github.com/mtsmfm/go/src@v0.0.0-20221020090648-44bdcb9f8fde/crypto/ecdsa/ecdsa.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as 6 // defined in FIPS 186-4 and SEC 1, Version 2.0. 7 // 8 // Signatures generated by this package are not deterministic, but entropy is 9 // mixed with the private key and the message, achieving the same level of 10 // security in case of randomness source failure. 11 package ecdsa 12 13 // [FIPS 186-4] references ANSI X9.62-2005 for the bulk of the ECDSA algorithm. 14 // That standard is not freely available, which is a problem in an open source 15 // implementation, because not only the implementer, but also any maintainer, 16 // contributor, reviewer, auditor, and learner needs access to it. Instead, this 17 // package references and follows the equivalent [SEC 1, Version 2.0]. 18 // 19 // [FIPS 186-4]: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf 20 // [SEC 1, Version 2.0]: https://www.secg.org/sec1-v2.pdf 21 22 import ( 23 "crypto" 24 "crypto/aes" 25 "crypto/cipher" 26 "crypto/elliptic" 27 "crypto/internal/boring" 28 "crypto/internal/boring/bbig" 29 "crypto/internal/randutil" 30 "crypto/sha512" 31 "errors" 32 "io" 33 "math/big" 34 35 "golang.org/x/crypto/cryptobyte" 36 "golang.org/x/crypto/cryptobyte/asn1" 37 ) 38 39 // A invertible implements fast inverse in GF(N). 40 type invertible interface { 41 // Inverse returns the inverse of k mod Params().N. 42 Inverse(k *big.Int) *big.Int 43 } 44 45 // A combinedMult implements fast combined multiplication for verification. 46 type combinedMult interface { 47 // CombinedMult returns [s1]G + [s2]P where G is the generator. 48 CombinedMult(Px, Py *big.Int, s1, s2 []byte) (x, y *big.Int) 49 } 50 51 const ( 52 aesIV = "IV for ECDSA CTR" 53 ) 54 55 // PublicKey represents an ECDSA public key. 56 type PublicKey struct { 57 elliptic.Curve 58 X, Y *big.Int 59 } 60 61 // Any methods implemented on PublicKey might need to also be implemented on 62 // PrivateKey, as the latter embeds the former and will expose its methods. 63 64 // Equal reports whether pub and x have the same value. 65 // 66 // Two keys are only considered to have the same value if they have the same Curve value. 67 // Note that for example elliptic.P256() and elliptic.P256().Params() are different 68 // values, as the latter is a generic not constant time implementation. 69 func (pub *PublicKey) Equal(x crypto.PublicKey) bool { 70 xx, ok := x.(*PublicKey) 71 if !ok { 72 return false 73 } 74 return pub.X.Cmp(xx.X) == 0 && pub.Y.Cmp(xx.Y) == 0 && 75 // Standard library Curve implementations are singletons, so this check 76 // will work for those. Other Curves might be equivalent even if not 77 // singletons, but there is no definitive way to check for that, and 78 // better to err on the side of safety. 79 pub.Curve == xx.Curve 80 } 81 82 // PrivateKey represents an ECDSA private key. 83 type PrivateKey struct { 84 PublicKey 85 D *big.Int 86 } 87 88 // Public returns the public key corresponding to priv. 89 func (priv *PrivateKey) Public() crypto.PublicKey { 90 return &priv.PublicKey 91 } 92 93 // Equal reports whether priv and x have the same value. 94 // 95 // See PublicKey.Equal for details on how Curve is compared. 96 func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool { 97 xx, ok := x.(*PrivateKey) 98 if !ok { 99 return false 100 } 101 return priv.PublicKey.Equal(&xx.PublicKey) && priv.D.Cmp(xx.D) == 0 102 } 103 104 // Sign signs digest with priv, reading randomness from rand. The opts argument 105 // is not currently used but, in keeping with the crypto.Signer interface, 106 // should be the hash function used to digest the message. 107 // 108 // This method implements crypto.Signer, which is an interface to support keys 109 // where the private part is kept in, for example, a hardware module. Common 110 // uses can use the SignASN1 function in this package directly. 111 func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { 112 if boring.Enabled && rand == boring.RandReader { 113 b, err := boringPrivateKey(priv) 114 if err != nil { 115 return nil, err 116 } 117 return boring.SignMarshalECDSA(b, digest) 118 } 119 boring.UnreachableExceptTests() 120 121 r, s, err := Sign(rand, priv, digest) 122 if err != nil { 123 return nil, err 124 } 125 126 var b cryptobyte.Builder 127 b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) { 128 b.AddASN1BigInt(r) 129 b.AddASN1BigInt(s) 130 }) 131 return b.Bytes() 132 } 133 134 var one = new(big.Int).SetInt64(1) 135 136 // randFieldElement returns a random element of the order of the given 137 // curve using the procedure given in FIPS 186-4, Appendix B.5.1. 138 func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { 139 params := c.Params() 140 // Note that for P-521 this will actually be 63 bits more than the order, as 141 // division rounds down, but the extra bit is inconsequential. 142 b := make([]byte, params.N.BitLen()/8+8) 143 _, err = io.ReadFull(rand, b) 144 if err != nil { 145 return 146 } 147 148 k = new(big.Int).SetBytes(b) 149 n := new(big.Int).Sub(params.N, one) 150 k.Mod(k, n) 151 k.Add(k, one) 152 return 153 } 154 155 // GenerateKey generates a public and private key pair. 156 func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) { 157 if boring.Enabled && rand == boring.RandReader { 158 x, y, d, err := boring.GenerateKeyECDSA(c.Params().Name) 159 if err != nil { 160 return nil, err 161 } 162 return &PrivateKey{PublicKey: PublicKey{Curve: c, X: bbig.Dec(x), Y: bbig.Dec(y)}, D: bbig.Dec(d)}, nil 163 } 164 boring.UnreachableExceptTests() 165 166 k, err := randFieldElement(c, rand) 167 if err != nil { 168 return nil, err 169 } 170 171 priv := new(PrivateKey) 172 priv.PublicKey.Curve = c 173 priv.D = k 174 priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) 175 return priv, nil 176 } 177 178 // hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4, 179 // we use the left-most bits of the hash to match the bit-length of the order of 180 // the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3. 181 func hashToInt(hash []byte, c elliptic.Curve) *big.Int { 182 orderBits := c.Params().N.BitLen() 183 orderBytes := (orderBits + 7) / 8 184 if len(hash) > orderBytes { 185 hash = hash[:orderBytes] 186 } 187 188 ret := new(big.Int).SetBytes(hash) 189 excess := len(hash)*8 - orderBits 190 if excess > 0 { 191 ret.Rsh(ret, uint(excess)) 192 } 193 return ret 194 } 195 196 // fermatInverse calculates the inverse of k in GF(P) using Fermat's method 197 // (exponentiation modulo P - 2, per Euler's theorem). This has better 198 // constant-time properties than Euclid's method (implemented in 199 // math/big.Int.ModInverse and FIPS 186-4, Appendix C.1) although math/big 200 // itself isn't strictly constant-time so it's not perfect. 201 func fermatInverse(k, N *big.Int) *big.Int { 202 two := big.NewInt(2) 203 nMinus2 := new(big.Int).Sub(N, two) 204 return new(big.Int).Exp(k, nMinus2, N) 205 } 206 207 var errZeroParam = errors.New("zero parameter") 208 209 // Sign signs a hash (which should be the result of hashing a larger message) 210 // using the private key, priv. If the hash is longer than the bit-length of the 211 // private key's curve order, the hash will be truncated to that length. It 212 // returns the signature as a pair of integers. Most applications should use 213 // SignASN1 instead of dealing directly with r, s. 214 func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { 215 randutil.MaybeReadByte(rand) 216 217 if boring.Enabled && rand == boring.RandReader { 218 b, err := boringPrivateKey(priv) 219 if err != nil { 220 return nil, nil, err 221 } 222 sig, err := boring.SignMarshalECDSA(b, hash) 223 if err != nil { 224 return nil, nil, err 225 } 226 var r, s big.Int 227 var inner cryptobyte.String 228 input := cryptobyte.String(sig) 229 if !input.ReadASN1(&inner, asn1.SEQUENCE) || 230 !input.Empty() || 231 !inner.ReadASN1Integer(&r) || 232 !inner.ReadASN1Integer(&s) || 233 !inner.Empty() { 234 return nil, nil, errors.New("invalid ASN.1 from boringcrypto") 235 } 236 return &r, &s, nil 237 } 238 boring.UnreachableExceptTests() 239 240 // This implementation derives the nonce from an AES-CTR CSPRNG keyed by: 241 // 242 // SHA2-512(priv.D || entropy || hash)[:32] 243 // 244 // The CSPRNG key is indifferentiable from a random oracle as shown in 245 // [Coron], the AES-CTR stream is indifferentiable from a random oracle 246 // under standard cryptographic assumptions (see [Larsson] for examples). 247 // 248 // [Coron]: https://cs.nyu.edu/~dodis/ps/merkle.pdf 249 // [Larsson]: https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf 250 251 // Get 256 bits of entropy from rand. 252 entropy := make([]byte, 32) 253 _, err = io.ReadFull(rand, entropy) 254 if err != nil { 255 return 256 } 257 258 // Initialize an SHA-512 hash context; digest... 259 md := sha512.New() 260 md.Write(priv.D.Bytes()) // the private key, 261 md.Write(entropy) // the entropy, 262 md.Write(hash) // and the input hash; 263 key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512), 264 // which is an indifferentiable MAC. 265 266 // Create an AES-CTR instance to use as a CSPRNG. 267 block, err := aes.NewCipher(key) 268 if err != nil { 269 return nil, nil, err 270 } 271 272 // Create a CSPRNG that xors a stream of zeros with 273 // the output of the AES-CTR instance. 274 csprng := &cipher.StreamReader{ 275 R: zeroReader, 276 S: cipher.NewCTR(block, []byte(aesIV)), 277 } 278 279 c := priv.PublicKey.Curve 280 return sign(priv, csprng, c, hash) 281 } 282 283 func signGeneric(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash []byte) (r, s *big.Int, err error) { 284 // SEC 1, Version 2.0, Section 4.1.3 285 N := c.Params().N 286 if N.Sign() == 0 { 287 return nil, nil, errZeroParam 288 } 289 var k, kInv *big.Int 290 for { 291 for { 292 k, err = randFieldElement(c, *csprng) 293 if err != nil { 294 r = nil 295 return 296 } 297 298 if in, ok := priv.Curve.(invertible); ok { 299 kInv = in.Inverse(k) 300 } else { 301 kInv = fermatInverse(k, N) // N != 0 302 } 303 304 r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) 305 r.Mod(r, N) 306 if r.Sign() != 0 { 307 break 308 } 309 } 310 311 e := hashToInt(hash, c) 312 s = new(big.Int).Mul(priv.D, r) 313 s.Add(s, e) 314 s.Mul(s, kInv) 315 s.Mod(s, N) // N != 0 316 if s.Sign() != 0 { 317 break 318 } 319 } 320 321 return 322 } 323 324 // SignASN1 signs a hash (which should be the result of hashing a larger message) 325 // using the private key, priv. If the hash is longer than the bit-length of the 326 // private key's curve order, the hash will be truncated to that length. It 327 // returns the ASN.1 encoded signature. 328 func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte) ([]byte, error) { 329 return priv.Sign(rand, hash, nil) 330 } 331 332 // Verify verifies the signature in r, s of hash using the public key, pub. Its 333 // return value records whether the signature is valid. Most applications should 334 // use VerifyASN1 instead of dealing directly with r, s. 335 func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { 336 if boring.Enabled { 337 key, err := boringPublicKey(pub) 338 if err != nil { 339 return false 340 } 341 var b cryptobyte.Builder 342 b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) { 343 b.AddASN1BigInt(r) 344 b.AddASN1BigInt(s) 345 }) 346 sig, err := b.Bytes() 347 if err != nil { 348 return false 349 } 350 return boring.VerifyECDSA(key, hash, sig) 351 } 352 boring.UnreachableExceptTests() 353 354 c := pub.Curve 355 N := c.Params().N 356 357 if r.Sign() <= 0 || s.Sign() <= 0 { 358 return false 359 } 360 if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { 361 return false 362 } 363 return verify(pub, c, hash, r, s) 364 } 365 366 func verifyGeneric(pub *PublicKey, c elliptic.Curve, hash []byte, r, s *big.Int) bool { 367 // SEC 1, Version 2.0, Section 4.1.4 368 e := hashToInt(hash, c) 369 var w *big.Int 370 N := c.Params().N 371 if in, ok := c.(invertible); ok { 372 w = in.Inverse(s) 373 } else { 374 w = new(big.Int).ModInverse(s, N) 375 } 376 377 u1 := e.Mul(e, w) 378 u1.Mod(u1, N) 379 u2 := w.Mul(r, w) 380 u2.Mod(u2, N) 381 382 // Check if implements S1*g + S2*p 383 var x, y *big.Int 384 if opt, ok := c.(combinedMult); ok { 385 x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes()) 386 } else { 387 x1, y1 := c.ScalarBaseMult(u1.Bytes()) 388 x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) 389 x, y = c.Add(x1, y1, x2, y2) 390 } 391 392 if x.Sign() == 0 && y.Sign() == 0 { 393 return false 394 } 395 x.Mod(x, N) 396 return x.Cmp(r) == 0 397 } 398 399 // VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the 400 // public key, pub. Its return value records whether the signature is valid. 401 func VerifyASN1(pub *PublicKey, hash, sig []byte) bool { 402 var ( 403 r, s = &big.Int{}, &big.Int{} 404 inner cryptobyte.String 405 ) 406 input := cryptobyte.String(sig) 407 if !input.ReadASN1(&inner, asn1.SEQUENCE) || 408 !input.Empty() || 409 !inner.ReadASN1Integer(r) || 410 !inner.ReadASN1Integer(s) || 411 !inner.Empty() { 412 return false 413 } 414 return Verify(pub, hash, r, s) 415 } 416 417 type zr struct{} 418 419 // Read replaces the contents of dst with zeros. It is safe for concurrent use. 420 func (zr) Read(dst []byte) (n int, err error) { 421 for i := range dst { 422 dst[i] = 0 423 } 424 return len(dst), nil 425 } 426 427 var zeroReader = zr{}