github.com/miolini/go@v0.0.0-20160405192216-fca68c8cb408/src/runtime/cgocall.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Cgo call and callback support.
     6  //
     7  // To call into the C function f from Go, the cgo-generated code calls
     8  // runtime.cgocall(_cgo_Cfunc_f, frame), where _cgo_Cfunc_f is a
     9  // gcc-compiled function written by cgo.
    10  //
    11  // runtime.cgocall (below) locks g to m, calls entersyscall
    12  // so as not to block other goroutines or the garbage collector,
    13  // and then calls runtime.asmcgocall(_cgo_Cfunc_f, frame).
    14  //
    15  // runtime.asmcgocall (in asm_$GOARCH.s) switches to the m->g0 stack
    16  // (assumed to be an operating system-allocated stack, so safe to run
    17  // gcc-compiled code on) and calls _cgo_Cfunc_f(frame).
    18  //
    19  // _cgo_Cfunc_f invokes the actual C function f with arguments
    20  // taken from the frame structure, records the results in the frame,
    21  // and returns to runtime.asmcgocall.
    22  //
    23  // After it regains control, runtime.asmcgocall switches back to the
    24  // original g (m->curg)'s stack and returns to runtime.cgocall.
    25  //
    26  // After it regains control, runtime.cgocall calls exitsyscall, which blocks
    27  // until this m can run Go code without violating the $GOMAXPROCS limit,
    28  // and then unlocks g from m.
    29  //
    30  // The above description skipped over the possibility of the gcc-compiled
    31  // function f calling back into Go. If that happens, we continue down
    32  // the rabbit hole during the execution of f.
    33  //
    34  // To make it possible for gcc-compiled C code to call a Go function p.GoF,
    35  // cgo writes a gcc-compiled function named GoF (not p.GoF, since gcc doesn't
    36  // know about packages).  The gcc-compiled C function f calls GoF.
    37  //
    38  // GoF calls crosscall2(_cgoexp_GoF, frame, framesize).  Crosscall2
    39  // (in cgo/gcc_$GOARCH.S, a gcc-compiled assembly file) is a two-argument
    40  // adapter from the gcc function call ABI to the 6c function call ABI.
    41  // It is called from gcc to call 6c functions. In this case it calls
    42  // _cgoexp_GoF(frame, framesize), still running on m->g0's stack
    43  // and outside the $GOMAXPROCS limit. Thus, this code cannot yet
    44  // call arbitrary Go code directly and must be careful not to allocate
    45  // memory or use up m->g0's stack.
    46  //
    47  // _cgoexp_GoF calls runtime.cgocallback(p.GoF, frame, framesize).
    48  // (The reason for having _cgoexp_GoF instead of writing a crosscall3
    49  // to make this call directly is that _cgoexp_GoF, because it is compiled
    50  // with 6c instead of gcc, can refer to dotted names like
    51  // runtime.cgocallback and p.GoF.)
    52  //
    53  // runtime.cgocallback (in asm_$GOARCH.s) switches from m->g0's
    54  // stack to the original g (m->curg)'s stack, on which it calls
    55  // runtime.cgocallbackg(p.GoF, frame, framesize).
    56  // As part of the stack switch, runtime.cgocallback saves the current
    57  // SP as m->g0->sched.sp, so that any use of m->g0's stack during the
    58  // execution of the callback will be done below the existing stack frames.
    59  // Before overwriting m->g0->sched.sp, it pushes the old value on the
    60  // m->g0 stack, so that it can be restored later.
    61  //
    62  // runtime.cgocallbackg (below) is now running on a real goroutine
    63  // stack (not an m->g0 stack).  First it calls runtime.exitsyscall, which will
    64  // block until the $GOMAXPROCS limit allows running this goroutine.
    65  // Once exitsyscall has returned, it is safe to do things like call the memory
    66  // allocator or invoke the Go callback function p.GoF.  runtime.cgocallbackg
    67  // first defers a function to unwind m->g0.sched.sp, so that if p.GoF
    68  // panics, m->g0.sched.sp will be restored to its old value: the m->g0 stack
    69  // and the m->curg stack will be unwound in lock step.
    70  // Then it calls p.GoF.  Finally it pops but does not execute the deferred
    71  // function, calls runtime.entersyscall, and returns to runtime.cgocallback.
    72  //
    73  // After it regains control, runtime.cgocallback switches back to
    74  // m->g0's stack (the pointer is still in m->g0.sched.sp), restores the old
    75  // m->g0.sched.sp value from the stack, and returns to _cgoexp_GoF.
    76  //
    77  // _cgoexp_GoF immediately returns to crosscall2, which restores the
    78  // callee-save registers for gcc and returns to GoF, which returns to f.
    79  
    80  package runtime
    81  
    82  import (
    83  	"runtime/internal/sys"
    84  	"unsafe"
    85  )
    86  
    87  // Addresses collected in a cgo backtrace when crashing.
    88  // Length must match arg.Max in x_cgo_callers in runtime/cgo/gcc_traceback.c.
    89  type cgoCallers [32]uintptr
    90  
    91  // Call from Go to C.
    92  //go:nosplit
    93  func cgocall(fn, arg unsafe.Pointer) int32 {
    94  	if !iscgo && GOOS != "solaris" && GOOS != "windows" {
    95  		throw("cgocall unavailable")
    96  	}
    97  
    98  	if fn == nil {
    99  		throw("cgocall nil")
   100  	}
   101  
   102  	if raceenabled {
   103  		racereleasemerge(unsafe.Pointer(&racecgosync))
   104  	}
   105  
   106  	/*
   107  	 * Lock g to m to ensure we stay on the same stack if we do a
   108  	 * cgo callback. Add entry to defer stack in case of panic.
   109  	 */
   110  	lockOSThread()
   111  	mp := getg().m
   112  	mp.ncgocall++
   113  	mp.ncgo++
   114  	defer endcgo(mp)
   115  
   116  	// Reset traceback.
   117  	mp.cgoCallers[0] = 0
   118  
   119  	/*
   120  	 * Announce we are entering a system call
   121  	 * so that the scheduler knows to create another
   122  	 * M to run goroutines while we are in the
   123  	 * foreign code.
   124  	 *
   125  	 * The call to asmcgocall is guaranteed not to
   126  	 * split the stack and does not allocate memory,
   127  	 * so it is safe to call while "in a system call", outside
   128  	 * the $GOMAXPROCS accounting.
   129  	 */
   130  	entersyscall(0)
   131  	errno := asmcgocall(fn, arg)
   132  	exitsyscall(0)
   133  
   134  	return errno
   135  }
   136  
   137  //go:nosplit
   138  func endcgo(mp *m) {
   139  	mp.ncgo--
   140  
   141  	if raceenabled {
   142  		raceacquire(unsafe.Pointer(&racecgosync))
   143  	}
   144  
   145  	unlockOSThread() // invalidates mp
   146  }
   147  
   148  // Helper functions for cgo code.
   149  
   150  func cmalloc(n uintptr) unsafe.Pointer {
   151  	var args struct {
   152  		n   uint64
   153  		ret unsafe.Pointer
   154  	}
   155  	args.n = uint64(n)
   156  	cgocall(_cgo_malloc, unsafe.Pointer(&args))
   157  	if args.ret == nil {
   158  		throw("C malloc failed")
   159  	}
   160  	return args.ret
   161  }
   162  
   163  func cfree(p unsafe.Pointer) {
   164  	cgocall(_cgo_free, p)
   165  }
   166  
   167  // Call from C back to Go.
   168  //go:nosplit
   169  func cgocallbackg() {
   170  	gp := getg()
   171  	if gp != gp.m.curg {
   172  		println("runtime: bad g in cgocallback")
   173  		exit(2)
   174  	}
   175  
   176  	// Save current syscall parameters, so m.syscall can be
   177  	// used again if callback decide to make syscall.
   178  	syscall := gp.m.syscall
   179  
   180  	// entersyscall saves the caller's SP to allow the GC to trace the Go
   181  	// stack. However, since we're returning to an earlier stack frame and
   182  	// need to pair with the entersyscall() call made by cgocall, we must
   183  	// save syscall* and let reentersyscall restore them.
   184  	savedsp := unsafe.Pointer(gp.syscallsp)
   185  	savedpc := gp.syscallpc
   186  	exitsyscall(0) // coming out of cgo call
   187  	cgocallbackg1()
   188  	// going back to cgo call
   189  	reentersyscall(savedpc, uintptr(savedsp))
   190  
   191  	gp.m.syscall = syscall
   192  }
   193  
   194  func cgocallbackg1() {
   195  	gp := getg()
   196  	if gp.m.needextram {
   197  		gp.m.needextram = false
   198  		systemstack(newextram)
   199  	}
   200  
   201  	if gp.m.ncgo == 0 {
   202  		// The C call to Go came from a thread not currently running
   203  		// any Go. In the case of -buildmode=c-archive or c-shared,
   204  		// this call may be coming in before package initialization
   205  		// is complete. Wait until it is.
   206  		<-main_init_done
   207  	}
   208  
   209  	// Add entry to defer stack in case of panic.
   210  	restore := true
   211  	defer unwindm(&restore)
   212  
   213  	if raceenabled {
   214  		raceacquire(unsafe.Pointer(&racecgosync))
   215  	}
   216  
   217  	type args struct {
   218  		fn      *funcval
   219  		arg     unsafe.Pointer
   220  		argsize uintptr
   221  	}
   222  	var cb *args
   223  
   224  	// Location of callback arguments depends on stack frame layout
   225  	// and size of stack frame of cgocallback_gofunc.
   226  	sp := gp.m.g0.sched.sp
   227  	switch GOARCH {
   228  	default:
   229  		throw("cgocallbackg is unimplemented on arch")
   230  	case "arm":
   231  		// On arm, stack frame is two words and there's a saved LR between
   232  		// SP and the stack frame and between the stack frame and the arguments.
   233  		cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize))
   234  	case "arm64":
   235  		// On arm64, stack frame is four words and there's a saved LR between
   236  		// SP and the stack frame and between the stack frame and the arguments.
   237  		cb = (*args)(unsafe.Pointer(sp + 5*sys.PtrSize))
   238  	case "amd64":
   239  		// On amd64, stack frame is one word, plus caller PC.
   240  		if framepointer_enabled {
   241  			// In this case, there's also saved BP.
   242  			cb = (*args)(unsafe.Pointer(sp + 3*sys.PtrSize))
   243  			break
   244  		}
   245  		cb = (*args)(unsafe.Pointer(sp + 2*sys.PtrSize))
   246  	case "386":
   247  		// On 386, stack frame is three words, plus caller PC.
   248  		cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize))
   249  	case "ppc64", "ppc64le":
   250  		// On ppc64, the callback arguments are in the arguments area of
   251  		// cgocallback's stack frame. The stack looks like this:
   252  		// +--------------------+------------------------------+
   253  		// |                    | ...                          |
   254  		// | cgoexp_$fn         +------------------------------+
   255  		// |                    | fixed frame area             |
   256  		// +--------------------+------------------------------+
   257  		// |                    | arguments area               |
   258  		// | cgocallback        +------------------------------+ <- sp + 2*minFrameSize + 2*ptrSize
   259  		// |                    | fixed frame area             |
   260  		// +--------------------+------------------------------+ <- sp + minFrameSize + 2*ptrSize
   261  		// |                    | local variables (2 pointers) |
   262  		// | cgocallback_gofunc +------------------------------+ <- sp + minFrameSize
   263  		// |                    | fixed frame area             |
   264  		// +--------------------+------------------------------+ <- sp
   265  		cb = (*args)(unsafe.Pointer(sp + 2*sys.MinFrameSize + 2*sys.PtrSize))
   266  	}
   267  
   268  	// Invoke callback.
   269  	// NOTE(rsc): passing nil for argtype means that the copying of the
   270  	// results back into cb.arg happens without any corresponding write barriers.
   271  	// For cgo, cb.arg points into a C stack frame and therefore doesn't
   272  	// hold any pointers that the GC can find anyway - the write barrier
   273  	// would be a no-op.
   274  	reflectcall(nil, unsafe.Pointer(cb.fn), cb.arg, uint32(cb.argsize), 0)
   275  
   276  	if raceenabled {
   277  		racereleasemerge(unsafe.Pointer(&racecgosync))
   278  	}
   279  	if msanenabled {
   280  		// Tell msan that we wrote to the entire argument block.
   281  		// This tells msan that we set the results.
   282  		// Since we have already called the function it doesn't
   283  		// matter that we are writing to the non-result parameters.
   284  		msanwrite(cb.arg, cb.argsize)
   285  	}
   286  
   287  	// Do not unwind m->g0->sched.sp.
   288  	// Our caller, cgocallback, will do that.
   289  	restore = false
   290  }
   291  
   292  func unwindm(restore *bool) {
   293  	if !*restore {
   294  		return
   295  	}
   296  	// Restore sp saved by cgocallback during
   297  	// unwind of g's stack (see comment at top of file).
   298  	mp := acquirem()
   299  	sched := &mp.g0.sched
   300  	switch GOARCH {
   301  	default:
   302  		throw("unwindm not implemented")
   303  	case "386", "amd64", "arm", "ppc64", "ppc64le":
   304  		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + sys.MinFrameSize))
   305  	case "arm64":
   306  		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + 16))
   307  	}
   308  	releasem(mp)
   309  }
   310  
   311  // called from assembly
   312  func badcgocallback() {
   313  	throw("misaligned stack in cgocallback")
   314  }
   315  
   316  // called from (incomplete) assembly
   317  func cgounimpl() {
   318  	throw("cgo not implemented")
   319  }
   320  
   321  var racecgosync uint64 // represents possible synchronization in C code
   322  
   323  // Pointer checking for cgo code.
   324  
   325  // We want to detect all cases where a program that does not use
   326  // unsafe makes a cgo call passing a Go pointer to memory that
   327  // contains a Go pointer. Here a Go pointer is defined as a pointer
   328  // to memory allocated by the Go runtime. Programs that use unsafe
   329  // can evade this restriction easily, so we don't try to catch them.
   330  // The cgo program will rewrite all possibly bad pointer arguments to
   331  // call cgoCheckPointer, where we can catch cases of a Go pointer
   332  // pointing to a Go pointer.
   333  
   334  // Complicating matters, taking the address of a slice or array
   335  // element permits the C program to access all elements of the slice
   336  // or array. In that case we will see a pointer to a single element,
   337  // but we need to check the entire data structure.
   338  
   339  // The cgoCheckPointer call takes additional arguments indicating that
   340  // it was called on an address expression. An additional argument of
   341  // true means that it only needs to check a single element. An
   342  // additional argument of a slice or array means that it needs to
   343  // check the entire slice/array, but nothing else. Otherwise, the
   344  // pointer could be anything, and we check the entire heap object,
   345  // which is conservative but safe.
   346  
   347  // When and if we implement a moving garbage collector,
   348  // cgoCheckPointer will pin the pointer for the duration of the cgo
   349  // call.  (This is necessary but not sufficient; the cgo program will
   350  // also have to change to pin Go pointers that cannot point to Go
   351  // pointers.)
   352  
   353  // cgoCheckPointer checks if the argument contains a Go pointer that
   354  // points to a Go pointer, and panics if it does. It returns the pointer.
   355  func cgoCheckPointer(ptr interface{}, args ...interface{}) interface{} {
   356  	if debug.cgocheck == 0 {
   357  		return ptr
   358  	}
   359  
   360  	ep := (*eface)(unsafe.Pointer(&ptr))
   361  	t := ep._type
   362  
   363  	top := true
   364  	if len(args) > 0 && (t.kind&kindMask == kindPtr || t.kind&kindMask == kindUnsafePointer) {
   365  		p := ep.data
   366  		if t.kind&kindDirectIface == 0 {
   367  			p = *(*unsafe.Pointer)(p)
   368  		}
   369  		if !cgoIsGoPointer(p) {
   370  			return ptr
   371  		}
   372  		aep := (*eface)(unsafe.Pointer(&args[0]))
   373  		switch aep._type.kind & kindMask {
   374  		case kindBool:
   375  			if t.kind&kindMask == kindUnsafePointer {
   376  				// We don't know the type of the element.
   377  				break
   378  			}
   379  			pt := (*ptrtype)(unsafe.Pointer(t))
   380  			cgoCheckArg(pt.elem, p, true, false, cgoCheckPointerFail)
   381  			return ptr
   382  		case kindSlice:
   383  			// Check the slice rather than the pointer.
   384  			ep = aep
   385  			t = ep._type
   386  		case kindArray:
   387  			// Check the array rather than the pointer.
   388  			// Pass top as false since we have a pointer
   389  			// to the array.
   390  			ep = aep
   391  			t = ep._type
   392  			top = false
   393  		default:
   394  			throw("can't happen")
   395  		}
   396  	}
   397  
   398  	cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, top, cgoCheckPointerFail)
   399  	return ptr
   400  }
   401  
   402  const cgoCheckPointerFail = "cgo argument has Go pointer to Go pointer"
   403  const cgoResultFail = "cgo result has Go pointer"
   404  
   405  // cgoCheckArg is the real work of cgoCheckPointer. The argument p
   406  // is either a pointer to the value (of type t), or the value itself,
   407  // depending on indir. The top parameter is whether we are at the top
   408  // level, where Go pointers are allowed.
   409  func cgoCheckArg(t *_type, p unsafe.Pointer, indir, top bool, msg string) {
   410  	if t.kind&kindNoPointers != 0 {
   411  		// If the type has no pointers there is nothing to do.
   412  		return
   413  	}
   414  
   415  	switch t.kind & kindMask {
   416  	default:
   417  		throw("can't happen")
   418  	case kindArray:
   419  		at := (*arraytype)(unsafe.Pointer(t))
   420  		if !indir {
   421  			if at.len != 1 {
   422  				throw("can't happen")
   423  			}
   424  			cgoCheckArg(at.elem, p, at.elem.kind&kindDirectIface == 0, top, msg)
   425  			return
   426  		}
   427  		for i := uintptr(0); i < at.len; i++ {
   428  			cgoCheckArg(at.elem, p, true, top, msg)
   429  			p = add(p, at.elem.size)
   430  		}
   431  	case kindChan, kindMap:
   432  		// These types contain internal pointers that will
   433  		// always be allocated in the Go heap. It's never OK
   434  		// to pass them to C.
   435  		panic(errorString(msg))
   436  	case kindFunc:
   437  		if indir {
   438  			p = *(*unsafe.Pointer)(p)
   439  		}
   440  		if !cgoIsGoPointer(p) {
   441  			return
   442  		}
   443  		panic(errorString(msg))
   444  	case kindInterface:
   445  		it := *(**_type)(p)
   446  		if it == nil {
   447  			return
   448  		}
   449  		// A type known at compile time is OK since it's
   450  		// constant. A type not known at compile time will be
   451  		// in the heap and will not be OK.
   452  		if inheap(uintptr(unsafe.Pointer(it))) {
   453  			panic(errorString(msg))
   454  		}
   455  		p = *(*unsafe.Pointer)(add(p, sys.PtrSize))
   456  		if !cgoIsGoPointer(p) {
   457  			return
   458  		}
   459  		if !top {
   460  			panic(errorString(msg))
   461  		}
   462  		cgoCheckArg(it, p, it.kind&kindDirectIface == 0, false, msg)
   463  	case kindSlice:
   464  		st := (*slicetype)(unsafe.Pointer(t))
   465  		s := (*slice)(p)
   466  		p = s.array
   467  		if !cgoIsGoPointer(p) {
   468  			return
   469  		}
   470  		if !top {
   471  			panic(errorString(msg))
   472  		}
   473  		if st.elem.kind&kindNoPointers != 0 {
   474  			return
   475  		}
   476  		for i := 0; i < s.cap; i++ {
   477  			cgoCheckArg(st.elem, p, true, false, msg)
   478  			p = add(p, st.elem.size)
   479  		}
   480  	case kindString:
   481  		ss := (*stringStruct)(p)
   482  		if !cgoIsGoPointer(ss.str) {
   483  			return
   484  		}
   485  		if !top {
   486  			panic(errorString(msg))
   487  		}
   488  	case kindStruct:
   489  		st := (*structtype)(unsafe.Pointer(t))
   490  		if !indir {
   491  			if len(st.fields) != 1 {
   492  				throw("can't happen")
   493  			}
   494  			cgoCheckArg(st.fields[0].typ, p, st.fields[0].typ.kind&kindDirectIface == 0, top, msg)
   495  			return
   496  		}
   497  		for _, f := range st.fields {
   498  			cgoCheckArg(f.typ, add(p, f.offset), true, top, msg)
   499  		}
   500  	case kindPtr, kindUnsafePointer:
   501  		if indir {
   502  			p = *(*unsafe.Pointer)(p)
   503  		}
   504  
   505  		if !cgoIsGoPointer(p) {
   506  			return
   507  		}
   508  		if !top {
   509  			panic(errorString(msg))
   510  		}
   511  
   512  		cgoCheckUnknownPointer(p, msg)
   513  	}
   514  }
   515  
   516  // cgoCheckUnknownPointer is called for an arbitrary pointer into Go
   517  // memory. It checks whether that Go memory contains any other
   518  // pointer into Go memory. If it does, we panic.
   519  // The return values are unused but useful to see in panic tracebacks.
   520  func cgoCheckUnknownPointer(p unsafe.Pointer, msg string) (base, i uintptr) {
   521  	if cgoInRange(p, mheap_.arena_start, mheap_.arena_used) {
   522  		if !inheap(uintptr(p)) {
   523  			// On 32-bit systems it is possible for C's allocated memory
   524  			// to have addresses between arena_start and arena_used.
   525  			// Either this pointer is a stack or an unused span or it's
   526  			// a C allocation. Escape analysis should prevent the first,
   527  			// garbage collection should prevent the second,
   528  			// and the third is completely OK.
   529  			return
   530  		}
   531  
   532  		b, hbits, span := heapBitsForObject(uintptr(p), 0, 0)
   533  		base = b
   534  		if base == 0 {
   535  			return
   536  		}
   537  		n := span.elemsize
   538  		for i = uintptr(0); i < n; i += sys.PtrSize {
   539  			bits := hbits.bits()
   540  			if i >= 2*sys.PtrSize && bits&bitMarked == 0 {
   541  				// No more possible pointers.
   542  				break
   543  			}
   544  			if bits&bitPointer != 0 {
   545  				if cgoIsGoPointer(*(*unsafe.Pointer)(unsafe.Pointer(base + i))) {
   546  					panic(errorString(msg))
   547  				}
   548  			}
   549  			hbits = hbits.next()
   550  		}
   551  
   552  		return
   553  	}
   554  
   555  	for datap := &firstmoduledata; datap != nil; datap = datap.next {
   556  		if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) {
   557  			// We have no way to know the size of the object.
   558  			// We have to assume that it might contain a pointer.
   559  			panic(errorString(msg))
   560  		}
   561  		// In the text or noptr sections, we know that the
   562  		// pointer does not point to a Go pointer.
   563  	}
   564  
   565  	return
   566  }
   567  
   568  // cgoIsGoPointer returns whether the pointer is a Go pointer--a
   569  // pointer to Go memory. We only care about Go memory that might
   570  // contain pointers.
   571  //go:nosplit
   572  //go:nowritebarrierrec
   573  func cgoIsGoPointer(p unsafe.Pointer) bool {
   574  	if p == nil {
   575  		return false
   576  	}
   577  
   578  	if cgoInRange(p, mheap_.arena_start, mheap_.arena_used) {
   579  		return true
   580  	}
   581  
   582  	for datap := &firstmoduledata; datap != nil; datap = datap.next {
   583  		if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) {
   584  			return true
   585  		}
   586  	}
   587  
   588  	return false
   589  }
   590  
   591  // cgoInRange returns whether p is between start and end.
   592  //go:nosplit
   593  //go:nowritebarrierrec
   594  func cgoInRange(p unsafe.Pointer, start, end uintptr) bool {
   595  	return start <= uintptr(p) && uintptr(p) < end
   596  }
   597  
   598  // cgoCheckResult is called to check the result parameter of an
   599  // exported Go function. It panics if the result is or contains a Go
   600  // pointer.
   601  func cgoCheckResult(val interface{}) {
   602  	if debug.cgocheck == 0 {
   603  		return
   604  	}
   605  
   606  	ep := (*eface)(unsafe.Pointer(&val))
   607  	t := ep._type
   608  	cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, false, cgoResultFail)
   609  }