github.com/mtsmfm/go/src@v0.0.0-20221020090648-44bdcb9f8fde/math/big/int.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements signed multi-precision integers.
     6  
     7  package big
     8  
     9  import (
    10  	"fmt"
    11  	"io"
    12  	"math/rand"
    13  	"strings"
    14  )
    15  
    16  // An Int represents a signed multi-precision integer.
    17  // The zero value for an Int represents the value 0.
    18  //
    19  // Operations always take pointer arguments (*Int) rather
    20  // than Int values, and each unique Int value requires
    21  // its own unique *Int pointer. To "copy" an Int value,
    22  // an existing (or newly allocated) Int must be set to
    23  // a new value using the Int.Set method; shallow copies
    24  // of Ints are not supported and may lead to errors.
    25  type Int struct {
    26  	neg bool // sign
    27  	abs nat  // absolute value of the integer
    28  }
    29  
    30  var intOne = &Int{false, natOne}
    31  
    32  // Sign returns:
    33  //
    34  //	-1 if x <  0
    35  //	 0 if x == 0
    36  //	+1 if x >  0
    37  func (x *Int) Sign() int {
    38  	if len(x.abs) == 0 {
    39  		return 0
    40  	}
    41  	if x.neg {
    42  		return -1
    43  	}
    44  	return 1
    45  }
    46  
    47  // SetInt64 sets z to x and returns z.
    48  func (z *Int) SetInt64(x int64) *Int {
    49  	neg := false
    50  	if x < 0 {
    51  		neg = true
    52  		x = -x
    53  	}
    54  	z.abs = z.abs.setUint64(uint64(x))
    55  	z.neg = neg
    56  	return z
    57  }
    58  
    59  // SetUint64 sets z to x and returns z.
    60  func (z *Int) SetUint64(x uint64) *Int {
    61  	z.abs = z.abs.setUint64(x)
    62  	z.neg = false
    63  	return z
    64  }
    65  
    66  // NewInt allocates and returns a new Int set to x.
    67  func NewInt(x int64) *Int {
    68  	// This code is arranged to be inlineable and produce
    69  	// zero allocations when inlined. See issue 29951.
    70  	u := uint64(x)
    71  	if x < 0 {
    72  		u = -u
    73  	}
    74  	var abs []Word
    75  	if x == 0 {
    76  	} else if _W == 32 && u>>32 != 0 {
    77  		abs = []Word{Word(u), Word(u >> 32)}
    78  	} else {
    79  		abs = []Word{Word(u)}
    80  	}
    81  	return &Int{neg: x < 0, abs: abs}
    82  }
    83  
    84  // Set sets z to x and returns z.
    85  func (z *Int) Set(x *Int) *Int {
    86  	if z != x {
    87  		z.abs = z.abs.set(x.abs)
    88  		z.neg = x.neg
    89  	}
    90  	return z
    91  }
    92  
    93  // Bits provides raw (unchecked but fast) access to x by returning its
    94  // absolute value as a little-endian Word slice. The result and x share
    95  // the same underlying array.
    96  // Bits is intended to support implementation of missing low-level Int
    97  // functionality outside this package; it should be avoided otherwise.
    98  func (x *Int) Bits() []Word {
    99  	return x.abs
   100  }
   101  
   102  // SetBits provides raw (unchecked but fast) access to z by setting its
   103  // value to abs, interpreted as a little-endian Word slice, and returning
   104  // z. The result and abs share the same underlying array.
   105  // SetBits is intended to support implementation of missing low-level Int
   106  // functionality outside this package; it should be avoided otherwise.
   107  func (z *Int) SetBits(abs []Word) *Int {
   108  	z.abs = nat(abs).norm()
   109  	z.neg = false
   110  	return z
   111  }
   112  
   113  // Abs sets z to |x| (the absolute value of x) and returns z.
   114  func (z *Int) Abs(x *Int) *Int {
   115  	z.Set(x)
   116  	z.neg = false
   117  	return z
   118  }
   119  
   120  // Neg sets z to -x and returns z.
   121  func (z *Int) Neg(x *Int) *Int {
   122  	z.Set(x)
   123  	z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign
   124  	return z
   125  }
   126  
   127  // Add sets z to the sum x+y and returns z.
   128  func (z *Int) Add(x, y *Int) *Int {
   129  	neg := x.neg
   130  	if x.neg == y.neg {
   131  		// x + y == x + y
   132  		// (-x) + (-y) == -(x + y)
   133  		z.abs = z.abs.add(x.abs, y.abs)
   134  	} else {
   135  		// x + (-y) == x - y == -(y - x)
   136  		// (-x) + y == y - x == -(x - y)
   137  		if x.abs.cmp(y.abs) >= 0 {
   138  			z.abs = z.abs.sub(x.abs, y.abs)
   139  		} else {
   140  			neg = !neg
   141  			z.abs = z.abs.sub(y.abs, x.abs)
   142  		}
   143  	}
   144  	z.neg = len(z.abs) > 0 && neg // 0 has no sign
   145  	return z
   146  }
   147  
   148  // Sub sets z to the difference x-y and returns z.
   149  func (z *Int) Sub(x, y *Int) *Int {
   150  	neg := x.neg
   151  	if x.neg != y.neg {
   152  		// x - (-y) == x + y
   153  		// (-x) - y == -(x + y)
   154  		z.abs = z.abs.add(x.abs, y.abs)
   155  	} else {
   156  		// x - y == x - y == -(y - x)
   157  		// (-x) - (-y) == y - x == -(x - y)
   158  		if x.abs.cmp(y.abs) >= 0 {
   159  			z.abs = z.abs.sub(x.abs, y.abs)
   160  		} else {
   161  			neg = !neg
   162  			z.abs = z.abs.sub(y.abs, x.abs)
   163  		}
   164  	}
   165  	z.neg = len(z.abs) > 0 && neg // 0 has no sign
   166  	return z
   167  }
   168  
   169  // Mul sets z to the product x*y and returns z.
   170  func (z *Int) Mul(x, y *Int) *Int {
   171  	// x * y == x * y
   172  	// x * (-y) == -(x * y)
   173  	// (-x) * y == -(x * y)
   174  	// (-x) * (-y) == x * y
   175  	if x == y {
   176  		z.abs = z.abs.sqr(x.abs)
   177  		z.neg = false
   178  		return z
   179  	}
   180  	z.abs = z.abs.mul(x.abs, y.abs)
   181  	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
   182  	return z
   183  }
   184  
   185  // MulRange sets z to the product of all integers
   186  // in the range [a, b] inclusively and returns z.
   187  // If a > b (empty range), the result is 1.
   188  func (z *Int) MulRange(a, b int64) *Int {
   189  	switch {
   190  	case a > b:
   191  		return z.SetInt64(1) // empty range
   192  	case a <= 0 && b >= 0:
   193  		return z.SetInt64(0) // range includes 0
   194  	}
   195  	// a <= b && (b < 0 || a > 0)
   196  
   197  	neg := false
   198  	if a < 0 {
   199  		neg = (b-a)&1 == 0
   200  		a, b = -b, -a
   201  	}
   202  
   203  	z.abs = z.abs.mulRange(uint64(a), uint64(b))
   204  	z.neg = neg
   205  	return z
   206  }
   207  
   208  // Binomial sets z to the binomial coefficient of (n, k) and returns z.
   209  func (z *Int) Binomial(n, k int64) *Int {
   210  	// reduce the number of multiplications by reducing k
   211  	if n/2 < k && k <= n {
   212  		k = n - k // Binomial(n, k) == Binomial(n, n-k)
   213  	}
   214  	var a, b Int
   215  	a.MulRange(n-k+1, n)
   216  	b.MulRange(1, k)
   217  	return z.Quo(&a, &b)
   218  }
   219  
   220  // Quo sets z to the quotient x/y for y != 0 and returns z.
   221  // If y == 0, a division-by-zero run-time panic occurs.
   222  // Quo implements truncated division (like Go); see QuoRem for more details.
   223  func (z *Int) Quo(x, y *Int) *Int {
   224  	z.abs, _ = z.abs.div(nil, x.abs, y.abs)
   225  	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
   226  	return z
   227  }
   228  
   229  // Rem sets z to the remainder x%y for y != 0 and returns z.
   230  // If y == 0, a division-by-zero run-time panic occurs.
   231  // Rem implements truncated modulus (like Go); see QuoRem for more details.
   232  func (z *Int) Rem(x, y *Int) *Int {
   233  	_, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
   234  	z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
   235  	return z
   236  }
   237  
   238  // QuoRem sets z to the quotient x/y and r to the remainder x%y
   239  // and returns the pair (z, r) for y != 0.
   240  // If y == 0, a division-by-zero run-time panic occurs.
   241  //
   242  // QuoRem implements T-division and modulus (like Go):
   243  //
   244  //	q = x/y      with the result truncated to zero
   245  //	r = x - y*q
   246  //
   247  // (See Daan Leijen, “Division and Modulus for Computer Scientists”.)
   248  // See DivMod for Euclidean division and modulus (unlike Go).
   249  func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
   250  	z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
   251  	z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
   252  	return z, r
   253  }
   254  
   255  // Div sets z to the quotient x/y for y != 0 and returns z.
   256  // If y == 0, a division-by-zero run-time panic occurs.
   257  // Div implements Euclidean division (unlike Go); see DivMod for more details.
   258  func (z *Int) Div(x, y *Int) *Int {
   259  	y_neg := y.neg // z may be an alias for y
   260  	var r Int
   261  	z.QuoRem(x, y, &r)
   262  	if r.neg {
   263  		if y_neg {
   264  			z.Add(z, intOne)
   265  		} else {
   266  			z.Sub(z, intOne)
   267  		}
   268  	}
   269  	return z
   270  }
   271  
   272  // Mod sets z to the modulus x%y for y != 0 and returns z.
   273  // If y == 0, a division-by-zero run-time panic occurs.
   274  // Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
   275  func (z *Int) Mod(x, y *Int) *Int {
   276  	y0 := y // save y
   277  	if z == y || alias(z.abs, y.abs) {
   278  		y0 = new(Int).Set(y)
   279  	}
   280  	var q Int
   281  	q.QuoRem(x, y, z)
   282  	if z.neg {
   283  		if y0.neg {
   284  			z.Sub(z, y0)
   285  		} else {
   286  			z.Add(z, y0)
   287  		}
   288  	}
   289  	return z
   290  }
   291  
   292  // DivMod sets z to the quotient x div y and m to the modulus x mod y
   293  // and returns the pair (z, m) for y != 0.
   294  // If y == 0, a division-by-zero run-time panic occurs.
   295  //
   296  // DivMod implements Euclidean division and modulus (unlike Go):
   297  //
   298  //	q = x div y  such that
   299  //	m = x - y*q  with 0 <= m < |y|
   300  //
   301  // (See Raymond T. Boute, “The Euclidean definition of the functions
   302  // div and mod”. ACM Transactions on Programming Languages and
   303  // Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
   304  // ACM press.)
   305  // See QuoRem for T-division and modulus (like Go).
   306  func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
   307  	y0 := y // save y
   308  	if z == y || alias(z.abs, y.abs) {
   309  		y0 = new(Int).Set(y)
   310  	}
   311  	z.QuoRem(x, y, m)
   312  	if m.neg {
   313  		if y0.neg {
   314  			z.Add(z, intOne)
   315  			m.Sub(m, y0)
   316  		} else {
   317  			z.Sub(z, intOne)
   318  			m.Add(m, y0)
   319  		}
   320  	}
   321  	return z, m
   322  }
   323  
   324  // Cmp compares x and y and returns:
   325  //
   326  //	-1 if x <  y
   327  //	 0 if x == y
   328  //	+1 if x >  y
   329  func (x *Int) Cmp(y *Int) (r int) {
   330  	// x cmp y == x cmp y
   331  	// x cmp (-y) == x
   332  	// (-x) cmp y == y
   333  	// (-x) cmp (-y) == -(x cmp y)
   334  	switch {
   335  	case x == y:
   336  		// nothing to do
   337  	case x.neg == y.neg:
   338  		r = x.abs.cmp(y.abs)
   339  		if x.neg {
   340  			r = -r
   341  		}
   342  	case x.neg:
   343  		r = -1
   344  	default:
   345  		r = 1
   346  	}
   347  	return
   348  }
   349  
   350  // CmpAbs compares the absolute values of x and y and returns:
   351  //
   352  //	-1 if |x| <  |y|
   353  //	 0 if |x| == |y|
   354  //	+1 if |x| >  |y|
   355  func (x *Int) CmpAbs(y *Int) int {
   356  	return x.abs.cmp(y.abs)
   357  }
   358  
   359  // low32 returns the least significant 32 bits of x.
   360  func low32(x nat) uint32 {
   361  	if len(x) == 0 {
   362  		return 0
   363  	}
   364  	return uint32(x[0])
   365  }
   366  
   367  // low64 returns the least significant 64 bits of x.
   368  func low64(x nat) uint64 {
   369  	if len(x) == 0 {
   370  		return 0
   371  	}
   372  	v := uint64(x[0])
   373  	if _W == 32 && len(x) > 1 {
   374  		return uint64(x[1])<<32 | v
   375  	}
   376  	return v
   377  }
   378  
   379  // Int64 returns the int64 representation of x.
   380  // If x cannot be represented in an int64, the result is undefined.
   381  func (x *Int) Int64() int64 {
   382  	v := int64(low64(x.abs))
   383  	if x.neg {
   384  		v = -v
   385  	}
   386  	return v
   387  }
   388  
   389  // Uint64 returns the uint64 representation of x.
   390  // If x cannot be represented in a uint64, the result is undefined.
   391  func (x *Int) Uint64() uint64 {
   392  	return low64(x.abs)
   393  }
   394  
   395  // IsInt64 reports whether x can be represented as an int64.
   396  func (x *Int) IsInt64() bool {
   397  	if len(x.abs) <= 64/_W {
   398  		w := int64(low64(x.abs))
   399  		return w >= 0 || x.neg && w == -w
   400  	}
   401  	return false
   402  }
   403  
   404  // IsUint64 reports whether x can be represented as a uint64.
   405  func (x *Int) IsUint64() bool {
   406  	return !x.neg && len(x.abs) <= 64/_W
   407  }
   408  
   409  // SetString sets z to the value of s, interpreted in the given base,
   410  // and returns z and a boolean indicating success. The entire string
   411  // (not just a prefix) must be valid for success. If SetString fails,
   412  // the value of z is undefined but the returned value is nil.
   413  //
   414  // The base argument must be 0 or a value between 2 and MaxBase.
   415  // For base 0, the number prefix determines the actual base: A prefix of
   416  // “0b” or “0B” selects base 2, “0”, “0o” or “0O” selects base 8,
   417  // and “0x” or “0X” selects base 16. Otherwise, the selected base is 10
   418  // and no prefix is accepted.
   419  //
   420  // For bases <= 36, lower and upper case letters are considered the same:
   421  // The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35.
   422  // For bases > 36, the upper case letters 'A' to 'Z' represent the digit
   423  // values 36 to 61.
   424  //
   425  // For base 0, an underscore character “_” may appear between a base
   426  // prefix and an adjacent digit, and between successive digits; such
   427  // underscores do not change the value of the number.
   428  // Incorrect placement of underscores is reported as an error if there
   429  // are no other errors. If base != 0, underscores are not recognized
   430  // and act like any other character that is not a valid digit.
   431  func (z *Int) SetString(s string, base int) (*Int, bool) {
   432  	return z.setFromScanner(strings.NewReader(s), base)
   433  }
   434  
   435  // setFromScanner implements SetString given an io.ByteScanner.
   436  // For documentation see comments of SetString.
   437  func (z *Int) setFromScanner(r io.ByteScanner, base int) (*Int, bool) {
   438  	if _, _, err := z.scan(r, base); err != nil {
   439  		return nil, false
   440  	}
   441  	// entire content must have been consumed
   442  	if _, err := r.ReadByte(); err != io.EOF {
   443  		return nil, false
   444  	}
   445  	return z, true // err == io.EOF => scan consumed all content of r
   446  }
   447  
   448  // SetBytes interprets buf as the bytes of a big-endian unsigned
   449  // integer, sets z to that value, and returns z.
   450  func (z *Int) SetBytes(buf []byte) *Int {
   451  	z.abs = z.abs.setBytes(buf)
   452  	z.neg = false
   453  	return z
   454  }
   455  
   456  // Bytes returns the absolute value of x as a big-endian byte slice.
   457  //
   458  // To use a fixed length slice, or a preallocated one, use FillBytes.
   459  func (x *Int) Bytes() []byte {
   460  	buf := make([]byte, len(x.abs)*_S)
   461  	return buf[x.abs.bytes(buf):]
   462  }
   463  
   464  // FillBytes sets buf to the absolute value of x, storing it as a zero-extended
   465  // big-endian byte slice, and returns buf.
   466  //
   467  // If the absolute value of x doesn't fit in buf, FillBytes will panic.
   468  func (x *Int) FillBytes(buf []byte) []byte {
   469  	// Clear whole buffer. (This gets optimized into a memclr.)
   470  	for i := range buf {
   471  		buf[i] = 0
   472  	}
   473  	x.abs.bytes(buf)
   474  	return buf
   475  }
   476  
   477  // BitLen returns the length of the absolute value of x in bits.
   478  // The bit length of 0 is 0.
   479  func (x *Int) BitLen() int {
   480  	return x.abs.bitLen()
   481  }
   482  
   483  // TrailingZeroBits returns the number of consecutive least significant zero
   484  // bits of |x|.
   485  func (x *Int) TrailingZeroBits() uint {
   486  	return x.abs.trailingZeroBits()
   487  }
   488  
   489  // Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
   490  // If m == nil or m == 0, z = x**y unless y <= 0 then z = 1. If m != 0, y < 0,
   491  // and x and m are not relatively prime, z is unchanged and nil is returned.
   492  //
   493  // Modular exponentiation of inputs of a particular size is not a
   494  // cryptographically constant-time operation.
   495  func (z *Int) Exp(x, y, m *Int) *Int {
   496  	// See Knuth, volume 2, section 4.6.3.
   497  	xWords := x.abs
   498  	if y.neg {
   499  		if m == nil || len(m.abs) == 0 {
   500  			return z.SetInt64(1)
   501  		}
   502  		// for y < 0: x**y mod m == (x**(-1))**|y| mod m
   503  		inverse := new(Int).ModInverse(x, m)
   504  		if inverse == nil {
   505  			return nil
   506  		}
   507  		xWords = inverse.abs
   508  	}
   509  	yWords := y.abs
   510  
   511  	var mWords nat
   512  	if m != nil {
   513  		if z == m || alias(z.abs, m.abs) {
   514  			m = new(Int).Set(m)
   515  		}
   516  		mWords = m.abs // m.abs may be nil for m == 0
   517  	}
   518  
   519  	z.abs = z.abs.expNN(xWords, yWords, mWords)
   520  	z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign
   521  	if z.neg && len(mWords) > 0 {
   522  		// make modulus result positive
   523  		z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m|
   524  		z.neg = false
   525  	}
   526  
   527  	return z
   528  }
   529  
   530  // GCD sets z to the greatest common divisor of a and b and returns z.
   531  // If x or y are not nil, GCD sets their value such that z = a*x + b*y.
   532  //
   533  // a and b may be positive, zero or negative. (Before Go 1.14 both had
   534  // to be > 0.) Regardless of the signs of a and b, z is always >= 0.
   535  //
   536  // If a == b == 0, GCD sets z = x = y = 0.
   537  //
   538  // If a == 0 and b != 0, GCD sets z = |b|, x = 0, y = sign(b) * 1.
   539  //
   540  // If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0.
   541  func (z *Int) GCD(x, y, a, b *Int) *Int {
   542  	if len(a.abs) == 0 || len(b.abs) == 0 {
   543  		lenA, lenB, negA, negB := len(a.abs), len(b.abs), a.neg, b.neg
   544  		if lenA == 0 {
   545  			z.Set(b)
   546  		} else {
   547  			z.Set(a)
   548  		}
   549  		z.neg = false
   550  		if x != nil {
   551  			if lenA == 0 {
   552  				x.SetUint64(0)
   553  			} else {
   554  				x.SetUint64(1)
   555  				x.neg = negA
   556  			}
   557  		}
   558  		if y != nil {
   559  			if lenB == 0 {
   560  				y.SetUint64(0)
   561  			} else {
   562  				y.SetUint64(1)
   563  				y.neg = negB
   564  			}
   565  		}
   566  		return z
   567  	}
   568  
   569  	return z.lehmerGCD(x, y, a, b)
   570  }
   571  
   572  // lehmerSimulate attempts to simulate several Euclidean update steps
   573  // using the leading digits of A and B.  It returns u0, u1, v0, v1
   574  // such that A and B can be updated as:
   575  //
   576  //	A = u0*A + v0*B
   577  //	B = u1*A + v1*B
   578  //
   579  // Requirements: A >= B and len(B.abs) >= 2
   580  // Since we are calculating with full words to avoid overflow,
   581  // we use 'even' to track the sign of the cosequences.
   582  // For even iterations: u0, v1 >= 0 && u1, v0 <= 0
   583  // For odd  iterations: u0, v1 <= 0 && u1, v0 >= 0
   584  func lehmerSimulate(A, B *Int) (u0, u1, v0, v1 Word, even bool) {
   585  	// initialize the digits
   586  	var a1, a2, u2, v2 Word
   587  
   588  	m := len(B.abs) // m >= 2
   589  	n := len(A.abs) // n >= m >= 2
   590  
   591  	// extract the top Word of bits from A and B
   592  	h := nlz(A.abs[n-1])
   593  	a1 = A.abs[n-1]<<h | A.abs[n-2]>>(_W-h)
   594  	// B may have implicit zero words in the high bits if the lengths differ
   595  	switch {
   596  	case n == m:
   597  		a2 = B.abs[n-1]<<h | B.abs[n-2]>>(_W-h)
   598  	case n == m+1:
   599  		a2 = B.abs[n-2] >> (_W - h)
   600  	default:
   601  		a2 = 0
   602  	}
   603  
   604  	// Since we are calculating with full words to avoid overflow,
   605  	// we use 'even' to track the sign of the cosequences.
   606  	// For even iterations: u0, v1 >= 0 && u1, v0 <= 0
   607  	// For odd  iterations: u0, v1 <= 0 && u1, v0 >= 0
   608  	// The first iteration starts with k=1 (odd).
   609  	even = false
   610  	// variables to track the cosequences
   611  	u0, u1, u2 = 0, 1, 0
   612  	v0, v1, v2 = 0, 0, 1
   613  
   614  	// Calculate the quotient and cosequences using Collins' stopping condition.
   615  	// Note that overflow of a Word is not possible when computing the remainder
   616  	// sequence and cosequences since the cosequence size is bounded by the input size.
   617  	// See section 4.2 of Jebelean for details.
   618  	for a2 >= v2 && a1-a2 >= v1+v2 {
   619  		q, r := a1/a2, a1%a2
   620  		a1, a2 = a2, r
   621  		u0, u1, u2 = u1, u2, u1+q*u2
   622  		v0, v1, v2 = v1, v2, v1+q*v2
   623  		even = !even
   624  	}
   625  	return
   626  }
   627  
   628  // lehmerUpdate updates the inputs A and B such that:
   629  //
   630  //	A = u0*A + v0*B
   631  //	B = u1*A + v1*B
   632  //
   633  // where the signs of u0, u1, v0, v1 are given by even
   634  // For even == true: u0, v1 >= 0 && u1, v0 <= 0
   635  // For even == false: u0, v1 <= 0 && u1, v0 >= 0
   636  // q, r, s, t are temporary variables to avoid allocations in the multiplication
   637  func lehmerUpdate(A, B, q, r, s, t *Int, u0, u1, v0, v1 Word, even bool) {
   638  
   639  	t.abs = t.abs.setWord(u0)
   640  	s.abs = s.abs.setWord(v0)
   641  	t.neg = !even
   642  	s.neg = even
   643  
   644  	t.Mul(A, t)
   645  	s.Mul(B, s)
   646  
   647  	r.abs = r.abs.setWord(u1)
   648  	q.abs = q.abs.setWord(v1)
   649  	r.neg = even
   650  	q.neg = !even
   651  
   652  	r.Mul(A, r)
   653  	q.Mul(B, q)
   654  
   655  	A.Add(t, s)
   656  	B.Add(r, q)
   657  }
   658  
   659  // euclidUpdate performs a single step of the Euclidean GCD algorithm
   660  // if extended is true, it also updates the cosequence Ua, Ub
   661  func euclidUpdate(A, B, Ua, Ub, q, r, s, t *Int, extended bool) {
   662  	q, r = q.QuoRem(A, B, r)
   663  
   664  	*A, *B, *r = *B, *r, *A
   665  
   666  	if extended {
   667  		// Ua, Ub = Ub, Ua - q*Ub
   668  		t.Set(Ub)
   669  		s.Mul(Ub, q)
   670  		Ub.Sub(Ua, s)
   671  		Ua.Set(t)
   672  	}
   673  }
   674  
   675  // lehmerGCD sets z to the greatest common divisor of a and b,
   676  // which both must be != 0, and returns z.
   677  // If x or y are not nil, their values are set such that z = a*x + b*y.
   678  // See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm L.
   679  // This implementation uses the improved condition by Collins requiring only one
   680  // quotient and avoiding the possibility of single Word overflow.
   681  // See Jebelean, "Improving the multiprecision Euclidean algorithm",
   682  // Design and Implementation of Symbolic Computation Systems, pp 45-58.
   683  // The cosequences are updated according to Algorithm 10.45 from
   684  // Cohen et al. "Handbook of Elliptic and Hyperelliptic Curve Cryptography" pp 192.
   685  func (z *Int) lehmerGCD(x, y, a, b *Int) *Int {
   686  	var A, B, Ua, Ub *Int
   687  
   688  	A = new(Int).Abs(a)
   689  	B = new(Int).Abs(b)
   690  
   691  	extended := x != nil || y != nil
   692  
   693  	if extended {
   694  		// Ua (Ub) tracks how many times input a has been accumulated into A (B).
   695  		Ua = new(Int).SetInt64(1)
   696  		Ub = new(Int)
   697  	}
   698  
   699  	// temp variables for multiprecision update
   700  	q := new(Int)
   701  	r := new(Int)
   702  	s := new(Int)
   703  	t := new(Int)
   704  
   705  	// ensure A >= B
   706  	if A.abs.cmp(B.abs) < 0 {
   707  		A, B = B, A
   708  		Ub, Ua = Ua, Ub
   709  	}
   710  
   711  	// loop invariant A >= B
   712  	for len(B.abs) > 1 {
   713  		// Attempt to calculate in single-precision using leading words of A and B.
   714  		u0, u1, v0, v1, even := lehmerSimulate(A, B)
   715  
   716  		// multiprecision Step
   717  		if v0 != 0 {
   718  			// Simulate the effect of the single-precision steps using the cosequences.
   719  			// A = u0*A + v0*B
   720  			// B = u1*A + v1*B
   721  			lehmerUpdate(A, B, q, r, s, t, u0, u1, v0, v1, even)
   722  
   723  			if extended {
   724  				// Ua = u0*Ua + v0*Ub
   725  				// Ub = u1*Ua + v1*Ub
   726  				lehmerUpdate(Ua, Ub, q, r, s, t, u0, u1, v0, v1, even)
   727  			}
   728  
   729  		} else {
   730  			// Single-digit calculations failed to simulate any quotients.
   731  			// Do a standard Euclidean step.
   732  			euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended)
   733  		}
   734  	}
   735  
   736  	if len(B.abs) > 0 {
   737  		// extended Euclidean algorithm base case if B is a single Word
   738  		if len(A.abs) > 1 {
   739  			// A is longer than a single Word, so one update is needed.
   740  			euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended)
   741  		}
   742  		if len(B.abs) > 0 {
   743  			// A and B are both a single Word.
   744  			aWord, bWord := A.abs[0], B.abs[0]
   745  			if extended {
   746  				var ua, ub, va, vb Word
   747  				ua, ub = 1, 0
   748  				va, vb = 0, 1
   749  				even := true
   750  				for bWord != 0 {
   751  					q, r := aWord/bWord, aWord%bWord
   752  					aWord, bWord = bWord, r
   753  					ua, ub = ub, ua+q*ub
   754  					va, vb = vb, va+q*vb
   755  					even = !even
   756  				}
   757  
   758  				t.abs = t.abs.setWord(ua)
   759  				s.abs = s.abs.setWord(va)
   760  				t.neg = !even
   761  				s.neg = even
   762  
   763  				t.Mul(Ua, t)
   764  				s.Mul(Ub, s)
   765  
   766  				Ua.Add(t, s)
   767  			} else {
   768  				for bWord != 0 {
   769  					aWord, bWord = bWord, aWord%bWord
   770  				}
   771  			}
   772  			A.abs[0] = aWord
   773  		}
   774  	}
   775  	negA := a.neg
   776  	if y != nil {
   777  		// avoid aliasing b needed in the division below
   778  		if y == b {
   779  			B.Set(b)
   780  		} else {
   781  			B = b
   782  		}
   783  		// y = (z - a*x)/b
   784  		y.Mul(a, Ua) // y can safely alias a
   785  		if negA {
   786  			y.neg = !y.neg
   787  		}
   788  		y.Sub(A, y)
   789  		y.Div(y, B)
   790  	}
   791  
   792  	if x != nil {
   793  		*x = *Ua
   794  		if negA {
   795  			x.neg = !x.neg
   796  		}
   797  	}
   798  
   799  	*z = *A
   800  
   801  	return z
   802  }
   803  
   804  // Rand sets z to a pseudo-random number in [0, n) and returns z.
   805  //
   806  // As this uses the math/rand package, it must not be used for
   807  // security-sensitive work. Use crypto/rand.Int instead.
   808  func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
   809  	// z.neg is not modified before the if check, because z and n might alias.
   810  	if n.neg || len(n.abs) == 0 {
   811  		z.neg = false
   812  		z.abs = nil
   813  		return z
   814  	}
   815  	z.neg = false
   816  	z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
   817  	return z
   818  }
   819  
   820  // ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ
   821  // and returns z. If g and n are not relatively prime, g has no multiplicative
   822  // inverse in the ring ℤ/nℤ.  In this case, z is unchanged and the return value
   823  // is nil. If n == 0, a division-by-zero run-time panic occurs.
   824  func (z *Int) ModInverse(g, n *Int) *Int {
   825  	// GCD expects parameters a and b to be > 0.
   826  	if n.neg {
   827  		var n2 Int
   828  		n = n2.Neg(n)
   829  	}
   830  	if g.neg {
   831  		var g2 Int
   832  		g = g2.Mod(g, n)
   833  	}
   834  	var d, x Int
   835  	d.GCD(&x, nil, g, n)
   836  
   837  	// if and only if d==1, g and n are relatively prime
   838  	if d.Cmp(intOne) != 0 {
   839  		return nil
   840  	}
   841  
   842  	// x and y are such that g*x + n*y = 1, therefore x is the inverse element,
   843  	// but it may be negative, so convert to the range 0 <= z < |n|
   844  	if x.neg {
   845  		z.Add(&x, n)
   846  	} else {
   847  		z.Set(&x)
   848  	}
   849  	return z
   850  }
   851  
   852  // Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
   853  // The y argument must be an odd integer.
   854  func Jacobi(x, y *Int) int {
   855  	if len(y.abs) == 0 || y.abs[0]&1 == 0 {
   856  		panic(fmt.Sprintf("big: invalid 2nd argument to Int.Jacobi: need odd integer but got %s", y.String()))
   857  	}
   858  
   859  	// We use the formulation described in chapter 2, section 2.4,
   860  	// "The Yacas Book of Algorithms":
   861  	// http://yacas.sourceforge.net/Algo.book.pdf
   862  
   863  	var a, b, c Int
   864  	a.Set(x)
   865  	b.Set(y)
   866  	j := 1
   867  
   868  	if b.neg {
   869  		if a.neg {
   870  			j = -1
   871  		}
   872  		b.neg = false
   873  	}
   874  
   875  	for {
   876  		if b.Cmp(intOne) == 0 {
   877  			return j
   878  		}
   879  		if len(a.abs) == 0 {
   880  			return 0
   881  		}
   882  		a.Mod(&a, &b)
   883  		if len(a.abs) == 0 {
   884  			return 0
   885  		}
   886  		// a > 0
   887  
   888  		// handle factors of 2 in 'a'
   889  		s := a.abs.trailingZeroBits()
   890  		if s&1 != 0 {
   891  			bmod8 := b.abs[0] & 7
   892  			if bmod8 == 3 || bmod8 == 5 {
   893  				j = -j
   894  			}
   895  		}
   896  		c.Rsh(&a, s) // a = 2^s*c
   897  
   898  		// swap numerator and denominator
   899  		if b.abs[0]&3 == 3 && c.abs[0]&3 == 3 {
   900  			j = -j
   901  		}
   902  		a.Set(&b)
   903  		b.Set(&c)
   904  	}
   905  }
   906  
   907  // modSqrt3Mod4 uses the identity
   908  //
   909  //	   (a^((p+1)/4))^2  mod p
   910  //	== u^(p+1)          mod p
   911  //	== u^2              mod p
   912  //
   913  // to calculate the square root of any quadratic residue mod p quickly for 3
   914  // mod 4 primes.
   915  func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int {
   916  	e := new(Int).Add(p, intOne) // e = p + 1
   917  	e.Rsh(e, 2)                  // e = (p + 1) / 4
   918  	z.Exp(x, e, p)               // z = x^e mod p
   919  	return z
   920  }
   921  
   922  // modSqrt5Mod8 uses Atkin's observation that 2 is not a square mod p
   923  //
   924  //	alpha ==  (2*a)^((p-5)/8)    mod p
   925  //	beta  ==  2*a*alpha^2        mod p  is a square root of -1
   926  //	b     ==  a*alpha*(beta-1)   mod p  is a square root of a
   927  //
   928  // to calculate the square root of any quadratic residue mod p quickly for 5
   929  // mod 8 primes.
   930  func (z *Int) modSqrt5Mod8Prime(x, p *Int) *Int {
   931  	// p == 5 mod 8 implies p = e*8 + 5
   932  	// e is the quotient and 5 the remainder on division by 8
   933  	e := new(Int).Rsh(p, 3)  // e = (p - 5) / 8
   934  	tx := new(Int).Lsh(x, 1) // tx = 2*x
   935  	alpha := new(Int).Exp(tx, e, p)
   936  	beta := new(Int).Mul(alpha, alpha)
   937  	beta.Mod(beta, p)
   938  	beta.Mul(beta, tx)
   939  	beta.Mod(beta, p)
   940  	beta.Sub(beta, intOne)
   941  	beta.Mul(beta, x)
   942  	beta.Mod(beta, p)
   943  	beta.Mul(beta, alpha)
   944  	z.Mod(beta, p)
   945  	return z
   946  }
   947  
   948  // modSqrtTonelliShanks uses the Tonelli-Shanks algorithm to find the square
   949  // root of a quadratic residue modulo any prime.
   950  func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int {
   951  	// Break p-1 into s*2^e such that s is odd.
   952  	var s Int
   953  	s.Sub(p, intOne)
   954  	e := s.abs.trailingZeroBits()
   955  	s.Rsh(&s, e)
   956  
   957  	// find some non-square n
   958  	var n Int
   959  	n.SetInt64(2)
   960  	for Jacobi(&n, p) != -1 {
   961  		n.Add(&n, intOne)
   962  	}
   963  
   964  	// Core of the Tonelli-Shanks algorithm. Follows the description in
   965  	// section 6 of "Square roots from 1; 24, 51, 10 to Dan Shanks" by Ezra
   966  	// Brown:
   967  	// https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
   968  	var y, b, g, t Int
   969  	y.Add(&s, intOne)
   970  	y.Rsh(&y, 1)
   971  	y.Exp(x, &y, p)  // y = x^((s+1)/2)
   972  	b.Exp(x, &s, p)  // b = x^s
   973  	g.Exp(&n, &s, p) // g = n^s
   974  	r := e
   975  	for {
   976  		// find the least m such that ord_p(b) = 2^m
   977  		var m uint
   978  		t.Set(&b)
   979  		for t.Cmp(intOne) != 0 {
   980  			t.Mul(&t, &t).Mod(&t, p)
   981  			m++
   982  		}
   983  
   984  		if m == 0 {
   985  			return z.Set(&y)
   986  		}
   987  
   988  		t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p)
   989  		// t = g^(2^(r-m-1)) mod p
   990  		g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p
   991  		y.Mul(&y, &t).Mod(&y, p)
   992  		b.Mul(&b, &g).Mod(&b, p)
   993  		r = m
   994  	}
   995  }
   996  
   997  // ModSqrt sets z to a square root of x mod p if such a square root exists, and
   998  // returns z. The modulus p must be an odd prime. If x is not a square mod p,
   999  // ModSqrt leaves z unchanged and returns nil. This function panics if p is
  1000  // not an odd integer, its behavior is undefined if p is odd but not prime.
  1001  func (z *Int) ModSqrt(x, p *Int) *Int {
  1002  	switch Jacobi(x, p) {
  1003  	case -1:
  1004  		return nil // x is not a square mod p
  1005  	case 0:
  1006  		return z.SetInt64(0) // sqrt(0) mod p = 0
  1007  	case 1:
  1008  		break
  1009  	}
  1010  	if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p
  1011  		x = new(Int).Mod(x, p)
  1012  	}
  1013  
  1014  	switch {
  1015  	case p.abs[0]%4 == 3:
  1016  		// Check whether p is 3 mod 4, and if so, use the faster algorithm.
  1017  		return z.modSqrt3Mod4Prime(x, p)
  1018  	case p.abs[0]%8 == 5:
  1019  		// Check whether p is 5 mod 8, use Atkin's algorithm.
  1020  		return z.modSqrt5Mod8Prime(x, p)
  1021  	default:
  1022  		// Otherwise, use Tonelli-Shanks.
  1023  		return z.modSqrtTonelliShanks(x, p)
  1024  	}
  1025  }
  1026  
  1027  // Lsh sets z = x << n and returns z.
  1028  func (z *Int) Lsh(x *Int, n uint) *Int {
  1029  	z.abs = z.abs.shl(x.abs, n)
  1030  	z.neg = x.neg
  1031  	return z
  1032  }
  1033  
  1034  // Rsh sets z = x >> n and returns z.
  1035  func (z *Int) Rsh(x *Int, n uint) *Int {
  1036  	if x.neg {
  1037  		// (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
  1038  		t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
  1039  		t = t.shr(t, n)
  1040  		z.abs = t.add(t, natOne)
  1041  		z.neg = true // z cannot be zero if x is negative
  1042  		return z
  1043  	}
  1044  
  1045  	z.abs = z.abs.shr(x.abs, n)
  1046  	z.neg = false
  1047  	return z
  1048  }
  1049  
  1050  // Bit returns the value of the i'th bit of x. That is, it
  1051  // returns (x>>i)&1. The bit index i must be >= 0.
  1052  func (x *Int) Bit(i int) uint {
  1053  	if i == 0 {
  1054  		// optimization for common case: odd/even test of x
  1055  		if len(x.abs) > 0 {
  1056  			return uint(x.abs[0] & 1) // bit 0 is same for -x
  1057  		}
  1058  		return 0
  1059  	}
  1060  	if i < 0 {
  1061  		panic("negative bit index")
  1062  	}
  1063  	if x.neg {
  1064  		t := nat(nil).sub(x.abs, natOne)
  1065  		return t.bit(uint(i)) ^ 1
  1066  	}
  1067  
  1068  	return x.abs.bit(uint(i))
  1069  }
  1070  
  1071  // SetBit sets z to x, with x's i'th bit set to b (0 or 1).
  1072  // That is, if b is 1 SetBit sets z = x | (1 << i);
  1073  // if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
  1074  // SetBit will panic.
  1075  func (z *Int) SetBit(x *Int, i int, b uint) *Int {
  1076  	if i < 0 {
  1077  		panic("negative bit index")
  1078  	}
  1079  	if x.neg {
  1080  		t := z.abs.sub(x.abs, natOne)
  1081  		t = t.setBit(t, uint(i), b^1)
  1082  		z.abs = t.add(t, natOne)
  1083  		z.neg = len(z.abs) > 0
  1084  		return z
  1085  	}
  1086  	z.abs = z.abs.setBit(x.abs, uint(i), b)
  1087  	z.neg = false
  1088  	return z
  1089  }
  1090  
  1091  // And sets z = x & y and returns z.
  1092  func (z *Int) And(x, y *Int) *Int {
  1093  	if x.neg == y.neg {
  1094  		if x.neg {
  1095  			// (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
  1096  			x1 := nat(nil).sub(x.abs, natOne)
  1097  			y1 := nat(nil).sub(y.abs, natOne)
  1098  			z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
  1099  			z.neg = true // z cannot be zero if x and y are negative
  1100  			return z
  1101  		}
  1102  
  1103  		// x & y == x & y
  1104  		z.abs = z.abs.and(x.abs, y.abs)
  1105  		z.neg = false
  1106  		return z
  1107  	}
  1108  
  1109  	// x.neg != y.neg
  1110  	if x.neg {
  1111  		x, y = y, x // & is symmetric
  1112  	}
  1113  
  1114  	// x & (-y) == x & ^(y-1) == x &^ (y-1)
  1115  	y1 := nat(nil).sub(y.abs, natOne)
  1116  	z.abs = z.abs.andNot(x.abs, y1)
  1117  	z.neg = false
  1118  	return z
  1119  }
  1120  
  1121  // AndNot sets z = x &^ y and returns z.
  1122  func (z *Int) AndNot(x, y *Int) *Int {
  1123  	if x.neg == y.neg {
  1124  		if x.neg {
  1125  			// (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
  1126  			x1 := nat(nil).sub(x.abs, natOne)
  1127  			y1 := nat(nil).sub(y.abs, natOne)
  1128  			z.abs = z.abs.andNot(y1, x1)
  1129  			z.neg = false
  1130  			return z
  1131  		}
  1132  
  1133  		// x &^ y == x &^ y
  1134  		z.abs = z.abs.andNot(x.abs, y.abs)
  1135  		z.neg = false
  1136  		return z
  1137  	}
  1138  
  1139  	if x.neg {
  1140  		// (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
  1141  		x1 := nat(nil).sub(x.abs, natOne)
  1142  		z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
  1143  		z.neg = true // z cannot be zero if x is negative and y is positive
  1144  		return z
  1145  	}
  1146  
  1147  	// x &^ (-y) == x &^ ^(y-1) == x & (y-1)
  1148  	y1 := nat(nil).sub(y.abs, natOne)
  1149  	z.abs = z.abs.and(x.abs, y1)
  1150  	z.neg = false
  1151  	return z
  1152  }
  1153  
  1154  // Or sets z = x | y and returns z.
  1155  func (z *Int) Or(x, y *Int) *Int {
  1156  	if x.neg == y.neg {
  1157  		if x.neg {
  1158  			// (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
  1159  			x1 := nat(nil).sub(x.abs, natOne)
  1160  			y1 := nat(nil).sub(y.abs, natOne)
  1161  			z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
  1162  			z.neg = true // z cannot be zero if x and y are negative
  1163  			return z
  1164  		}
  1165  
  1166  		// x | y == x | y
  1167  		z.abs = z.abs.or(x.abs, y.abs)
  1168  		z.neg = false
  1169  		return z
  1170  	}
  1171  
  1172  	// x.neg != y.neg
  1173  	if x.neg {
  1174  		x, y = y, x // | is symmetric
  1175  	}
  1176  
  1177  	// x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
  1178  	y1 := nat(nil).sub(y.abs, natOne)
  1179  	z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
  1180  	z.neg = true // z cannot be zero if one of x or y is negative
  1181  	return z
  1182  }
  1183  
  1184  // Xor sets z = x ^ y and returns z.
  1185  func (z *Int) Xor(x, y *Int) *Int {
  1186  	if x.neg == y.neg {
  1187  		if x.neg {
  1188  			// (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
  1189  			x1 := nat(nil).sub(x.abs, natOne)
  1190  			y1 := nat(nil).sub(y.abs, natOne)
  1191  			z.abs = z.abs.xor(x1, y1)
  1192  			z.neg = false
  1193  			return z
  1194  		}
  1195  
  1196  		// x ^ y == x ^ y
  1197  		z.abs = z.abs.xor(x.abs, y.abs)
  1198  		z.neg = false
  1199  		return z
  1200  	}
  1201  
  1202  	// x.neg != y.neg
  1203  	if x.neg {
  1204  		x, y = y, x // ^ is symmetric
  1205  	}
  1206  
  1207  	// x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
  1208  	y1 := nat(nil).sub(y.abs, natOne)
  1209  	z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
  1210  	z.neg = true // z cannot be zero if only one of x or y is negative
  1211  	return z
  1212  }
  1213  
  1214  // Not sets z = ^x and returns z.
  1215  func (z *Int) Not(x *Int) *Int {
  1216  	if x.neg {
  1217  		// ^(-x) == ^(^(x-1)) == x-1
  1218  		z.abs = z.abs.sub(x.abs, natOne)
  1219  		z.neg = false
  1220  		return z
  1221  	}
  1222  
  1223  	// ^x == -x-1 == -(x+1)
  1224  	z.abs = z.abs.add(x.abs, natOne)
  1225  	z.neg = true // z cannot be zero if x is positive
  1226  	return z
  1227  }
  1228  
  1229  // Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z.
  1230  // It panics if x is negative.
  1231  func (z *Int) Sqrt(x *Int) *Int {
  1232  	if x.neg {
  1233  		panic("square root of negative number")
  1234  	}
  1235  	z.neg = false
  1236  	z.abs = z.abs.sqrt(x.abs)
  1237  	return z
  1238  }