224  }