github.com/mtsmfm/go/src@v0.0.0-20221020090648-44bdcb9f8fde/bytes/bytes.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package bytes implements functions for the manipulation of byte slices. 6 // It is analogous to the facilities of the strings package. 7 package bytes 8 9 import ( 10 "internal/bytealg" 11 "unicode" 12 "unicode/utf8" 13 ) 14 15 // Equal reports whether a and b 16 // are the same length and contain the same bytes. 17 // A nil argument is equivalent to an empty slice. 18 func Equal(a, b []byte) bool { 19 // Neither cmd/compile nor gccgo allocates for these string conversions. 20 return string(a) == string(b) 21 } 22 23 // Compare returns an integer comparing two byte slices lexicographically. 24 // The result will be 0 if a == b, -1 if a < b, and +1 if a > b. 25 // A nil argument is equivalent to an empty slice. 26 func Compare(a, b []byte) int { 27 return bytealg.Compare(a, b) 28 } 29 30 // explode splits s into a slice of UTF-8 sequences, one per Unicode code point (still slices of bytes), 31 // up to a maximum of n byte slices. Invalid UTF-8 sequences are chopped into individual bytes. 32 func explode(s []byte, n int) [][]byte { 33 if n <= 0 || n > len(s) { 34 n = len(s) 35 } 36 a := make([][]byte, n) 37 var size int 38 na := 0 39 for len(s) > 0 { 40 if na+1 >= n { 41 a[na] = s 42 na++ 43 break 44 } 45 _, size = utf8.DecodeRune(s) 46 a[na] = s[0:size:size] 47 s = s[size:] 48 na++ 49 } 50 return a[0:na] 51 } 52 53 // Count counts the number of non-overlapping instances of sep in s. 54 // If sep is an empty slice, Count returns 1 + the number of UTF-8-encoded code points in s. 55 func Count(s, sep []byte) int { 56 // special case 57 if len(sep) == 0 { 58 return utf8.RuneCount(s) + 1 59 } 60 if len(sep) == 1 { 61 return bytealg.Count(s, sep[0]) 62 } 63 n := 0 64 for { 65 i := Index(s, sep) 66 if i == -1 { 67 return n 68 } 69 n++ 70 s = s[i+len(sep):] 71 } 72 } 73 74 // Contains reports whether subslice is within b. 75 func Contains(b, subslice []byte) bool { 76 return Index(b, subslice) != -1 77 } 78 79 // ContainsAny reports whether any of the UTF-8-encoded code points in chars are within b. 80 func ContainsAny(b []byte, chars string) bool { 81 return IndexAny(b, chars) >= 0 82 } 83 84 // ContainsRune reports whether the rune is contained in the UTF-8-encoded byte slice b. 85 func ContainsRune(b []byte, r rune) bool { 86 return IndexRune(b, r) >= 0 87 } 88 89 // IndexByte returns the index of the first instance of c in b, or -1 if c is not present in b. 90 func IndexByte(b []byte, c byte) int { 91 return bytealg.IndexByte(b, c) 92 } 93 94 func indexBytePortable(s []byte, c byte) int { 95 for i, b := range s { 96 if b == c { 97 return i 98 } 99 } 100 return -1 101 } 102 103 // LastIndex returns the index of the last instance of sep in s, or -1 if sep is not present in s. 104 func LastIndex(s, sep []byte) int { 105 n := len(sep) 106 switch { 107 case n == 0: 108 return len(s) 109 case n == 1: 110 return LastIndexByte(s, sep[0]) 111 case n == len(s): 112 if Equal(s, sep) { 113 return 0 114 } 115 return -1 116 case n > len(s): 117 return -1 118 } 119 // Rabin-Karp search from the end of the string 120 hashss, pow := bytealg.HashStrRevBytes(sep) 121 last := len(s) - n 122 var h uint32 123 for i := len(s) - 1; i >= last; i-- { 124 h = h*bytealg.PrimeRK + uint32(s[i]) 125 } 126 if h == hashss && Equal(s[last:], sep) { 127 return last 128 } 129 for i := last - 1; i >= 0; i-- { 130 h *= bytealg.PrimeRK 131 h += uint32(s[i]) 132 h -= pow * uint32(s[i+n]) 133 if h == hashss && Equal(s[i:i+n], sep) { 134 return i 135 } 136 } 137 return -1 138 } 139 140 // LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s. 141 func LastIndexByte(s []byte, c byte) int { 142 for i := len(s) - 1; i >= 0; i-- { 143 if s[i] == c { 144 return i 145 } 146 } 147 return -1 148 } 149 150 // IndexRune interprets s as a sequence of UTF-8-encoded code points. 151 // It returns the byte index of the first occurrence in s of the given rune. 152 // It returns -1 if rune is not present in s. 153 // If r is utf8.RuneError, it returns the first instance of any 154 // invalid UTF-8 byte sequence. 155 func IndexRune(s []byte, r rune) int { 156 switch { 157 case 0 <= r && r < utf8.RuneSelf: 158 return IndexByte(s, byte(r)) 159 case r == utf8.RuneError: 160 for i := 0; i < len(s); { 161 r1, n := utf8.DecodeRune(s[i:]) 162 if r1 == utf8.RuneError { 163 return i 164 } 165 i += n 166 } 167 return -1 168 case !utf8.ValidRune(r): 169 return -1 170 default: 171 var b [utf8.UTFMax]byte 172 n := utf8.EncodeRune(b[:], r) 173 return Index(s, b[:n]) 174 } 175 } 176 177 // IndexAny interprets s as a sequence of UTF-8-encoded Unicode code points. 178 // It returns the byte index of the first occurrence in s of any of the Unicode 179 // code points in chars. It returns -1 if chars is empty or if there is no code 180 // point in common. 181 func IndexAny(s []byte, chars string) int { 182 if chars == "" { 183 // Avoid scanning all of s. 184 return -1 185 } 186 if len(s) == 1 { 187 r := rune(s[0]) 188 if r >= utf8.RuneSelf { 189 // search utf8.RuneError. 190 for _, r = range chars { 191 if r == utf8.RuneError { 192 return 0 193 } 194 } 195 return -1 196 } 197 if bytealg.IndexByteString(chars, s[0]) >= 0 { 198 return 0 199 } 200 return -1 201 } 202 if len(chars) == 1 { 203 r := rune(chars[0]) 204 if r >= utf8.RuneSelf { 205 r = utf8.RuneError 206 } 207 return IndexRune(s, r) 208 } 209 if len(s) > 8 { 210 if as, isASCII := makeASCIISet(chars); isASCII { 211 for i, c := range s { 212 if as.contains(c) { 213 return i 214 } 215 } 216 return -1 217 } 218 } 219 var width int 220 for i := 0; i < len(s); i += width { 221 r := rune(s[i]) 222 if r < utf8.RuneSelf { 223 if bytealg.IndexByteString(chars, s[i]) >= 0 { 224 return i 225 } 226 width = 1 227 continue 228 } 229 r, width = utf8.DecodeRune(s[i:]) 230 if r != utf8.RuneError { 231 // r is 2 to 4 bytes 232 if len(chars) == width { 233 if chars == string(r) { 234 return i 235 } 236 continue 237 } 238 // Use bytealg.IndexString for performance if available. 239 if bytealg.MaxLen >= width { 240 if bytealg.IndexString(chars, string(r)) >= 0 { 241 return i 242 } 243 continue 244 } 245 } 246 for _, ch := range chars { 247 if r == ch { 248 return i 249 } 250 } 251 } 252 return -1 253 } 254 255 // LastIndexAny interprets s as a sequence of UTF-8-encoded Unicode code 256 // points. It returns the byte index of the last occurrence in s of any of 257 // the Unicode code points in chars. It returns -1 if chars is empty or if 258 // there is no code point in common. 259 func LastIndexAny(s []byte, chars string) int { 260 if chars == "" { 261 // Avoid scanning all of s. 262 return -1 263 } 264 if len(s) > 8 { 265 if as, isASCII := makeASCIISet(chars); isASCII { 266 for i := len(s) - 1; i >= 0; i-- { 267 if as.contains(s[i]) { 268 return i 269 } 270 } 271 return -1 272 } 273 } 274 if len(s) == 1 { 275 r := rune(s[0]) 276 if r >= utf8.RuneSelf { 277 for _, r = range chars { 278 if r == utf8.RuneError { 279 return 0 280 } 281 } 282 return -1 283 } 284 if bytealg.IndexByteString(chars, s[0]) >= 0 { 285 return 0 286 } 287 return -1 288 } 289 if len(chars) == 1 { 290 cr := rune(chars[0]) 291 if cr >= utf8.RuneSelf { 292 cr = utf8.RuneError 293 } 294 for i := len(s); i > 0; { 295 r, size := utf8.DecodeLastRune(s[:i]) 296 i -= size 297 if r == cr { 298 return i 299 } 300 } 301 return -1 302 } 303 for i := len(s); i > 0; { 304 r := rune(s[i-1]) 305 if r < utf8.RuneSelf { 306 if bytealg.IndexByteString(chars, s[i-1]) >= 0 { 307 return i - 1 308 } 309 i-- 310 continue 311 } 312 r, size := utf8.DecodeLastRune(s[:i]) 313 i -= size 314 if r != utf8.RuneError { 315 // r is 2 to 4 bytes 316 if len(chars) == size { 317 if chars == string(r) { 318 return i 319 } 320 continue 321 } 322 // Use bytealg.IndexString for performance if available. 323 if bytealg.MaxLen >= size { 324 if bytealg.IndexString(chars, string(r)) >= 0 { 325 return i 326 } 327 continue 328 } 329 } 330 for _, ch := range chars { 331 if r == ch { 332 return i 333 } 334 } 335 } 336 return -1 337 } 338 339 // Generic split: splits after each instance of sep, 340 // including sepSave bytes of sep in the subslices. 341 func genSplit(s, sep []byte, sepSave, n int) [][]byte { 342 if n == 0 { 343 return nil 344 } 345 if len(sep) == 0 { 346 return explode(s, n) 347 } 348 if n < 0 { 349 n = Count(s, sep) + 1 350 } 351 if n > len(s)+1 { 352 n = len(s) + 1 353 } 354 355 a := make([][]byte, n) 356 n-- 357 i := 0 358 for i < n { 359 m := Index(s, sep) 360 if m < 0 { 361 break 362 } 363 a[i] = s[: m+sepSave : m+sepSave] 364 s = s[m+len(sep):] 365 i++ 366 } 367 a[i] = s 368 return a[:i+1] 369 } 370 371 // SplitN slices s into subslices separated by sep and returns a slice of 372 // the subslices between those separators. 373 // If sep is empty, SplitN splits after each UTF-8 sequence. 374 // The count determines the number of subslices to return: 375 // 376 // n > 0: at most n subslices; the last subslice will be the unsplit remainder. 377 // n == 0: the result is nil (zero subslices) 378 // n < 0: all subslices 379 // 380 // To split around the first instance of a separator, see Cut. 381 func SplitN(s, sep []byte, n int) [][]byte { return genSplit(s, sep, 0, n) } 382 383 // SplitAfterN slices s into subslices after each instance of sep and 384 // returns a slice of those subslices. 385 // If sep is empty, SplitAfterN splits after each UTF-8 sequence. 386 // The count determines the number of subslices to return: 387 // 388 // n > 0: at most n subslices; the last subslice will be the unsplit remainder. 389 // n == 0: the result is nil (zero subslices) 390 // n < 0: all subslices 391 func SplitAfterN(s, sep []byte, n int) [][]byte { 392 return genSplit(s, sep, len(sep), n) 393 } 394 395 // Split slices s into all subslices separated by sep and returns a slice of 396 // the subslices between those separators. 397 // If sep is empty, Split splits after each UTF-8 sequence. 398 // It is equivalent to SplitN with a count of -1. 399 // 400 // To split around the first instance of a separator, see Cut. 401 func Split(s, sep []byte) [][]byte { return genSplit(s, sep, 0, -1) } 402 403 // SplitAfter slices s into all subslices after each instance of sep and 404 // returns a slice of those subslices. 405 // If sep is empty, SplitAfter splits after each UTF-8 sequence. 406 // It is equivalent to SplitAfterN with a count of -1. 407 func SplitAfter(s, sep []byte) [][]byte { 408 return genSplit(s, sep, len(sep), -1) 409 } 410 411 var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1} 412 413 // Fields interprets s as a sequence of UTF-8-encoded code points. 414 // It splits the slice s around each instance of one or more consecutive white space 415 // characters, as defined by unicode.IsSpace, returning a slice of subslices of s or an 416 // empty slice if s contains only white space. 417 func Fields(s []byte) [][]byte { 418 // First count the fields. 419 // This is an exact count if s is ASCII, otherwise it is an approximation. 420 n := 0 421 wasSpace := 1 422 // setBits is used to track which bits are set in the bytes of s. 423 setBits := uint8(0) 424 for i := 0; i < len(s); i++ { 425 r := s[i] 426 setBits |= r 427 isSpace := int(asciiSpace[r]) 428 n += wasSpace & ^isSpace 429 wasSpace = isSpace 430 } 431 432 if setBits >= utf8.RuneSelf { 433 // Some runes in the input slice are not ASCII. 434 return FieldsFunc(s, unicode.IsSpace) 435 } 436 437 // ASCII fast path 438 a := make([][]byte, n) 439 na := 0 440 fieldStart := 0 441 i := 0 442 // Skip spaces in the front of the input. 443 for i < len(s) && asciiSpace[s[i]] != 0 { 444 i++ 445 } 446 fieldStart = i 447 for i < len(s) { 448 if asciiSpace[s[i]] == 0 { 449 i++ 450 continue 451 } 452 a[na] = s[fieldStart:i:i] 453 na++ 454 i++ 455 // Skip spaces in between fields. 456 for i < len(s) && asciiSpace[s[i]] != 0 { 457 i++ 458 } 459 fieldStart = i 460 } 461 if fieldStart < len(s) { // Last field might end at EOF. 462 a[na] = s[fieldStart:len(s):len(s)] 463 } 464 return a 465 } 466 467 // FieldsFunc interprets s as a sequence of UTF-8-encoded code points. 468 // It splits the slice s at each run of code points c satisfying f(c) and 469 // returns a slice of subslices of s. If all code points in s satisfy f(c), or 470 // len(s) == 0, an empty slice is returned. 471 // 472 // FieldsFunc makes no guarantees about the order in which it calls f(c) 473 // and assumes that f always returns the same value for a given c. 474 func FieldsFunc(s []byte, f func(rune) bool) [][]byte { 475 // A span is used to record a slice of s of the form s[start:end]. 476 // The start index is inclusive and the end index is exclusive. 477 type span struct { 478 start int 479 end int 480 } 481 spans := make([]span, 0, 32) 482 483 // Find the field start and end indices. 484 // Doing this in a separate pass (rather than slicing the string s 485 // and collecting the result substrings right away) is significantly 486 // more efficient, possibly due to cache effects. 487 start := -1 // valid span start if >= 0 488 for i := 0; i < len(s); { 489 size := 1 490 r := rune(s[i]) 491 if r >= utf8.RuneSelf { 492 r, size = utf8.DecodeRune(s[i:]) 493 } 494 if f(r) { 495 if start >= 0 { 496 spans = append(spans, span{start, i}) 497 start = -1 498 } 499 } else { 500 if start < 0 { 501 start = i 502 } 503 } 504 i += size 505 } 506 507 // Last field might end at EOF. 508 if start >= 0 { 509 spans = append(spans, span{start, len(s)}) 510 } 511 512 // Create subslices from recorded field indices. 513 a := make([][]byte, len(spans)) 514 for i, span := range spans { 515 a[i] = s[span.start:span.end:span.end] 516 } 517 518 return a 519 } 520 521 // Join concatenates the elements of s to create a new byte slice. The separator 522 // sep is placed between elements in the resulting slice. 523 func Join(s [][]byte, sep []byte) []byte { 524 if len(s) == 0 { 525 return []byte{} 526 } 527 if len(s) == 1 { 528 // Just return a copy. 529 return append([]byte(nil), s[0]...) 530 } 531 n := len(sep) * (len(s) - 1) 532 for _, v := range s { 533 n += len(v) 534 } 535 536 b := make([]byte, n) 537 bp := copy(b, s[0]) 538 for _, v := range s[1:] { 539 bp += copy(b[bp:], sep) 540 bp += copy(b[bp:], v) 541 } 542 return b 543 } 544 545 // HasPrefix tests whether the byte slice s begins with prefix. 546 func HasPrefix(s, prefix []byte) bool { 547 return len(s) >= len(prefix) && Equal(s[0:len(prefix)], prefix) 548 } 549 550 // HasSuffix tests whether the byte slice s ends with suffix. 551 func HasSuffix(s, suffix []byte) bool { 552 return len(s) >= len(suffix) && Equal(s[len(s)-len(suffix):], suffix) 553 } 554 555 // Map returns a copy of the byte slice s with all its characters modified 556 // according to the mapping function. If mapping returns a negative value, the character is 557 // dropped from the byte slice with no replacement. The characters in s and the 558 // output are interpreted as UTF-8-encoded code points. 559 func Map(mapping func(r rune) rune, s []byte) []byte { 560 // In the worst case, the slice can grow when mapped, making 561 // things unpleasant. But it's so rare we barge in assuming it's 562 // fine. It could also shrink but that falls out naturally. 563 b := make([]byte, 0, len(s)) 564 for i := 0; i < len(s); { 565 wid := 1 566 r := rune(s[i]) 567 if r >= utf8.RuneSelf { 568 r, wid = utf8.DecodeRune(s[i:]) 569 } 570 r = mapping(r) 571 if r >= 0 { 572 b = utf8.AppendRune(b, r) 573 } 574 i += wid 575 } 576 return b 577 } 578 579 // Repeat returns a new byte slice consisting of count copies of b. 580 // 581 // It panics if count is negative or if the result of (len(b) * count) 582 // overflows. 583 func Repeat(b []byte, count int) []byte { 584 if count == 0 { 585 return []byte{} 586 } 587 // Since we cannot return an error on overflow, 588 // we should panic if the repeat will generate 589 // an overflow. 590 // See golang.org/issue/16237. 591 if count < 0 { 592 panic("bytes: negative Repeat count") 593 } else if len(b)*count/count != len(b) { 594 panic("bytes: Repeat count causes overflow") 595 } 596 597 if len(b) == 0 { 598 return []byte{} 599 } 600 601 n := len(b) * count 602 603 // Past a certain chunk size it is counterproductive to use 604 // larger chunks as the source of the write, as when the source 605 // is too large we are basically just thrashing the CPU D-cache. 606 // So if the result length is larger than an empirically-found 607 // limit (8KB), we stop growing the source string once the limit 608 // is reached and keep reusing the same source string - that 609 // should therefore be always resident in the L1 cache - until we 610 // have completed the construction of the result. 611 // This yields significant speedups (up to +100%) in cases where 612 // the result length is large (roughly, over L2 cache size). 613 const chunkLimit = 8 * 1024 614 chunkMax := n 615 if chunkMax > chunkLimit { 616 chunkMax = chunkLimit / len(b) * len(b) 617 if chunkMax == 0 { 618 chunkMax = len(b) 619 } 620 } 621 nb := make([]byte, n) 622 bp := copy(nb, b) 623 for bp < len(nb) { 624 chunk := bp 625 if chunk > chunkMax { 626 chunk = chunkMax 627 } 628 bp += copy(nb[bp:], nb[:chunk]) 629 } 630 return nb 631 } 632 633 // ToUpper returns a copy of the byte slice s with all Unicode letters mapped to 634 // their upper case. 635 func ToUpper(s []byte) []byte { 636 isASCII, hasLower := true, false 637 for i := 0; i < len(s); i++ { 638 c := s[i] 639 if c >= utf8.RuneSelf { 640 isASCII = false 641 break 642 } 643 hasLower = hasLower || ('a' <= c && c <= 'z') 644 } 645 646 if isASCII { // optimize for ASCII-only byte slices. 647 if !hasLower { 648 // Just return a copy. 649 return append([]byte(""), s...) 650 } 651 b := make([]byte, len(s)) 652 for i := 0; i < len(s); i++ { 653 c := s[i] 654 if 'a' <= c && c <= 'z' { 655 c -= 'a' - 'A' 656 } 657 b[i] = c 658 } 659 return b 660 } 661 return Map(unicode.ToUpper, s) 662 } 663 664 // ToLower returns a copy of the byte slice s with all Unicode letters mapped to 665 // their lower case. 666 func ToLower(s []byte) []byte { 667 isASCII, hasUpper := true, false 668 for i := 0; i < len(s); i++ { 669 c := s[i] 670 if c >= utf8.RuneSelf { 671 isASCII = false 672 break 673 } 674 hasUpper = hasUpper || ('A' <= c && c <= 'Z') 675 } 676 677 if isASCII { // optimize for ASCII-only byte slices. 678 if !hasUpper { 679 return append([]byte(""), s...) 680 } 681 b := make([]byte, len(s)) 682 for i := 0; i < len(s); i++ { 683 c := s[i] 684 if 'A' <= c && c <= 'Z' { 685 c += 'a' - 'A' 686 } 687 b[i] = c 688 } 689 return b 690 } 691 return Map(unicode.ToLower, s) 692 } 693 694 // ToTitle treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their title case. 695 func ToTitle(s []byte) []byte { return Map(unicode.ToTitle, s) } 696 697 // ToUpperSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their 698 // upper case, giving priority to the special casing rules. 699 func ToUpperSpecial(c unicode.SpecialCase, s []byte) []byte { 700 return Map(c.ToUpper, s) 701 } 702 703 // ToLowerSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their 704 // lower case, giving priority to the special casing rules. 705 func ToLowerSpecial(c unicode.SpecialCase, s []byte) []byte { 706 return Map(c.ToLower, s) 707 } 708 709 // ToTitleSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their 710 // title case, giving priority to the special casing rules. 711 func ToTitleSpecial(c unicode.SpecialCase, s []byte) []byte { 712 return Map(c.ToTitle, s) 713 } 714 715 // ToValidUTF8 treats s as UTF-8-encoded bytes and returns a copy with each run of bytes 716 // representing invalid UTF-8 replaced with the bytes in replacement, which may be empty. 717 func ToValidUTF8(s, replacement []byte) []byte { 718 b := make([]byte, 0, len(s)+len(replacement)) 719 invalid := false // previous byte was from an invalid UTF-8 sequence 720 for i := 0; i < len(s); { 721 c := s[i] 722 if c < utf8.RuneSelf { 723 i++ 724 invalid = false 725 b = append(b, c) 726 continue 727 } 728 _, wid := utf8.DecodeRune(s[i:]) 729 if wid == 1 { 730 i++ 731 if !invalid { 732 invalid = true 733 b = append(b, replacement...) 734 } 735 continue 736 } 737 invalid = false 738 b = append(b, s[i:i+wid]...) 739 i += wid 740 } 741 return b 742 } 743 744 // isSeparator reports whether the rune could mark a word boundary. 745 // TODO: update when package unicode captures more of the properties. 746 func isSeparator(r rune) bool { 747 // ASCII alphanumerics and underscore are not separators 748 if r <= 0x7F { 749 switch { 750 case '0' <= r && r <= '9': 751 return false 752 case 'a' <= r && r <= 'z': 753 return false 754 case 'A' <= r && r <= 'Z': 755 return false 756 case r == '_': 757 return false 758 } 759 return true 760 } 761 // Letters and digits are not separators 762 if unicode.IsLetter(r) || unicode.IsDigit(r) { 763 return false 764 } 765 // Otherwise, all we can do for now is treat spaces as separators. 766 return unicode.IsSpace(r) 767 } 768 769 // Title treats s as UTF-8-encoded bytes and returns a copy with all Unicode letters that begin 770 // words mapped to their title case. 771 // 772 // Deprecated: The rule Title uses for word boundaries does not handle Unicode 773 // punctuation properly. Use golang.org/x/text/cases instead. 774 func Title(s []byte) []byte { 775 // Use a closure here to remember state. 776 // Hackish but effective. Depends on Map scanning in order and calling 777 // the closure once per rune. 778 prev := ' ' 779 return Map( 780 func(r rune) rune { 781 if isSeparator(prev) { 782 prev = r 783 return unicode.ToTitle(r) 784 } 785 prev = r 786 return r 787 }, 788 s) 789 } 790 791 // TrimLeftFunc treats s as UTF-8-encoded bytes and returns a subslice of s by slicing off 792 // all leading UTF-8-encoded code points c that satisfy f(c). 793 func TrimLeftFunc(s []byte, f func(r rune) bool) []byte { 794 i := indexFunc(s, f, false) 795 if i == -1 { 796 return nil 797 } 798 return s[i:] 799 } 800 801 // TrimRightFunc returns a subslice of s by slicing off all trailing 802 // UTF-8-encoded code points c that satisfy f(c). 803 func TrimRightFunc(s []byte, f func(r rune) bool) []byte { 804 i := lastIndexFunc(s, f, false) 805 if i >= 0 && s[i] >= utf8.RuneSelf { 806 _, wid := utf8.DecodeRune(s[i:]) 807 i += wid 808 } else { 809 i++ 810 } 811 return s[0:i] 812 } 813 814 // TrimFunc returns a subslice of s by slicing off all leading and trailing 815 // UTF-8-encoded code points c that satisfy f(c). 816 func TrimFunc(s []byte, f func(r rune) bool) []byte { 817 return TrimRightFunc(TrimLeftFunc(s, f), f) 818 } 819 820 // TrimPrefix returns s without the provided leading prefix string. 821 // If s doesn't start with prefix, s is returned unchanged. 822 func TrimPrefix(s, prefix []byte) []byte { 823 if HasPrefix(s, prefix) { 824 return s[len(prefix):] 825 } 826 return s 827 } 828 829 // TrimSuffix returns s without the provided trailing suffix string. 830 // If s doesn't end with suffix, s is returned unchanged. 831 func TrimSuffix(s, suffix []byte) []byte { 832 if HasSuffix(s, suffix) { 833 return s[:len(s)-len(suffix)] 834 } 835 return s 836 } 837 838 // IndexFunc interprets s as a sequence of UTF-8-encoded code points. 839 // It returns the byte index in s of the first Unicode 840 // code point satisfying f(c), or -1 if none do. 841 func IndexFunc(s []byte, f func(r rune) bool) int { 842 return indexFunc(s, f, true) 843 } 844 845 // LastIndexFunc interprets s as a sequence of UTF-8-encoded code points. 846 // It returns the byte index in s of the last Unicode 847 // code point satisfying f(c), or -1 if none do. 848 func LastIndexFunc(s []byte, f func(r rune) bool) int { 849 return lastIndexFunc(s, f, true) 850 } 851 852 // indexFunc is the same as IndexFunc except that if 853 // truth==false, the sense of the predicate function is 854 // inverted. 855 func indexFunc(s []byte, f func(r rune) bool, truth bool) int { 856 start := 0 857 for start < len(s) { 858 wid := 1 859 r := rune(s[start]) 860 if r >= utf8.RuneSelf { 861 r, wid = utf8.DecodeRune(s[start:]) 862 } 863 if f(r) == truth { 864 return start 865 } 866 start += wid 867 } 868 return -1 869 } 870 871 // lastIndexFunc is the same as LastIndexFunc except that if 872 // truth==false, the sense of the predicate function is 873 // inverted. 874 func lastIndexFunc(s []byte, f func(r rune) bool, truth bool) int { 875 for i := len(s); i > 0; { 876 r, size := rune(s[i-1]), 1 877 if r >= utf8.RuneSelf { 878 r, size = utf8.DecodeLastRune(s[0:i]) 879 } 880 i -= size 881 if f(r) == truth { 882 return i 883 } 884 } 885 return -1 886 } 887 888 // asciiSet is a 32-byte value, where each bit represents the presence of a 889 // given ASCII character in the set. The 128-bits of the lower 16 bytes, 890 // starting with the least-significant bit of the lowest word to the 891 // most-significant bit of the highest word, map to the full range of all 892 // 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed, 893 // ensuring that any non-ASCII character will be reported as not in the set. 894 // This allocates a total of 32 bytes even though the upper half 895 // is unused to avoid bounds checks in asciiSet.contains. 896 type asciiSet [8]uint32 897 898 // makeASCIISet creates a set of ASCII characters and reports whether all 899 // characters in chars are ASCII. 900 func makeASCIISet(chars string) (as asciiSet, ok bool) { 901 for i := 0; i < len(chars); i++ { 902 c := chars[i] 903 if c >= utf8.RuneSelf { 904 return as, false 905 } 906 as[c/32] |= 1 << (c % 32) 907 } 908 return as, true 909 } 910 911 // contains reports whether c is inside the set. 912 func (as *asciiSet) contains(c byte) bool { 913 return (as[c/32] & (1 << (c % 32))) != 0 914 } 915 916 // containsRune is a simplified version of strings.ContainsRune 917 // to avoid importing the strings package. 918 // We avoid bytes.ContainsRune to avoid allocating a temporary copy of s. 919 func containsRune(s string, r rune) bool { 920 for _, c := range s { 921 if c == r { 922 return true 923 } 924 } 925 return false 926 } 927 928 // Trim returns a subslice of s by slicing off all leading and 929 // trailing UTF-8-encoded code points contained in cutset. 930 func Trim(s []byte, cutset string) []byte { 931 if len(s) == 0 { 932 // This is what we've historically done. 933 return nil 934 } 935 if cutset == "" { 936 return s 937 } 938 if len(cutset) == 1 && cutset[0] < utf8.RuneSelf { 939 return trimLeftByte(trimRightByte(s, cutset[0]), cutset[0]) 940 } 941 if as, ok := makeASCIISet(cutset); ok { 942 return trimLeftASCII(trimRightASCII(s, &as), &as) 943 } 944 return trimLeftUnicode(trimRightUnicode(s, cutset), cutset) 945 } 946 947 // TrimLeft returns a subslice of s by slicing off all leading 948 // UTF-8-encoded code points contained in cutset. 949 func TrimLeft(s []byte, cutset string) []byte { 950 if len(s) == 0 { 951 // This is what we've historically done. 952 return nil 953 } 954 if cutset == "" { 955 return s 956 } 957 if len(cutset) == 1 && cutset[0] < utf8.RuneSelf { 958 return trimLeftByte(s, cutset[0]) 959 } 960 if as, ok := makeASCIISet(cutset); ok { 961 return trimLeftASCII(s, &as) 962 } 963 return trimLeftUnicode(s, cutset) 964 } 965 966 func trimLeftByte(s []byte, c byte) []byte { 967 for len(s) > 0 && s[0] == c { 968 s = s[1:] 969 } 970 if len(s) == 0 { 971 // This is what we've historically done. 972 return nil 973 } 974 return s 975 } 976 977 func trimLeftASCII(s []byte, as *asciiSet) []byte { 978 for len(s) > 0 { 979 if !as.contains(s[0]) { 980 break 981 } 982 s = s[1:] 983 } 984 if len(s) == 0 { 985 // This is what we've historically done. 986 return nil 987 } 988 return s 989 } 990 991 func trimLeftUnicode(s []byte, cutset string) []byte { 992 for len(s) > 0 { 993 r, n := rune(s[0]), 1 994 if r >= utf8.RuneSelf { 995 r, n = utf8.DecodeRune(s) 996 } 997 if !containsRune(cutset, r) { 998 break 999 } 1000 s = s[n:] 1001 } 1002 if len(s) == 0 { 1003 // This is what we've historically done. 1004 return nil 1005 } 1006 return s 1007 } 1008 1009 // TrimRight returns a subslice of s by slicing off all trailing 1010 // UTF-8-encoded code points that are contained in cutset. 1011 func TrimRight(s []byte, cutset string) []byte { 1012 if len(s) == 0 || cutset == "" { 1013 return s 1014 } 1015 if len(cutset) == 1 && cutset[0] < utf8.RuneSelf { 1016 return trimRightByte(s, cutset[0]) 1017 } 1018 if as, ok := makeASCIISet(cutset); ok { 1019 return trimRightASCII(s, &as) 1020 } 1021 return trimRightUnicode(s, cutset) 1022 } 1023 1024 func trimRightByte(s []byte, c byte) []byte { 1025 for len(s) > 0 && s[len(s)-1] == c { 1026 s = s[:len(s)-1] 1027 } 1028 return s 1029 } 1030 1031 func trimRightASCII(s []byte, as *asciiSet) []byte { 1032 for len(s) > 0 { 1033 if !as.contains(s[len(s)-1]) { 1034 break 1035 } 1036 s = s[:len(s)-1] 1037 } 1038 return s 1039 } 1040 1041 func trimRightUnicode(s []byte, cutset string) []byte { 1042 for len(s) > 0 { 1043 r, n := rune(s[len(s)-1]), 1 1044 if r >= utf8.RuneSelf { 1045 r, n = utf8.DecodeLastRune(s) 1046 } 1047 if !containsRune(cutset, r) { 1048 break 1049 } 1050 s = s[:len(s)-n] 1051 } 1052 return s 1053 } 1054 1055 // TrimSpace returns a subslice of s by slicing off all leading and 1056 // trailing white space, as defined by Unicode. 1057 func TrimSpace(s []byte) []byte { 1058 // Fast path for ASCII: look for the first ASCII non-space byte 1059 start := 0 1060 for ; start < len(s); start++ { 1061 c := s[start] 1062 if c >= utf8.RuneSelf { 1063 // If we run into a non-ASCII byte, fall back to the 1064 // slower unicode-aware method on the remaining bytes 1065 return TrimFunc(s[start:], unicode.IsSpace) 1066 } 1067 if asciiSpace[c] == 0 { 1068 break 1069 } 1070 } 1071 1072 // Now look for the first ASCII non-space byte from the end 1073 stop := len(s) 1074 for ; stop > start; stop-- { 1075 c := s[stop-1] 1076 if c >= utf8.RuneSelf { 1077 return TrimFunc(s[start:stop], unicode.IsSpace) 1078 } 1079 if asciiSpace[c] == 0 { 1080 break 1081 } 1082 } 1083 1084 // At this point s[start:stop] starts and ends with an ASCII 1085 // non-space bytes, so we're done. Non-ASCII cases have already 1086 // been handled above. 1087 if start == stop { 1088 // Special case to preserve previous TrimLeftFunc behavior, 1089 // returning nil instead of empty slice if all spaces. 1090 return nil 1091 } 1092 return s[start:stop] 1093 } 1094 1095 // Runes interprets s as a sequence of UTF-8-encoded code points. 1096 // It returns a slice of runes (Unicode code points) equivalent to s. 1097 func Runes(s []byte) []rune { 1098 t := make([]rune, utf8.RuneCount(s)) 1099 i := 0 1100 for len(s) > 0 { 1101 r, l := utf8.DecodeRune(s) 1102 t[i] = r 1103 i++ 1104 s = s[l:] 1105 } 1106 return t 1107 } 1108 1109 // Replace returns a copy of the slice s with the first n 1110 // non-overlapping instances of old replaced by new. 1111 // If old is empty, it matches at the beginning of the slice 1112 // and after each UTF-8 sequence, yielding up to k+1 replacements 1113 // for a k-rune slice. 1114 // If n < 0, there is no limit on the number of replacements. 1115 func Replace(s, old, new []byte, n int) []byte { 1116 m := 0 1117 if n != 0 { 1118 // Compute number of replacements. 1119 m = Count(s, old) 1120 } 1121 if m == 0 { 1122 // Just return a copy. 1123 return append([]byte(nil), s...) 1124 } 1125 if n < 0 || m < n { 1126 n = m 1127 } 1128 1129 // Apply replacements to buffer. 1130 t := make([]byte, len(s)+n*(len(new)-len(old))) 1131 w := 0 1132 start := 0 1133 for i := 0; i < n; i++ { 1134 j := start 1135 if len(old) == 0 { 1136 if i > 0 { 1137 _, wid := utf8.DecodeRune(s[start:]) 1138 j += wid 1139 } 1140 } else { 1141 j += Index(s[start:], old) 1142 } 1143 w += copy(t[w:], s[start:j]) 1144 w += copy(t[w:], new) 1145 start = j + len(old) 1146 } 1147 w += copy(t[w:], s[start:]) 1148 return t[0:w] 1149 } 1150 1151 // ReplaceAll returns a copy of the slice s with all 1152 // non-overlapping instances of old replaced by new. 1153 // If old is empty, it matches at the beginning of the slice 1154 // and after each UTF-8 sequence, yielding up to k+1 replacements 1155 // for a k-rune slice. 1156 func ReplaceAll(s, old, new []byte) []byte { 1157 return Replace(s, old, new, -1) 1158 } 1159 1160 // EqualFold reports whether s and t, interpreted as UTF-8 strings, 1161 // are equal under simple Unicode case-folding, which is a more general 1162 // form of case-insensitivity. 1163 func EqualFold(s, t []byte) bool { 1164 // ASCII fast path 1165 i := 0 1166 for ; i < len(s) && i < len(t); i++ { 1167 sr := s[i] 1168 tr := t[i] 1169 if sr|tr >= utf8.RuneSelf { 1170 goto hasUnicode 1171 } 1172 1173 // Easy case. 1174 if tr == sr { 1175 continue 1176 } 1177 1178 // Make sr < tr to simplify what follows. 1179 if tr < sr { 1180 tr, sr = sr, tr 1181 } 1182 // ASCII only, sr/tr must be upper/lower case 1183 if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' { 1184 continue 1185 } 1186 return false 1187 } 1188 // Check if we've exhausted both strings. 1189 return len(s) == len(t) 1190 1191 hasUnicode: 1192 s = s[i:] 1193 t = t[i:] 1194 for len(s) != 0 && len(t) != 0 { 1195 // Extract first rune from each. 1196 var sr, tr rune 1197 if s[0] < utf8.RuneSelf { 1198 sr, s = rune(s[0]), s[1:] 1199 } else { 1200 r, size := utf8.DecodeRune(s) 1201 sr, s = r, s[size:] 1202 } 1203 if t[0] < utf8.RuneSelf { 1204 tr, t = rune(t[0]), t[1:] 1205 } else { 1206 r, size := utf8.DecodeRune(t) 1207 tr, t = r, t[size:] 1208 } 1209 1210 // If they match, keep going; if not, return false. 1211 1212 // Easy case. 1213 if tr == sr { 1214 continue 1215 } 1216 1217 // Make sr < tr to simplify what follows. 1218 if tr < sr { 1219 tr, sr = sr, tr 1220 } 1221 // Fast check for ASCII. 1222 if tr < utf8.RuneSelf { 1223 // ASCII only, sr/tr must be upper/lower case 1224 if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' { 1225 continue 1226 } 1227 return false 1228 } 1229 1230 // General case. SimpleFold(x) returns the next equivalent rune > x 1231 // or wraps around to smaller values. 1232 r := unicode.SimpleFold(sr) 1233 for r != sr && r < tr { 1234 r = unicode.SimpleFold(r) 1235 } 1236 if r == tr { 1237 continue 1238 } 1239 return false 1240 } 1241 1242 // One string is empty. Are both? 1243 return len(s) == len(t) 1244 } 1245 1246 // Index returns the index of the first instance of sep in s, or -1 if sep is not present in s. 1247 func Index(s, sep []byte) int { 1248 n := len(sep) 1249 switch { 1250 case n == 0: 1251 return 0 1252 case n == 1: 1253 return IndexByte(s, sep[0]) 1254 case n == len(s): 1255 if Equal(sep, s) { 1256 return 0 1257 } 1258 return -1 1259 case n > len(s): 1260 return -1 1261 case n <= bytealg.MaxLen: 1262 // Use brute force when s and sep both are small 1263 if len(s) <= bytealg.MaxBruteForce { 1264 return bytealg.Index(s, sep) 1265 } 1266 c0 := sep[0] 1267 c1 := sep[1] 1268 i := 0 1269 t := len(s) - n + 1 1270 fails := 0 1271 for i < t { 1272 if s[i] != c0 { 1273 // IndexByte is faster than bytealg.Index, so use it as long as 1274 // we're not getting lots of false positives. 1275 o := IndexByte(s[i+1:t], c0) 1276 if o < 0 { 1277 return -1 1278 } 1279 i += o + 1 1280 } 1281 if s[i+1] == c1 && Equal(s[i:i+n], sep) { 1282 return i 1283 } 1284 fails++ 1285 i++ 1286 // Switch to bytealg.Index when IndexByte produces too many false positives. 1287 if fails > bytealg.Cutover(i) { 1288 r := bytealg.Index(s[i:], sep) 1289 if r >= 0 { 1290 return r + i 1291 } 1292 return -1 1293 } 1294 } 1295 return -1 1296 } 1297 c0 := sep[0] 1298 c1 := sep[1] 1299 i := 0 1300 fails := 0 1301 t := len(s) - n + 1 1302 for i < t { 1303 if s[i] != c0 { 1304 o := IndexByte(s[i+1:t], c0) 1305 if o < 0 { 1306 break 1307 } 1308 i += o + 1 1309 } 1310 if s[i+1] == c1 && Equal(s[i:i+n], sep) { 1311 return i 1312 } 1313 i++ 1314 fails++ 1315 if fails >= 4+i>>4 && i < t { 1316 // Give up on IndexByte, it isn't skipping ahead 1317 // far enough to be better than Rabin-Karp. 1318 // Experiments (using IndexPeriodic) suggest 1319 // the cutover is about 16 byte skips. 1320 // TODO: if large prefixes of sep are matching 1321 // we should cutover at even larger average skips, 1322 // because Equal becomes that much more expensive. 1323 // This code does not take that effect into account. 1324 j := bytealg.IndexRabinKarpBytes(s[i:], sep) 1325 if j < 0 { 1326 return -1 1327 } 1328 return i + j 1329 } 1330 } 1331 return -1 1332 } 1333 1334 // Cut slices s around the first instance of sep, 1335 // returning the text before and after sep. 1336 // The found result reports whether sep appears in s. 1337 // If sep does not appear in s, cut returns s, nil, false. 1338 // 1339 // Cut returns slices of the original slice s, not copies. 1340 func Cut(s, sep []byte) (before, after []byte, found bool) { 1341 if i := Index(s, sep); i >= 0 { 1342 return s[:i], s[i+len(sep):], true 1343 } 1344 return s, nil, false 1345 } 1346 1347 // Clone returns a copy of b[:len(b)]. 1348 // The result may have additional unused capacity. 1349 // Clone(nil) returns nil. 1350 func Clone(b []byte) []byte { 1351 if b == nil { 1352 return nil 1353 } 1354 return append([]byte{}, b...) 1355 } 1356 1357 // CutPrefix returns s without the provided leading prefix byte slice 1358 // and reports whether it found the prefix. 1359 // If s doesn't start with prefix, CutPrefix returns s, false. 1360 // If prefix is the empty byte slice, CutPrefix returns s, true. 1361 // 1362 // CutPrefix returns slices of the original slice s, not copies. 1363 func CutPrefix(s, prefix []byte) (after []byte, found bool) { 1364 if !HasPrefix(s, prefix) { 1365 return s, false 1366 } 1367 return s[len(prefix):], true 1368 } 1369 1370 // CutSuffix returns s without the provided ending suffix byte slice 1371 // and reports whether it found the suffix. 1372 // If s doesn't end with suffix, CutSuffix returns s, false. 1373 // If suffix is the empty byte slice, CutSuffix returns s, true. 1374 // 1375 // CutSuffix returns slices of the original slice s, not copies. 1376 func CutSuffix(s, suffix []byte) (before []byte, found bool) { 1377 if !HasSuffix(s, suffix) { 1378 return s, false 1379 } 1380 return s[:len(s)-len(suffix)], true 1381 }