github.com/miolini/go@v0.0.0-20160405192216-fca68c8cb408/src/text/template/exec.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package template 6 7 import ( 8 "bytes" 9 "fmt" 10 "io" 11 "reflect" 12 "runtime" 13 "sort" 14 "strings" 15 "text/template/parse" 16 ) 17 18 // state represents the state of an execution. It's not part of the 19 // template so that multiple executions of the same template 20 // can execute in parallel. 21 type state struct { 22 tmpl *Template 23 wr io.Writer 24 node parse.Node // current node, for errors 25 vars []variable // push-down stack of variable values. 26 } 27 28 // variable holds the dynamic value of a variable such as $, $x etc. 29 type variable struct { 30 name string 31 value reflect.Value 32 } 33 34 // push pushes a new variable on the stack. 35 func (s *state) push(name string, value reflect.Value) { 36 s.vars = append(s.vars, variable{name, value}) 37 } 38 39 // mark returns the length of the variable stack. 40 func (s *state) mark() int { 41 return len(s.vars) 42 } 43 44 // pop pops the variable stack up to the mark. 45 func (s *state) pop(mark int) { 46 s.vars = s.vars[0:mark] 47 } 48 49 // setVar overwrites the top-nth variable on the stack. Used by range iterations. 50 func (s *state) setVar(n int, value reflect.Value) { 51 s.vars[len(s.vars)-n].value = value 52 } 53 54 // varValue returns the value of the named variable. 55 func (s *state) varValue(name string) reflect.Value { 56 for i := s.mark() - 1; i >= 0; i-- { 57 if s.vars[i].name == name { 58 return s.vars[i].value 59 } 60 } 61 s.errorf("undefined variable: %s", name) 62 return zero 63 } 64 65 var zero reflect.Value 66 67 // at marks the state to be on node n, for error reporting. 68 func (s *state) at(node parse.Node) { 69 s.node = node 70 } 71 72 // doublePercent returns the string with %'s replaced by %%, if necessary, 73 // so it can be used safely inside a Printf format string. 74 func doublePercent(str string) string { 75 if strings.Contains(str, "%") { 76 str = strings.Replace(str, "%", "%%", -1) 77 } 78 return str 79 } 80 81 // TODO: It would be nice if ExecError was more broken down, but 82 // the way ErrorContext embeds the template name makes the 83 // processing too clumsy. 84 85 // ExecError is the custom error type returned when Execute has an 86 // error evaluating its template. (If a write error occurs, the actual 87 // error is returned; it will not be of type ExecError.) 88 type ExecError struct { 89 Name string // Name of template. 90 Err error // Pre-formatted error. 91 } 92 93 func (e ExecError) Error() string { 94 return e.Err.Error() 95 } 96 97 // errorf records an ExecError and terminates processing. 98 func (s *state) errorf(format string, args ...interface{}) { 99 name := doublePercent(s.tmpl.Name()) 100 if s.node == nil { 101 format = fmt.Sprintf("template: %s: %s", name, format) 102 } else { 103 location, context := s.tmpl.ErrorContext(s.node) 104 format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format) 105 } 106 panic(ExecError{ 107 Name: s.tmpl.Name(), 108 Err: fmt.Errorf(format, args...), 109 }) 110 } 111 112 // writeError is the wrapper type used internally when Execute has an 113 // error writing to its output. We strip the wrapper in errRecover. 114 // Note that this is not an implementation of error, so it cannot escape 115 // from the package as an error value. 116 type writeError struct { 117 Err error // Original error. 118 } 119 120 func (s *state) writeError(err error) { 121 panic(writeError{ 122 Err: err, 123 }) 124 } 125 126 // errRecover is the handler that turns panics into returns from the top 127 // level of Parse. 128 func errRecover(errp *error) { 129 e := recover() 130 if e != nil { 131 switch err := e.(type) { 132 case runtime.Error: 133 panic(e) 134 case writeError: 135 *errp = err.Err // Strip the wrapper. 136 case ExecError: 137 *errp = err // Keep the wrapper. 138 default: 139 panic(e) 140 } 141 } 142 } 143 144 // ExecuteTemplate applies the template associated with t that has the given name 145 // to the specified data object and writes the output to wr. 146 // If an error occurs executing the template or writing its output, 147 // execution stops, but partial results may already have been written to 148 // the output writer. 149 // A template may be executed safely in parallel. 150 func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error { 151 var tmpl *Template 152 if t.common != nil { 153 tmpl = t.tmpl[name] 154 } 155 if tmpl == nil { 156 return fmt.Errorf("template: no template %q associated with template %q", name, t.name) 157 } 158 return tmpl.Execute(wr, data) 159 } 160 161 // Execute applies a parsed template to the specified data object, 162 // and writes the output to wr. 163 // If an error occurs executing the template or writing its output, 164 // execution stops, but partial results may already have been written to 165 // the output writer. 166 // A template may be executed safely in parallel. 167 func (t *Template) Execute(wr io.Writer, data interface{}) error { 168 return t.execute(wr, data) 169 } 170 171 func (t *Template) execute(wr io.Writer, data interface{}) (err error) { 172 defer errRecover(&err) 173 value := reflect.ValueOf(data) 174 state := &state{ 175 tmpl: t, 176 wr: wr, 177 vars: []variable{{"$", value}}, 178 } 179 if t.Tree == nil || t.Root == nil { 180 state.errorf("%q is an incomplete or empty template%s", t.Name(), t.DefinedTemplates()) 181 } 182 state.walk(value, t.Root) 183 return 184 } 185 186 // DefinedTemplates returns a string listing the defined templates, 187 // prefixed by the string "; defined templates are: ". If there are none, 188 // it returns the empty string. For generating an error message here 189 // and in html/template. 190 func (t *Template) DefinedTemplates() string { 191 if t.common == nil { 192 return "" 193 } 194 var b bytes.Buffer 195 for name, tmpl := range t.tmpl { 196 if tmpl.Tree == nil || tmpl.Root == nil { 197 continue 198 } 199 if b.Len() > 0 { 200 b.WriteString(", ") 201 } 202 fmt.Fprintf(&b, "%q", name) 203 } 204 var s string 205 if b.Len() > 0 { 206 s = "; defined templates are: " + b.String() 207 } 208 return s 209 } 210 211 // Walk functions step through the major pieces of the template structure, 212 // generating output as they go. 213 func (s *state) walk(dot reflect.Value, node parse.Node) { 214 s.at(node) 215 switch node := node.(type) { 216 case *parse.ActionNode: 217 // Do not pop variables so they persist until next end. 218 // Also, if the action declares variables, don't print the result. 219 val := s.evalPipeline(dot, node.Pipe) 220 if len(node.Pipe.Decl) == 0 { 221 s.printValue(node, val) 222 } 223 case *parse.IfNode: 224 s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList) 225 case *parse.ListNode: 226 for _, node := range node.Nodes { 227 s.walk(dot, node) 228 } 229 case *parse.RangeNode: 230 s.walkRange(dot, node) 231 case *parse.TemplateNode: 232 s.walkTemplate(dot, node) 233 case *parse.TextNode: 234 if _, err := s.wr.Write(node.Text); err != nil { 235 s.writeError(err) 236 } 237 case *parse.WithNode: 238 s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList) 239 default: 240 s.errorf("unknown node: %s", node) 241 } 242 } 243 244 // walkIfOrWith walks an 'if' or 'with' node. The two control structures 245 // are identical in behavior except that 'with' sets dot. 246 func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { 247 defer s.pop(s.mark()) 248 val := s.evalPipeline(dot, pipe) 249 truth, ok := isTrue(val) 250 if !ok { 251 s.errorf("if/with can't use %v", val) 252 } 253 if truth { 254 if typ == parse.NodeWith { 255 s.walk(val, list) 256 } else { 257 s.walk(dot, list) 258 } 259 } else if elseList != nil { 260 s.walk(dot, elseList) 261 } 262 } 263 264 // IsTrue reports whether the value is 'true', in the sense of not the zero of its type, 265 // and whether the value has a meaningful truth value. This is the definition of 266 // truth used by if and other such actions. 267 func IsTrue(val interface{}) (truth, ok bool) { 268 return isTrue(reflect.ValueOf(val)) 269 } 270 271 func isTrue(val reflect.Value) (truth, ok bool) { 272 if !val.IsValid() { 273 // Something like var x interface{}, never set. It's a form of nil. 274 return false, true 275 } 276 switch val.Kind() { 277 case reflect.Array, reflect.Map, reflect.Slice, reflect.String: 278 truth = val.Len() > 0 279 case reflect.Bool: 280 truth = val.Bool() 281 case reflect.Complex64, reflect.Complex128: 282 truth = val.Complex() != 0 283 case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface: 284 truth = !val.IsNil() 285 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 286 truth = val.Int() != 0 287 case reflect.Float32, reflect.Float64: 288 truth = val.Float() != 0 289 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 290 truth = val.Uint() != 0 291 case reflect.Struct: 292 truth = true // Struct values are always true. 293 default: 294 return 295 } 296 return truth, true 297 } 298 299 func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { 300 s.at(r) 301 defer s.pop(s.mark()) 302 val, _ := indirect(s.evalPipeline(dot, r.Pipe)) 303 // mark top of stack before any variables in the body are pushed. 304 mark := s.mark() 305 oneIteration := func(index, elem reflect.Value) { 306 // Set top var (lexically the second if there are two) to the element. 307 if len(r.Pipe.Decl) > 0 { 308 s.setVar(1, elem) 309 } 310 // Set next var (lexically the first if there are two) to the index. 311 if len(r.Pipe.Decl) > 1 { 312 s.setVar(2, index) 313 } 314 s.walk(elem, r.List) 315 s.pop(mark) 316 } 317 switch val.Kind() { 318 case reflect.Array, reflect.Slice: 319 if val.Len() == 0 { 320 break 321 } 322 for i := 0; i < val.Len(); i++ { 323 oneIteration(reflect.ValueOf(i), val.Index(i)) 324 } 325 return 326 case reflect.Map: 327 if val.Len() == 0 { 328 break 329 } 330 for _, key := range sortKeys(val.MapKeys()) { 331 oneIteration(key, val.MapIndex(key)) 332 } 333 return 334 case reflect.Chan: 335 if val.IsNil() { 336 break 337 } 338 i := 0 339 for ; ; i++ { 340 elem, ok := val.Recv() 341 if !ok { 342 break 343 } 344 oneIteration(reflect.ValueOf(i), elem) 345 } 346 if i == 0 { 347 break 348 } 349 return 350 case reflect.Invalid: 351 break // An invalid value is likely a nil map, etc. and acts like an empty map. 352 default: 353 s.errorf("range can't iterate over %v", val) 354 } 355 if r.ElseList != nil { 356 s.walk(dot, r.ElseList) 357 } 358 } 359 360 func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { 361 s.at(t) 362 tmpl := s.tmpl.tmpl[t.Name] 363 if tmpl == nil { 364 s.errorf("template %q not defined", t.Name) 365 } 366 // Variables declared by the pipeline persist. 367 dot = s.evalPipeline(dot, t.Pipe) 368 newState := *s 369 newState.tmpl = tmpl 370 // No dynamic scoping: template invocations inherit no variables. 371 newState.vars = []variable{{"$", dot}} 372 newState.walk(dot, tmpl.Root) 373 } 374 375 // Eval functions evaluate pipelines, commands, and their elements and extract 376 // values from the data structure by examining fields, calling methods, and so on. 377 // The printing of those values happens only through walk functions. 378 379 // evalPipeline returns the value acquired by evaluating a pipeline. If the 380 // pipeline has a variable declaration, the variable will be pushed on the 381 // stack. Callers should therefore pop the stack after they are finished 382 // executing commands depending on the pipeline value. 383 func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { 384 if pipe == nil { 385 return 386 } 387 s.at(pipe) 388 for _, cmd := range pipe.Cmds { 389 value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. 390 // If the object has type interface{}, dig down one level to the thing inside. 391 if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { 392 value = reflect.ValueOf(value.Interface()) // lovely! 393 } 394 } 395 for _, variable := range pipe.Decl { 396 s.push(variable.Ident[0], value) 397 } 398 return value 399 } 400 401 func (s *state) notAFunction(args []parse.Node, final reflect.Value) { 402 if len(args) > 1 || final.IsValid() { 403 s.errorf("can't give argument to non-function %s", args[0]) 404 } 405 } 406 407 func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { 408 firstWord := cmd.Args[0] 409 switch n := firstWord.(type) { 410 case *parse.FieldNode: 411 return s.evalFieldNode(dot, n, cmd.Args, final) 412 case *parse.ChainNode: 413 return s.evalChainNode(dot, n, cmd.Args, final) 414 case *parse.IdentifierNode: 415 // Must be a function. 416 return s.evalFunction(dot, n, cmd, cmd.Args, final) 417 case *parse.PipeNode: 418 // Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored. 419 return s.evalPipeline(dot, n) 420 case *parse.VariableNode: 421 return s.evalVariableNode(dot, n, cmd.Args, final) 422 } 423 s.at(firstWord) 424 s.notAFunction(cmd.Args, final) 425 switch word := firstWord.(type) { 426 case *parse.BoolNode: 427 return reflect.ValueOf(word.True) 428 case *parse.DotNode: 429 return dot 430 case *parse.NilNode: 431 s.errorf("nil is not a command") 432 case *parse.NumberNode: 433 return s.idealConstant(word) 434 case *parse.StringNode: 435 return reflect.ValueOf(word.Text) 436 } 437 s.errorf("can't evaluate command %q", firstWord) 438 panic("not reached") 439 } 440 441 // idealConstant is called to return the value of a number in a context where 442 // we don't know the type. In that case, the syntax of the number tells us 443 // its type, and we use Go rules to resolve. Note there is no such thing as 444 // a uint ideal constant in this situation - the value must be of int type. 445 func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { 446 // These are ideal constants but we don't know the type 447 // and we have no context. (If it was a method argument, 448 // we'd know what we need.) The syntax guides us to some extent. 449 s.at(constant) 450 switch { 451 case constant.IsComplex: 452 return reflect.ValueOf(constant.Complex128) // incontrovertible. 453 case constant.IsFloat && !isHexConstant(constant.Text) && strings.ContainsAny(constant.Text, ".eE"): 454 return reflect.ValueOf(constant.Float64) 455 case constant.IsInt: 456 n := int(constant.Int64) 457 if int64(n) != constant.Int64 { 458 s.errorf("%s overflows int", constant.Text) 459 } 460 return reflect.ValueOf(n) 461 case constant.IsUint: 462 s.errorf("%s overflows int", constant.Text) 463 } 464 return zero 465 } 466 467 func isHexConstant(s string) bool { 468 return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') 469 } 470 471 func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { 472 s.at(field) 473 return s.evalFieldChain(dot, dot, field, field.Ident, args, final) 474 } 475 476 func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value { 477 s.at(chain) 478 if len(chain.Field) == 0 { 479 s.errorf("internal error: no fields in evalChainNode") 480 } 481 if chain.Node.Type() == parse.NodeNil { 482 s.errorf("indirection through explicit nil in %s", chain) 483 } 484 // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields. 485 pipe := s.evalArg(dot, nil, chain.Node) 486 return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final) 487 } 488 489 func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { 490 // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. 491 s.at(variable) 492 value := s.varValue(variable.Ident[0]) 493 if len(variable.Ident) == 1 { 494 s.notAFunction(args, final) 495 return value 496 } 497 return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final) 498 } 499 500 // evalFieldChain evaluates .X.Y.Z possibly followed by arguments. 501 // dot is the environment in which to evaluate arguments, while 502 // receiver is the value being walked along the chain. 503 func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value { 504 n := len(ident) 505 for i := 0; i < n-1; i++ { 506 receiver = s.evalField(dot, ident[i], node, nil, zero, receiver) 507 } 508 // Now if it's a method, it gets the arguments. 509 return s.evalField(dot, ident[n-1], node, args, final, receiver) 510 } 511 512 func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { 513 s.at(node) 514 name := node.Ident 515 function, ok := findFunction(name, s.tmpl) 516 if !ok { 517 s.errorf("%q is not a defined function", name) 518 } 519 return s.evalCall(dot, function, cmd, name, args, final) 520 } 521 522 // evalField evaluates an expression like (.Field) or (.Field arg1 arg2). 523 // The 'final' argument represents the return value from the preceding 524 // value of the pipeline, if any. 525 func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { 526 if !receiver.IsValid() { 527 return zero 528 } 529 typ := receiver.Type() 530 receiver, isNil := indirect(receiver) 531 // Unless it's an interface, need to get to a value of type *T to guarantee 532 // we see all methods of T and *T. 533 ptr := receiver 534 if ptr.Kind() != reflect.Interface && ptr.CanAddr() { 535 ptr = ptr.Addr() 536 } 537 if method := ptr.MethodByName(fieldName); method.IsValid() { 538 return s.evalCall(dot, method, node, fieldName, args, final) 539 } 540 hasArgs := len(args) > 1 || final.IsValid() 541 // It's not a method; must be a field of a struct or an element of a map. The receiver must not be nil. 542 if isNil { 543 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 544 } 545 switch receiver.Kind() { 546 case reflect.Struct: 547 tField, ok := receiver.Type().FieldByName(fieldName) 548 if ok { 549 field := receiver.FieldByIndex(tField.Index) 550 if tField.PkgPath != "" { // field is unexported 551 s.errorf("%s is an unexported field of struct type %s", fieldName, typ) 552 } 553 // If it's a function, we must call it. 554 if hasArgs { 555 s.errorf("%s has arguments but cannot be invoked as function", fieldName) 556 } 557 return field 558 } 559 s.errorf("%s is not a field of struct type %s", fieldName, typ) 560 case reflect.Map: 561 // If it's a map, attempt to use the field name as a key. 562 nameVal := reflect.ValueOf(fieldName) 563 if nameVal.Type().AssignableTo(receiver.Type().Key()) { 564 if hasArgs { 565 s.errorf("%s is not a method but has arguments", fieldName) 566 } 567 result := receiver.MapIndex(nameVal) 568 if !result.IsValid() { 569 switch s.tmpl.option.missingKey { 570 case mapInvalid: 571 // Just use the invalid value. 572 case mapZeroValue: 573 result = reflect.Zero(receiver.Type().Elem()) 574 case mapError: 575 s.errorf("map has no entry for key %q", fieldName) 576 } 577 } 578 return result 579 } 580 } 581 s.errorf("can't evaluate field %s in type %s", fieldName, typ) 582 panic("not reached") 583 } 584 585 var ( 586 errorType = reflect.TypeOf((*error)(nil)).Elem() 587 fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() 588 ) 589 590 // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so 591 // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] 592 // as the function itself. 593 func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value { 594 if args != nil { 595 args = args[1:] // Zeroth arg is function name/node; not passed to function. 596 } 597 typ := fun.Type() 598 numIn := len(args) 599 if final.IsValid() { 600 numIn++ 601 } 602 numFixed := len(args) 603 if typ.IsVariadic() { 604 numFixed = typ.NumIn() - 1 // last arg is the variadic one. 605 if numIn < numFixed { 606 s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) 607 } 608 } else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() { 609 s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args)) 610 } 611 if !goodFunc(typ) { 612 // TODO: This could still be a confusing error; maybe goodFunc should provide info. 613 s.errorf("can't call method/function %q with %d results", name, typ.NumOut()) 614 } 615 // Build the arg list. 616 argv := make([]reflect.Value, numIn) 617 // Args must be evaluated. Fixed args first. 618 i := 0 619 for ; i < numFixed && i < len(args); i++ { 620 argv[i] = s.evalArg(dot, typ.In(i), args[i]) 621 } 622 // Now the ... args. 623 if typ.IsVariadic() { 624 argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. 625 for ; i < len(args); i++ { 626 argv[i] = s.evalArg(dot, argType, args[i]) 627 } 628 } 629 // Add final value if necessary. 630 if final.IsValid() { 631 t := typ.In(typ.NumIn() - 1) 632 if typ.IsVariadic() { 633 if numIn-1 < numFixed { 634 // The added final argument corresponds to a fixed parameter of the function. 635 // Validate against the type of the actual parameter. 636 t = typ.In(numIn - 1) 637 } else { 638 // The added final argument corresponds to the variadic part. 639 // Validate against the type of the elements of the variadic slice. 640 t = t.Elem() 641 } 642 } 643 argv[i] = s.validateType(final, t) 644 } 645 result := fun.Call(argv) 646 // If we have an error that is not nil, stop execution and return that error to the caller. 647 if len(result) == 2 && !result[1].IsNil() { 648 s.at(node) 649 s.errorf("error calling %s: %s", name, result[1].Interface().(error)) 650 } 651 return result[0] 652 } 653 654 // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero. 655 func canBeNil(typ reflect.Type) bool { 656 switch typ.Kind() { 657 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice: 658 return true 659 } 660 return false 661 } 662 663 // validateType guarantees that the value is valid and assignable to the type. 664 func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { 665 if !value.IsValid() { 666 if typ == nil || canBeNil(typ) { 667 // An untyped nil interface{}. Accept as a proper nil value. 668 return reflect.Zero(typ) 669 } 670 s.errorf("invalid value; expected %s", typ) 671 } 672 if typ != nil && !value.Type().AssignableTo(typ) { 673 if value.Kind() == reflect.Interface && !value.IsNil() { 674 value = value.Elem() 675 if value.Type().AssignableTo(typ) { 676 return value 677 } 678 // fallthrough 679 } 680 // Does one dereference or indirection work? We could do more, as we 681 // do with method receivers, but that gets messy and method receivers 682 // are much more constrained, so it makes more sense there than here. 683 // Besides, one is almost always all you need. 684 switch { 685 case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ): 686 value = value.Elem() 687 if !value.IsValid() { 688 s.errorf("dereference of nil pointer of type %s", typ) 689 } 690 case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr(): 691 value = value.Addr() 692 default: 693 s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) 694 } 695 } 696 return value 697 } 698 699 func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { 700 s.at(n) 701 switch arg := n.(type) { 702 case *parse.DotNode: 703 return s.validateType(dot, typ) 704 case *parse.NilNode: 705 if canBeNil(typ) { 706 return reflect.Zero(typ) 707 } 708 s.errorf("cannot assign nil to %s", typ) 709 case *parse.FieldNode: 710 return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ) 711 case *parse.VariableNode: 712 return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ) 713 case *parse.PipeNode: 714 return s.validateType(s.evalPipeline(dot, arg), typ) 715 case *parse.IdentifierNode: 716 return s.validateType(s.evalFunction(dot, arg, arg, nil, zero), typ) 717 case *parse.ChainNode: 718 return s.validateType(s.evalChainNode(dot, arg, nil, zero), typ) 719 } 720 switch typ.Kind() { 721 case reflect.Bool: 722 return s.evalBool(typ, n) 723 case reflect.Complex64, reflect.Complex128: 724 return s.evalComplex(typ, n) 725 case reflect.Float32, reflect.Float64: 726 return s.evalFloat(typ, n) 727 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 728 return s.evalInteger(typ, n) 729 case reflect.Interface: 730 if typ.NumMethod() == 0 { 731 return s.evalEmptyInterface(dot, n) 732 } 733 case reflect.String: 734 return s.evalString(typ, n) 735 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 736 return s.evalUnsignedInteger(typ, n) 737 } 738 s.errorf("can't handle %s for arg of type %s", n, typ) 739 panic("not reached") 740 } 741 742 func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { 743 s.at(n) 744 if n, ok := n.(*parse.BoolNode); ok { 745 value := reflect.New(typ).Elem() 746 value.SetBool(n.True) 747 return value 748 } 749 s.errorf("expected bool; found %s", n) 750 panic("not reached") 751 } 752 753 func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { 754 s.at(n) 755 if n, ok := n.(*parse.StringNode); ok { 756 value := reflect.New(typ).Elem() 757 value.SetString(n.Text) 758 return value 759 } 760 s.errorf("expected string; found %s", n) 761 panic("not reached") 762 } 763 764 func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { 765 s.at(n) 766 if n, ok := n.(*parse.NumberNode); ok && n.IsInt { 767 value := reflect.New(typ).Elem() 768 value.SetInt(n.Int64) 769 return value 770 } 771 s.errorf("expected integer; found %s", n) 772 panic("not reached") 773 } 774 775 func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { 776 s.at(n) 777 if n, ok := n.(*parse.NumberNode); ok && n.IsUint { 778 value := reflect.New(typ).Elem() 779 value.SetUint(n.Uint64) 780 return value 781 } 782 s.errorf("expected unsigned integer; found %s", n) 783 panic("not reached") 784 } 785 786 func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { 787 s.at(n) 788 if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { 789 value := reflect.New(typ).Elem() 790 value.SetFloat(n.Float64) 791 return value 792 } 793 s.errorf("expected float; found %s", n) 794 panic("not reached") 795 } 796 797 func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { 798 if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { 799 value := reflect.New(typ).Elem() 800 value.SetComplex(n.Complex128) 801 return value 802 } 803 s.errorf("expected complex; found %s", n) 804 panic("not reached") 805 } 806 807 func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { 808 s.at(n) 809 switch n := n.(type) { 810 case *parse.BoolNode: 811 return reflect.ValueOf(n.True) 812 case *parse.DotNode: 813 return dot 814 case *parse.FieldNode: 815 return s.evalFieldNode(dot, n, nil, zero) 816 case *parse.IdentifierNode: 817 return s.evalFunction(dot, n, n, nil, zero) 818 case *parse.NilNode: 819 // NilNode is handled in evalArg, the only place that calls here. 820 s.errorf("evalEmptyInterface: nil (can't happen)") 821 case *parse.NumberNode: 822 return s.idealConstant(n) 823 case *parse.StringNode: 824 return reflect.ValueOf(n.Text) 825 case *parse.VariableNode: 826 return s.evalVariableNode(dot, n, nil, zero) 827 case *parse.PipeNode: 828 return s.evalPipeline(dot, n) 829 } 830 s.errorf("can't handle assignment of %s to empty interface argument", n) 831 panic("not reached") 832 } 833 834 // indirect returns the item at the end of indirection, and a bool to indicate if it's nil. 835 func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { 836 for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() { 837 if v.IsNil() { 838 return v, true 839 } 840 } 841 return v, false 842 } 843 844 // printValue writes the textual representation of the value to the output of 845 // the template. 846 func (s *state) printValue(n parse.Node, v reflect.Value) { 847 s.at(n) 848 iface, ok := printableValue(v) 849 if !ok { 850 s.errorf("can't print %s of type %s", n, v.Type()) 851 } 852 _, err := fmt.Fprint(s.wr, iface) 853 if err != nil { 854 s.writeError(err) 855 } 856 } 857 858 // printableValue returns the, possibly indirected, interface value inside v that 859 // is best for a call to formatted printer. 860 func printableValue(v reflect.Value) (interface{}, bool) { 861 if v.Kind() == reflect.Ptr { 862 v, _ = indirect(v) // fmt.Fprint handles nil. 863 } 864 if !v.IsValid() { 865 return "<no value>", true 866 } 867 868 if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { 869 if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) { 870 v = v.Addr() 871 } else { 872 switch v.Kind() { 873 case reflect.Chan, reflect.Func: 874 return nil, false 875 } 876 } 877 } 878 return v.Interface(), true 879 } 880 881 // Types to help sort the keys in a map for reproducible output. 882 883 type rvs []reflect.Value 884 885 func (x rvs) Len() int { return len(x) } 886 func (x rvs) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 887 888 type rvInts struct{ rvs } 889 890 func (x rvInts) Less(i, j int) bool { return x.rvs[i].Int() < x.rvs[j].Int() } 891 892 type rvUints struct{ rvs } 893 894 func (x rvUints) Less(i, j int) bool { return x.rvs[i].Uint() < x.rvs[j].Uint() } 895 896 type rvFloats struct{ rvs } 897 898 func (x rvFloats) Less(i, j int) bool { return x.rvs[i].Float() < x.rvs[j].Float() } 899 900 type rvStrings struct{ rvs } 901 902 func (x rvStrings) Less(i, j int) bool { return x.rvs[i].String() < x.rvs[j].String() } 903 904 // sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys. 905 func sortKeys(v []reflect.Value) []reflect.Value { 906 if len(v) <= 1 { 907 return v 908 } 909 switch v[0].Kind() { 910 case reflect.Float32, reflect.Float64: 911 sort.Sort(rvFloats{v}) 912 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 913 sort.Sort(rvInts{v}) 914 case reflect.String: 915 sort.Sort(rvStrings{v}) 916 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 917 sort.Sort(rvUints{v}) 918 } 919 return v 920 }