github.com/miolini/go@v0.0.0-20160405192216-fca68c8cb408/src/runtime/os1_linux.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package runtime
     6  
     7  import (
     8  	"runtime/internal/sys"
     9  	"unsafe"
    10  )
    11  
    12  // Linux futex.
    13  //
    14  //	futexsleep(uint32 *addr, uint32 val)
    15  //	futexwakeup(uint32 *addr)
    16  //
    17  // Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
    18  // Futexwakeup wakes up threads sleeping on addr.
    19  // Futexsleep is allowed to wake up spuriously.
    20  
    21  const (
    22  	_FUTEX_WAIT = 0
    23  	_FUTEX_WAKE = 1
    24  )
    25  
    26  // Atomically,
    27  //	if(*addr == val) sleep
    28  // Might be woken up spuriously; that's allowed.
    29  // Don't sleep longer than ns; ns < 0 means forever.
    30  //go:nosplit
    31  func futexsleep(addr *uint32, val uint32, ns int64) {
    32  	var ts timespec
    33  
    34  	// Some Linux kernels have a bug where futex of
    35  	// FUTEX_WAIT returns an internal error code
    36  	// as an errno. Libpthread ignores the return value
    37  	// here, and so can we: as it says a few lines up,
    38  	// spurious wakeups are allowed.
    39  	if ns < 0 {
    40  		futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, nil, nil, 0)
    41  		return
    42  	}
    43  
    44  	// It's difficult to live within the no-split stack limits here.
    45  	// On ARM and 386, a 64-bit divide invokes a general software routine
    46  	// that needs more stack than we can afford. So we use timediv instead.
    47  	// But on real 64-bit systems, where words are larger but the stack limit
    48  	// is not, even timediv is too heavy, and we really need to use just an
    49  	// ordinary machine instruction.
    50  	if sys.PtrSize == 8 {
    51  		ts.set_sec(ns / 1000000000)
    52  		ts.set_nsec(int32(ns % 1000000000))
    53  	} else {
    54  		ts.tv_nsec = 0
    55  		ts.set_sec(int64(timediv(ns, 1000000000, (*int32)(unsafe.Pointer(&ts.tv_nsec)))))
    56  	}
    57  	futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, unsafe.Pointer(&ts), nil, 0)
    58  }
    59  
    60  // If any procs are sleeping on addr, wake up at most cnt.
    61  //go:nosplit
    62  func futexwakeup(addr *uint32, cnt uint32) {
    63  	ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE, cnt, nil, nil, 0)
    64  	if ret >= 0 {
    65  		return
    66  	}
    67  
    68  	// I don't know that futex wakeup can return
    69  	// EAGAIN or EINTR, but if it does, it would be
    70  	// safe to loop and call futex again.
    71  	systemstack(func() {
    72  		print("futexwakeup addr=", addr, " returned ", ret, "\n")
    73  	})
    74  
    75  	*(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006
    76  }
    77  
    78  func getproccount() int32 {
    79  	// This buffer is huge (8 kB) but we are on the system stack
    80  	// and there should be plenty of space (64 kB).
    81  	// Also this is a leaf, so we're not holding up the memory for long.
    82  	// See golang.org/issue/11823.
    83  	// The suggested behavior here is to keep trying with ever-larger
    84  	// buffers, but we don't have a dynamic memory allocator at the
    85  	// moment, so that's a bit tricky and seems like overkill.
    86  	const maxCPUs = 64 * 1024
    87  	var buf [maxCPUs / (sys.PtrSize * 8)]uintptr
    88  	r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf[0])
    89  	n := int32(0)
    90  	for _, v := range buf[:r/sys.PtrSize] {
    91  		for v != 0 {
    92  			n += int32(v & 1)
    93  			v >>= 1
    94  		}
    95  	}
    96  	if n == 0 {
    97  		n = 1
    98  	}
    99  	return n
   100  }
   101  
   102  // Clone, the Linux rfork.
   103  const (
   104  	_CLONE_VM             = 0x100
   105  	_CLONE_FS             = 0x200
   106  	_CLONE_FILES          = 0x400
   107  	_CLONE_SIGHAND        = 0x800
   108  	_CLONE_PTRACE         = 0x2000
   109  	_CLONE_VFORK          = 0x4000
   110  	_CLONE_PARENT         = 0x8000
   111  	_CLONE_THREAD         = 0x10000
   112  	_CLONE_NEWNS          = 0x20000
   113  	_CLONE_SYSVSEM        = 0x40000
   114  	_CLONE_SETTLS         = 0x80000
   115  	_CLONE_PARENT_SETTID  = 0x100000
   116  	_CLONE_CHILD_CLEARTID = 0x200000
   117  	_CLONE_UNTRACED       = 0x800000
   118  	_CLONE_CHILD_SETTID   = 0x1000000
   119  	_CLONE_STOPPED        = 0x2000000
   120  	_CLONE_NEWUTS         = 0x4000000
   121  	_CLONE_NEWIPC         = 0x8000000
   122  
   123  	cloneFlags = _CLONE_VM | /* share memory */
   124  		_CLONE_FS | /* share cwd, etc */
   125  		_CLONE_FILES | /* share fd table */
   126  		_CLONE_SIGHAND | /* share sig handler table */
   127  		_CLONE_THREAD /* revisit - okay for now */
   128  )
   129  
   130  // May run with m.p==nil, so write barriers are not allowed.
   131  //go:nowritebarrier
   132  func newosproc(mp *m, stk unsafe.Pointer) {
   133  	/*
   134  	 * note: strace gets confused if we use CLONE_PTRACE here.
   135  	 */
   136  	if false {
   137  		print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " clone=", funcPC(clone), " id=", mp.id, " ostk=", &mp, "\n")
   138  	}
   139  
   140  	// Disable signals during clone, so that the new thread starts
   141  	// with signals disabled. It will enable them in minit.
   142  	var oset sigset
   143  	rtsigprocmask(_SIG_SETMASK, &sigset_all, &oset, int32(unsafe.Sizeof(oset)))
   144  	ret := clone(cloneFlags, stk, unsafe.Pointer(mp), unsafe.Pointer(mp.g0), unsafe.Pointer(funcPC(mstart)))
   145  	rtsigprocmask(_SIG_SETMASK, &oset, nil, int32(unsafe.Sizeof(oset)))
   146  
   147  	if ret < 0 {
   148  		print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -ret, ")\n")
   149  		throw("newosproc")
   150  	}
   151  }
   152  
   153  // Version of newosproc that doesn't require a valid G.
   154  //go:nosplit
   155  func newosproc0(stacksize uintptr, fn unsafe.Pointer) {
   156  	stack := sysAlloc(stacksize, &memstats.stacks_sys)
   157  	if stack == nil {
   158  		write(2, unsafe.Pointer(&failallocatestack[0]), int32(len(failallocatestack)))
   159  		exit(1)
   160  	}
   161  	ret := clone(cloneFlags, unsafe.Pointer(uintptr(stack)+stacksize), nil, nil, fn)
   162  	if ret < 0 {
   163  		write(2, unsafe.Pointer(&failthreadcreate[0]), int32(len(failthreadcreate)))
   164  		exit(1)
   165  	}
   166  }
   167  
   168  var failallocatestack = []byte("runtime: failed to allocate stack for the new OS thread\n")
   169  var failthreadcreate = []byte("runtime: failed to create new OS thread\n")
   170  
   171  func osinit() {
   172  	ncpu = getproccount()
   173  }
   174  
   175  var urandom_dev = []byte("/dev/urandom\x00")
   176  
   177  func getRandomData(r []byte) {
   178  	if startupRandomData != nil {
   179  		n := copy(r, startupRandomData)
   180  		extendRandom(r, n)
   181  		return
   182  	}
   183  	fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0)
   184  	n := read(fd, unsafe.Pointer(&r[0]), int32(len(r)))
   185  	closefd(fd)
   186  	extendRandom(r, int(n))
   187  }
   188  
   189  func goenvs() {
   190  	goenvs_unix()
   191  }
   192  
   193  // Called to do synchronous initialization of Go code built with
   194  // -buildmode=c-archive or -buildmode=c-shared.
   195  // None of the Go runtime is initialized.
   196  //go:nosplit
   197  //go:nowritebarrierrec
   198  func libpreinit() {
   199  	initsig(true)
   200  }
   201  
   202  // Called to initialize a new m (including the bootstrap m).
   203  // Called on the parent thread (main thread in case of bootstrap), can allocate memory.
   204  func mpreinit(mp *m) {
   205  	mp.gsignal = malg(32 * 1024) // Linux wants >= 2K
   206  	mp.gsignal.m = mp
   207  }
   208  
   209  //go:nosplit
   210  func msigsave(mp *m) {
   211  	smask := &mp.sigmask
   212  	rtsigprocmask(_SIG_SETMASK, nil, smask, int32(unsafe.Sizeof(*smask)))
   213  }
   214  
   215  //go:nosplit
   216  func msigrestore(sigmask sigset) {
   217  	rtsigprocmask(_SIG_SETMASK, &sigmask, nil, int32(unsafe.Sizeof(sigmask)))
   218  }
   219  
   220  //go:nosplit
   221  func sigblock() {
   222  	rtsigprocmask(_SIG_SETMASK, &sigset_all, nil, int32(unsafe.Sizeof(sigset_all)))
   223  }
   224  
   225  func gettid() uint32
   226  
   227  // Called to initialize a new m (including the bootstrap m).
   228  // Called on the new thread, cannot allocate memory.
   229  func minit() {
   230  	// Initialize signal handling.
   231  	_g_ := getg()
   232  
   233  	var st sigaltstackt
   234  	sigaltstack(nil, &st)
   235  	if st.ss_flags&_SS_DISABLE != 0 {
   236  		signalstack(&_g_.m.gsignal.stack)
   237  		_g_.m.newSigstack = true
   238  	} else {
   239  		// Use existing signal stack.
   240  		stsp := uintptr(unsafe.Pointer(st.ss_sp))
   241  		_g_.m.gsignal.stack.lo = stsp
   242  		_g_.m.gsignal.stack.hi = stsp + st.ss_size
   243  		_g_.m.gsignal.stackguard0 = stsp + _StackGuard
   244  		_g_.m.gsignal.stackguard1 = stsp + _StackGuard
   245  		_g_.m.gsignal.stackAlloc = st.ss_size
   246  		_g_.m.newSigstack = false
   247  	}
   248  
   249  	// for debuggers, in case cgo created the thread
   250  	_g_.m.procid = uint64(gettid())
   251  
   252  	// restore signal mask from m.sigmask and unblock essential signals
   253  	nmask := _g_.m.sigmask
   254  	for i := range sigtable {
   255  		if sigtable[i].flags&_SigUnblock != 0 {
   256  			sigdelset(&nmask, i)
   257  		}
   258  	}
   259  	rtsigprocmask(_SIG_SETMASK, &nmask, nil, int32(unsafe.Sizeof(nmask)))
   260  }
   261  
   262  // Called from dropm to undo the effect of an minit.
   263  //go:nosplit
   264  func unminit() {
   265  	if getg().m.newSigstack {
   266  		signalstack(nil)
   267  	}
   268  }
   269  
   270  func memlimit() uintptr {
   271  	/*
   272  		TODO: Convert to Go when something actually uses the result.
   273  
   274  		Rlimit rl;
   275  		extern byte runtime·text[], runtime·end[];
   276  		uintptr used;
   277  
   278  		if(runtime·getrlimit(RLIMIT_AS, &rl) != 0)
   279  			return 0;
   280  		if(rl.rlim_cur >= 0x7fffffff)
   281  			return 0;
   282  
   283  		// Estimate our VM footprint excluding the heap.
   284  		// Not an exact science: use size of binary plus
   285  		// some room for thread stacks.
   286  		used = runtime·end - runtime·text + (64<<20);
   287  		if(used >= rl.rlim_cur)
   288  			return 0;
   289  
   290  		// If there's not at least 16 MB left, we're probably
   291  		// not going to be able to do much. Treat as no limit.
   292  		rl.rlim_cur -= used;
   293  		if(rl.rlim_cur < (16<<20))
   294  			return 0;
   295  
   296  		return rl.rlim_cur - used;
   297  	*/
   298  
   299  	return 0
   300  }
   301  
   302  //#ifdef GOARCH_386
   303  //#define sa_handler k_sa_handler
   304  //#endif
   305  
   306  func sigreturn()
   307  func sigtramp()
   308  func cgoSigtramp()
   309  
   310  //go:nosplit
   311  //go:nowritebarrierrec
   312  func setsig(i int32, fn uintptr, restart bool) {
   313  	var sa sigactiont
   314  	memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa))
   315  	sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTORER
   316  	if restart {
   317  		sa.sa_flags |= _SA_RESTART
   318  	}
   319  	sigfillset(&sa.sa_mask)
   320  	// Although Linux manpage says "sa_restorer element is obsolete and
   321  	// should not be used". x86_64 kernel requires it. Only use it on
   322  	// x86.
   323  	if GOARCH == "386" || GOARCH == "amd64" {
   324  		sa.sa_restorer = funcPC(sigreturn)
   325  	}
   326  	if fn == funcPC(sighandler) {
   327  		if iscgo {
   328  			fn = funcPC(cgoSigtramp)
   329  		} else {
   330  			fn = funcPC(sigtramp)
   331  		}
   332  	}
   333  	sa.sa_handler = fn
   334  	rt_sigaction(uintptr(i), &sa, nil, unsafe.Sizeof(sa.sa_mask))
   335  }
   336  
   337  //go:nosplit
   338  //go:nowritebarrierrec
   339  func setsigstack(i int32) {
   340  	var sa sigactiont
   341  	if rt_sigaction(uintptr(i), nil, &sa, unsafe.Sizeof(sa.sa_mask)) != 0 {
   342  		throw("rt_sigaction failure")
   343  	}
   344  	if sa.sa_handler == 0 || sa.sa_handler == _SIG_DFL || sa.sa_handler == _SIG_IGN || sa.sa_flags&_SA_ONSTACK != 0 {
   345  		return
   346  	}
   347  	sa.sa_flags |= _SA_ONSTACK
   348  	if rt_sigaction(uintptr(i), &sa, nil, unsafe.Sizeof(sa.sa_mask)) != 0 {
   349  		throw("rt_sigaction failure")
   350  	}
   351  }
   352  
   353  //go:nosplit
   354  //go:nowritebarrierrec
   355  func getsig(i int32) uintptr {
   356  	var sa sigactiont
   357  
   358  	memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa))
   359  	if rt_sigaction(uintptr(i), nil, &sa, unsafe.Sizeof(sa.sa_mask)) != 0 {
   360  		throw("rt_sigaction read failure")
   361  	}
   362  	if sa.sa_handler == funcPC(sigtramp) || sa.sa_handler == funcPC(cgoSigtramp) {
   363  		return funcPC(sighandler)
   364  	}
   365  	return sa.sa_handler
   366  }
   367  
   368  //go:nosplit
   369  func signalstack(s *stack) {
   370  	var st sigaltstackt
   371  	if s == nil {
   372  		st.ss_flags = _SS_DISABLE
   373  	} else {
   374  		st.ss_sp = (*byte)(unsafe.Pointer(s.lo))
   375  		st.ss_size = s.hi - s.lo
   376  		st.ss_flags = 0
   377  	}
   378  	sigaltstack(&st, nil)
   379  }
   380  
   381  //go:nosplit
   382  //go:nowritebarrierrec
   383  func updatesigmask(m sigmask) {
   384  	var mask sigset
   385  	sigcopyset(&mask, m)
   386  	rtsigprocmask(_SIG_SETMASK, &mask, nil, int32(unsafe.Sizeof(mask)))
   387  }
   388  
   389  func unblocksig(sig int32) {
   390  	var mask sigset
   391  	sigaddset(&mask, int(sig))
   392  	rtsigprocmask(_SIG_UNBLOCK, &mask, nil, int32(unsafe.Sizeof(mask)))
   393  }