github.com/mtsmfm/go/src@v0.0.0-20221020090648-44bdcb9f8fde/net/http/transport.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // HTTP client implementation. See RFC 7230 through 7235. 6 // 7 // This is the low-level Transport implementation of RoundTripper. 8 // The high-level interface is in client.go. 9 10 package http 11 12 import ( 13 "bufio" 14 "compress/gzip" 15 "container/list" 16 "context" 17 "crypto/tls" 18 "errors" 19 "fmt" 20 "internal/godebug" 21 "io" 22 "log" 23 "net" 24 "net/http/httptrace" 25 "github.com/mtsmfm/go/src/net/http/internal/ascii" 26 "net/textproto" 27 "net/url" 28 "reflect" 29 "strings" 30 "sync" 31 "sync/atomic" 32 "time" 33 34 "golang.org/x/net/http/httpguts" 35 "golang.org/x/net/http/httpproxy" 36 ) 37 38 // DefaultTransport is the default implementation of Transport and is 39 // used by DefaultClient. It establishes network connections as needed 40 // and caches them for reuse by subsequent calls. It uses HTTP proxies 41 // as directed by the environment variables HTTP_PROXY, HTTPS_PROXY 42 // and NO_PROXY (or the lowercase versions thereof). 43 var DefaultTransport RoundTripper = &Transport{ 44 Proxy: ProxyFromEnvironment, 45 DialContext: defaultTransportDialContext(&net.Dialer{ 46 Timeout: 30 * time.Second, 47 KeepAlive: 30 * time.Second, 48 }), 49 ForceAttemptHTTP2: true, 50 MaxIdleConns: 100, 51 IdleConnTimeout: 90 * time.Second, 52 TLSHandshakeTimeout: 10 * time.Second, 53 ExpectContinueTimeout: 1 * time.Second, 54 } 55 56 // DefaultMaxIdleConnsPerHost is the default value of Transport's 57 // MaxIdleConnsPerHost. 58 const DefaultMaxIdleConnsPerHost = 2 59 60 // Transport is an implementation of RoundTripper that supports HTTP, 61 // HTTPS, and HTTP proxies (for either HTTP or HTTPS with CONNECT). 62 // 63 // By default, Transport caches connections for future re-use. 64 // This may leave many open connections when accessing many hosts. 65 // This behavior can be managed using Transport's CloseIdleConnections method 66 // and the MaxIdleConnsPerHost and DisableKeepAlives fields. 67 // 68 // Transports should be reused instead of created as needed. 69 // Transports are safe for concurrent use by multiple goroutines. 70 // 71 // A Transport is a low-level primitive for making HTTP and HTTPS requests. 72 // For high-level functionality, such as cookies and redirects, see Client. 73 // 74 // Transport uses HTTP/1.1 for HTTP URLs and either HTTP/1.1 or HTTP/2 75 // for HTTPS URLs, depending on whether the server supports HTTP/2, 76 // and how the Transport is configured. The DefaultTransport supports HTTP/2. 77 // To explicitly enable HTTP/2 on a transport, use golang.org/x/net/http2 78 // and call ConfigureTransport. See the package docs for more about HTTP/2. 79 // 80 // Responses with status codes in the 1xx range are either handled 81 // automatically (100 expect-continue) or ignored. The one 82 // exception is HTTP status code 101 (Switching Protocols), which is 83 // considered a terminal status and returned by RoundTrip. To see the 84 // ignored 1xx responses, use the httptrace trace package's 85 // ClientTrace.Got1xxResponse. 86 // 87 // Transport only retries a request upon encountering a network error 88 // if the request is idempotent and either has no body or has its 89 // Request.GetBody defined. HTTP requests are considered idempotent if 90 // they have HTTP methods GET, HEAD, OPTIONS, or TRACE; or if their 91 // Header map contains an "Idempotency-Key" or "X-Idempotency-Key" 92 // entry. If the idempotency key value is a zero-length slice, the 93 // request is treated as idempotent but the header is not sent on the 94 // wire. 95 type Transport struct { 96 idleMu sync.Mutex 97 closeIdle bool // user has requested to close all idle conns 98 idleConn map[connectMethodKey][]*persistConn // most recently used at end 99 idleConnWait map[connectMethodKey]wantConnQueue // waiting getConns 100 idleLRU connLRU 101 102 reqMu sync.Mutex 103 reqCanceler map[cancelKey]func(error) 104 105 altMu sync.Mutex // guards changing altProto only 106 altProto atomic.Value // of nil or map[string]RoundTripper, key is URI scheme 107 108 connsPerHostMu sync.Mutex 109 connsPerHost map[connectMethodKey]int 110 connsPerHostWait map[connectMethodKey]wantConnQueue // waiting getConns 111 112 // Proxy specifies a function to return a proxy for a given 113 // Request. If the function returns a non-nil error, the 114 // request is aborted with the provided error. 115 // 116 // The proxy type is determined by the URL scheme. "http", 117 // "https", and "socks5" are supported. If the scheme is empty, 118 // "http" is assumed. 119 // 120 // If Proxy is nil or returns a nil *URL, no proxy is used. 121 Proxy func(*Request) (*url.URL, error) 122 123 // DialContext specifies the dial function for creating unencrypted TCP connections. 124 // If DialContext is nil (and the deprecated Dial below is also nil), 125 // then the transport dials using package net. 126 // 127 // DialContext runs concurrently with calls to RoundTrip. 128 // A RoundTrip call that initiates a dial may end up using 129 // a connection dialed previously when the earlier connection 130 // becomes idle before the later DialContext completes. 131 DialContext func(ctx context.Context, network, addr string) (net.Conn, error) 132 133 // Dial specifies the dial function for creating unencrypted TCP connections. 134 // 135 // Dial runs concurrently with calls to RoundTrip. 136 // A RoundTrip call that initiates a dial may end up using 137 // a connection dialed previously when the earlier connection 138 // becomes idle before the later Dial completes. 139 // 140 // Deprecated: Use DialContext instead, which allows the transport 141 // to cancel dials as soon as they are no longer needed. 142 // If both are set, DialContext takes priority. 143 Dial func(network, addr string) (net.Conn, error) 144 145 // DialTLSContext specifies an optional dial function for creating 146 // TLS connections for non-proxied HTTPS requests. 147 // 148 // If DialTLSContext is nil (and the deprecated DialTLS below is also nil), 149 // DialContext and TLSClientConfig are used. 150 // 151 // If DialTLSContext is set, the Dial and DialContext hooks are not used for HTTPS 152 // requests and the TLSClientConfig and TLSHandshakeTimeout 153 // are ignored. The returned net.Conn is assumed to already be 154 // past the TLS handshake. 155 DialTLSContext func(ctx context.Context, network, addr string) (net.Conn, error) 156 157 // DialTLS specifies an optional dial function for creating 158 // TLS connections for non-proxied HTTPS requests. 159 // 160 // Deprecated: Use DialTLSContext instead, which allows the transport 161 // to cancel dials as soon as they are no longer needed. 162 // If both are set, DialTLSContext takes priority. 163 DialTLS func(network, addr string) (net.Conn, error) 164 165 // TLSClientConfig specifies the TLS configuration to use with 166 // tls.Client. 167 // If nil, the default configuration is used. 168 // If non-nil, HTTP/2 support may not be enabled by default. 169 TLSClientConfig *tls.Config 170 171 // TLSHandshakeTimeout specifies the maximum amount of time waiting to 172 // wait for a TLS handshake. Zero means no timeout. 173 TLSHandshakeTimeout time.Duration 174 175 // DisableKeepAlives, if true, disables HTTP keep-alives and 176 // will only use the connection to the server for a single 177 // HTTP request. 178 // 179 // This is unrelated to the similarly named TCP keep-alives. 180 DisableKeepAlives bool 181 182 // DisableCompression, if true, prevents the Transport from 183 // requesting compression with an "Accept-Encoding: gzip" 184 // request header when the Request contains no existing 185 // Accept-Encoding value. If the Transport requests gzip on 186 // its own and gets a gzipped response, it's transparently 187 // decoded in the Response.Body. However, if the user 188 // explicitly requested gzip it is not automatically 189 // uncompressed. 190 DisableCompression bool 191 192 // MaxIdleConns controls the maximum number of idle (keep-alive) 193 // connections across all hosts. Zero means no limit. 194 MaxIdleConns int 195 196 // MaxIdleConnsPerHost, if non-zero, controls the maximum idle 197 // (keep-alive) connections to keep per-host. If zero, 198 // DefaultMaxIdleConnsPerHost is used. 199 MaxIdleConnsPerHost int 200 201 // MaxConnsPerHost optionally limits the total number of 202 // connections per host, including connections in the dialing, 203 // active, and idle states. On limit violation, dials will block. 204 // 205 // Zero means no limit. 206 MaxConnsPerHost int 207 208 // IdleConnTimeout is the maximum amount of time an idle 209 // (keep-alive) connection will remain idle before closing 210 // itself. 211 // Zero means no limit. 212 IdleConnTimeout time.Duration 213 214 // ResponseHeaderTimeout, if non-zero, specifies the amount of 215 // time to wait for a server's response headers after fully 216 // writing the request (including its body, if any). This 217 // time does not include the time to read the response body. 218 ResponseHeaderTimeout time.Duration 219 220 // ExpectContinueTimeout, if non-zero, specifies the amount of 221 // time to wait for a server's first response headers after fully 222 // writing the request headers if the request has an 223 // "Expect: 100-continue" header. Zero means no timeout and 224 // causes the body to be sent immediately, without 225 // waiting for the server to approve. 226 // This time does not include the time to send the request header. 227 ExpectContinueTimeout time.Duration 228 229 // TLSNextProto specifies how the Transport switches to an 230 // alternate protocol (such as HTTP/2) after a TLS ALPN 231 // protocol negotiation. If Transport dials an TLS connection 232 // with a non-empty protocol name and TLSNextProto contains a 233 // map entry for that key (such as "h2"), then the func is 234 // called with the request's authority (such as "example.com" 235 // or "example.com:1234") and the TLS connection. The function 236 // must return a RoundTripper that then handles the request. 237 // If TLSNextProto is not nil, HTTP/2 support is not enabled 238 // automatically. 239 TLSNextProto map[string]func(authority string, c *tls.Conn) RoundTripper 240 241 // ProxyConnectHeader optionally specifies headers to send to 242 // proxies during CONNECT requests. 243 // To set the header dynamically, see GetProxyConnectHeader. 244 ProxyConnectHeader Header 245 246 // GetProxyConnectHeader optionally specifies a func to return 247 // headers to send to proxyURL during a CONNECT request to the 248 // ip:port target. 249 // If it returns an error, the Transport's RoundTrip fails with 250 // that error. It can return (nil, nil) to not add headers. 251 // If GetProxyConnectHeader is non-nil, ProxyConnectHeader is 252 // ignored. 253 GetProxyConnectHeader func(ctx context.Context, proxyURL *url.URL, target string) (Header, error) 254 255 // MaxResponseHeaderBytes specifies a limit on how many 256 // response bytes are allowed in the server's response 257 // header. 258 // 259 // Zero means to use a default limit. 260 MaxResponseHeaderBytes int64 261 262 // WriteBufferSize specifies the size of the write buffer used 263 // when writing to the transport. 264 // If zero, a default (currently 4KB) is used. 265 WriteBufferSize int 266 267 // ReadBufferSize specifies the size of the read buffer used 268 // when reading from the transport. 269 // If zero, a default (currently 4KB) is used. 270 ReadBufferSize int 271 272 // nextProtoOnce guards initialization of TLSNextProto and 273 // h2transport (via onceSetNextProtoDefaults) 274 nextProtoOnce sync.Once 275 h2transport h2Transport // non-nil if http2 wired up 276 tlsNextProtoWasNil bool // whether TLSNextProto was nil when the Once fired 277 278 // ForceAttemptHTTP2 controls whether HTTP/2 is enabled when a non-zero 279 // Dial, DialTLS, or DialContext func or TLSClientConfig is provided. 280 // By default, use of any those fields conservatively disables HTTP/2. 281 // To use a custom dialer or TLS config and still attempt HTTP/2 282 // upgrades, set this to true. 283 ForceAttemptHTTP2 bool 284 } 285 286 // A cancelKey is the key of the reqCanceler map. 287 // We wrap the *Request in this type since we want to use the original request, 288 // not any transient one created by roundTrip. 289 type cancelKey struct { 290 req *Request 291 } 292 293 func (t *Transport) writeBufferSize() int { 294 if t.WriteBufferSize > 0 { 295 return t.WriteBufferSize 296 } 297 return 4 << 10 298 } 299 300 func (t *Transport) readBufferSize() int { 301 if t.ReadBufferSize > 0 { 302 return t.ReadBufferSize 303 } 304 return 4 << 10 305 } 306 307 // Clone returns a deep copy of t's exported fields. 308 func (t *Transport) Clone() *Transport { 309 t.nextProtoOnce.Do(t.onceSetNextProtoDefaults) 310 t2 := &Transport{ 311 Proxy: t.Proxy, 312 DialContext: t.DialContext, 313 Dial: t.Dial, 314 DialTLS: t.DialTLS, 315 DialTLSContext: t.DialTLSContext, 316 TLSHandshakeTimeout: t.TLSHandshakeTimeout, 317 DisableKeepAlives: t.DisableKeepAlives, 318 DisableCompression: t.DisableCompression, 319 MaxIdleConns: t.MaxIdleConns, 320 MaxIdleConnsPerHost: t.MaxIdleConnsPerHost, 321 MaxConnsPerHost: t.MaxConnsPerHost, 322 IdleConnTimeout: t.IdleConnTimeout, 323 ResponseHeaderTimeout: t.ResponseHeaderTimeout, 324 ExpectContinueTimeout: t.ExpectContinueTimeout, 325 ProxyConnectHeader: t.ProxyConnectHeader.Clone(), 326 GetProxyConnectHeader: t.GetProxyConnectHeader, 327 MaxResponseHeaderBytes: t.MaxResponseHeaderBytes, 328 ForceAttemptHTTP2: t.ForceAttemptHTTP2, 329 WriteBufferSize: t.WriteBufferSize, 330 ReadBufferSize: t.ReadBufferSize, 331 } 332 if t.TLSClientConfig != nil { 333 t2.TLSClientConfig = t.TLSClientConfig.Clone() 334 } 335 if !t.tlsNextProtoWasNil { 336 npm := map[string]func(authority string, c *tls.Conn) RoundTripper{} 337 for k, v := range t.TLSNextProto { 338 npm[k] = v 339 } 340 t2.TLSNextProto = npm 341 } 342 return t2 343 } 344 345 // h2Transport is the interface we expect to be able to call from 346 // net/http against an *http2.Transport that's either bundled into 347 // h2_bundle.go or supplied by the user via x/net/http2. 348 // 349 // We name it with the "h2" prefix to stay out of the "http2" prefix 350 // namespace used by x/tools/cmd/bundle for h2_bundle.go. 351 type h2Transport interface { 352 CloseIdleConnections() 353 } 354 355 func (t *Transport) hasCustomTLSDialer() bool { 356 return t.DialTLS != nil || t.DialTLSContext != nil 357 } 358 359 // onceSetNextProtoDefaults initializes TLSNextProto. 360 // It must be called via t.nextProtoOnce.Do. 361 func (t *Transport) onceSetNextProtoDefaults() { 362 t.tlsNextProtoWasNil = (t.TLSNextProto == nil) 363 if godebug.Get("http2client") == "0" { 364 return 365 } 366 367 // If they've already configured http2 with 368 // golang.org/x/net/http2 instead of the bundled copy, try to 369 // get at its http2.Transport value (via the "https" 370 // altproto map) so we can call CloseIdleConnections on it if 371 // requested. (Issue 22891) 372 altProto, _ := t.altProto.Load().(map[string]RoundTripper) 373 if rv := reflect.ValueOf(altProto["https"]); rv.IsValid() && rv.Type().Kind() == reflect.Struct && rv.Type().NumField() == 1 { 374 if v := rv.Field(0); v.CanInterface() { 375 if h2i, ok := v.Interface().(h2Transport); ok { 376 t.h2transport = h2i 377 return 378 } 379 } 380 } 381 382 if t.TLSNextProto != nil { 383 // This is the documented way to disable http2 on a 384 // Transport. 385 return 386 } 387 if !t.ForceAttemptHTTP2 && (t.TLSClientConfig != nil || t.Dial != nil || t.DialContext != nil || t.hasCustomTLSDialer()) { 388 // Be conservative and don't automatically enable 389 // http2 if they've specified a custom TLS config or 390 // custom dialers. Let them opt-in themselves via 391 // http2.ConfigureTransport so we don't surprise them 392 // by modifying their tls.Config. Issue 14275. 393 // However, if ForceAttemptHTTP2 is true, it overrides the above checks. 394 return 395 } 396 if omitBundledHTTP2 { 397 return 398 } 399 t2, err := http2configureTransports(t) 400 if err != nil { 401 log.Printf("Error enabling Transport HTTP/2 support: %v", err) 402 return 403 } 404 t.h2transport = t2 405 406 // Auto-configure the http2.Transport's MaxHeaderListSize from 407 // the http.Transport's MaxResponseHeaderBytes. They don't 408 // exactly mean the same thing, but they're close. 409 // 410 // TODO: also add this to x/net/http2.Configure Transport, behind 411 // a +build go1.7 build tag: 412 if limit1 := t.MaxResponseHeaderBytes; limit1 != 0 && t2.MaxHeaderListSize == 0 { 413 const h2max = 1<<32 - 1 414 if limit1 >= h2max { 415 t2.MaxHeaderListSize = h2max 416 } else { 417 t2.MaxHeaderListSize = uint32(limit1) 418 } 419 } 420 } 421 422 // ProxyFromEnvironment returns the URL of the proxy to use for a 423 // given request, as indicated by the environment variables 424 // HTTP_PROXY, HTTPS_PROXY and NO_PROXY (or the lowercase versions 425 // thereof). Requests use the proxy from the environment variable 426 // matching their scheme, unless excluded by NO_PROXY. 427 // 428 // The environment values may be either a complete URL or a 429 // "host[:port]", in which case the "http" scheme is assumed. 430 // The schemes "http", "https", and "socks5" are supported. 431 // An error is returned if the value is a different form. 432 // 433 // A nil URL and nil error are returned if no proxy is defined in the 434 // environment, or a proxy should not be used for the given request, 435 // as defined by NO_PROXY. 436 // 437 // As a special case, if req.URL.Host is "localhost" (with or without 438 // a port number), then a nil URL and nil error will be returned. 439 func ProxyFromEnvironment(req *Request) (*url.URL, error) { 440 return envProxyFunc()(req.URL) 441 } 442 443 // ProxyURL returns a proxy function (for use in a Transport) 444 // that always returns the same URL. 445 func ProxyURL(fixedURL *url.URL) func(*Request) (*url.URL, error) { 446 return func(*Request) (*url.URL, error) { 447 return fixedURL, nil 448 } 449 } 450 451 // transportRequest is a wrapper around a *Request that adds 452 // optional extra headers to write and stores any error to return 453 // from roundTrip. 454 type transportRequest struct { 455 *Request // original request, not to be mutated 456 extra Header // extra headers to write, or nil 457 trace *httptrace.ClientTrace // optional 458 cancelKey cancelKey 459 460 mu sync.Mutex // guards err 461 err error // first setError value for mapRoundTripError to consider 462 } 463 464 func (tr *transportRequest) extraHeaders() Header { 465 if tr.extra == nil { 466 tr.extra = make(Header) 467 } 468 return tr.extra 469 } 470 471 func (tr *transportRequest) setError(err error) { 472 tr.mu.Lock() 473 if tr.err == nil { 474 tr.err = err 475 } 476 tr.mu.Unlock() 477 } 478 479 // useRegisteredProtocol reports whether an alternate protocol (as registered 480 // with Transport.RegisterProtocol) should be respected for this request. 481 func (t *Transport) useRegisteredProtocol(req *Request) bool { 482 if req.URL.Scheme == "https" && req.requiresHTTP1() { 483 // If this request requires HTTP/1, don't use the 484 // "https" alternate protocol, which is used by the 485 // HTTP/2 code to take over requests if there's an 486 // existing cached HTTP/2 connection. 487 return false 488 } 489 return true 490 } 491 492 // alternateRoundTripper returns the alternate RoundTripper to use 493 // for this request if the Request's URL scheme requires one, 494 // or nil for the normal case of using the Transport. 495 func (t *Transport) alternateRoundTripper(req *Request) RoundTripper { 496 if !t.useRegisteredProtocol(req) { 497 return nil 498 } 499 altProto, _ := t.altProto.Load().(map[string]RoundTripper) 500 return altProto[req.URL.Scheme] 501 } 502 503 // roundTrip implements a RoundTripper over HTTP. 504 func (t *Transport) roundTrip(req *Request) (*Response, error) { 505 t.nextProtoOnce.Do(t.onceSetNextProtoDefaults) 506 ctx := req.Context() 507 trace := httptrace.ContextClientTrace(ctx) 508 509 if req.URL == nil { 510 req.closeBody() 511 return nil, errors.New("http: nil Request.URL") 512 } 513 if req.Header == nil { 514 req.closeBody() 515 return nil, errors.New("http: nil Request.Header") 516 } 517 scheme := req.URL.Scheme 518 isHTTP := scheme == "http" || scheme == "https" 519 if isHTTP { 520 for k, vv := range req.Header { 521 if !httpguts.ValidHeaderFieldName(k) { 522 req.closeBody() 523 return nil, fmt.Errorf("net/http: invalid header field name %q", k) 524 } 525 for _, v := range vv { 526 if !httpguts.ValidHeaderFieldValue(v) { 527 req.closeBody() 528 // Don't include the value in the error, because it may be sensitive. 529 return nil, fmt.Errorf("net/http: invalid header field value for %q", k) 530 } 531 } 532 } 533 } 534 535 origReq := req 536 cancelKey := cancelKey{origReq} 537 req = setupRewindBody(req) 538 539 if altRT := t.alternateRoundTripper(req); altRT != nil { 540 if resp, err := altRT.RoundTrip(req); err != ErrSkipAltProtocol { 541 return resp, err 542 } 543 var err error 544 req, err = rewindBody(req) 545 if err != nil { 546 return nil, err 547 } 548 } 549 if !isHTTP { 550 req.closeBody() 551 return nil, badStringError("unsupported protocol scheme", scheme) 552 } 553 if req.Method != "" && !validMethod(req.Method) { 554 req.closeBody() 555 return nil, fmt.Errorf("net/http: invalid method %q", req.Method) 556 } 557 if req.URL.Host == "" { 558 req.closeBody() 559 return nil, errors.New("http: no Host in request URL") 560 } 561 562 for { 563 select { 564 case <-ctx.Done(): 565 req.closeBody() 566 return nil, ctx.Err() 567 default: 568 } 569 570 // treq gets modified by roundTrip, so we need to recreate for each retry. 571 treq := &transportRequest{Request: req, trace: trace, cancelKey: cancelKey} 572 cm, err := t.connectMethodForRequest(treq) 573 if err != nil { 574 req.closeBody() 575 return nil, err 576 } 577 578 // Get the cached or newly-created connection to either the 579 // host (for http or https), the http proxy, or the http proxy 580 // pre-CONNECTed to https server. In any case, we'll be ready 581 // to send it requests. 582 pconn, err := t.getConn(treq, cm) 583 if err != nil { 584 t.setReqCanceler(cancelKey, nil) 585 req.closeBody() 586 return nil, err 587 } 588 589 var resp *Response 590 if pconn.alt != nil { 591 // HTTP/2 path. 592 t.setReqCanceler(cancelKey, nil) // not cancelable with CancelRequest 593 resp, err = pconn.alt.RoundTrip(req) 594 } else { 595 resp, err = pconn.roundTrip(treq) 596 } 597 if err == nil { 598 resp.Request = origReq 599 return resp, nil 600 } 601 602 // Failed. Clean up and determine whether to retry. 603 if http2isNoCachedConnError(err) { 604 if t.removeIdleConn(pconn) { 605 t.decConnsPerHost(pconn.cacheKey) 606 } 607 } else if !pconn.shouldRetryRequest(req, err) { 608 // Issue 16465: return underlying net.Conn.Read error from peek, 609 // as we've historically done. 610 if e, ok := err.(nothingWrittenError); ok { 611 err = e.error 612 } 613 if e, ok := err.(transportReadFromServerError); ok { 614 err = e.err 615 } 616 return nil, err 617 } 618 testHookRoundTripRetried() 619 620 // Rewind the body if we're able to. 621 req, err = rewindBody(req) 622 if err != nil { 623 return nil, err 624 } 625 } 626 } 627 628 var errCannotRewind = errors.New("net/http: cannot rewind body after connection loss") 629 630 type readTrackingBody struct { 631 io.ReadCloser 632 didRead bool 633 didClose bool 634 } 635 636 func (r *readTrackingBody) Read(data []byte) (int, error) { 637 r.didRead = true 638 return r.ReadCloser.Read(data) 639 } 640 641 func (r *readTrackingBody) Close() error { 642 r.didClose = true 643 return r.ReadCloser.Close() 644 } 645 646 // setupRewindBody returns a new request with a custom body wrapper 647 // that can report whether the body needs rewinding. 648 // This lets rewindBody avoid an error result when the request 649 // does not have GetBody but the body hasn't been read at all yet. 650 func setupRewindBody(req *Request) *Request { 651 if req.Body == nil || req.Body == NoBody { 652 return req 653 } 654 newReq := *req 655 newReq.Body = &readTrackingBody{ReadCloser: req.Body} 656 return &newReq 657 } 658 659 // rewindBody returns a new request with the body rewound. 660 // It returns req unmodified if the body does not need rewinding. 661 // rewindBody takes care of closing req.Body when appropriate 662 // (in all cases except when rewindBody returns req unmodified). 663 func rewindBody(req *Request) (rewound *Request, err error) { 664 if req.Body == nil || req.Body == NoBody || (!req.Body.(*readTrackingBody).didRead && !req.Body.(*readTrackingBody).didClose) { 665 return req, nil // nothing to rewind 666 } 667 if !req.Body.(*readTrackingBody).didClose { 668 req.closeBody() 669 } 670 if req.GetBody == nil { 671 return nil, errCannotRewind 672 } 673 body, err := req.GetBody() 674 if err != nil { 675 return nil, err 676 } 677 newReq := *req 678 newReq.Body = &readTrackingBody{ReadCloser: body} 679 return &newReq, nil 680 } 681 682 // shouldRetryRequest reports whether we should retry sending a failed 683 // HTTP request on a new connection. The non-nil input error is the 684 // error from roundTrip. 685 func (pc *persistConn) shouldRetryRequest(req *Request, err error) bool { 686 if http2isNoCachedConnError(err) { 687 // Issue 16582: if the user started a bunch of 688 // requests at once, they can all pick the same conn 689 // and violate the server's max concurrent streams. 690 // Instead, match the HTTP/1 behavior for now and dial 691 // again to get a new TCP connection, rather than failing 692 // this request. 693 return true 694 } 695 if err == errMissingHost { 696 // User error. 697 return false 698 } 699 if !pc.isReused() { 700 // This was a fresh connection. There's no reason the server 701 // should've hung up on us. 702 // 703 // Also, if we retried now, we could loop forever 704 // creating new connections and retrying if the server 705 // is just hanging up on us because it doesn't like 706 // our request (as opposed to sending an error). 707 return false 708 } 709 if _, ok := err.(nothingWrittenError); ok { 710 // We never wrote anything, so it's safe to retry, if there's no body or we 711 // can "rewind" the body with GetBody. 712 return req.outgoingLength() == 0 || req.GetBody != nil 713 } 714 if !req.isReplayable() { 715 // Don't retry non-idempotent requests. 716 return false 717 } 718 if _, ok := err.(transportReadFromServerError); ok { 719 // We got some non-EOF net.Conn.Read failure reading 720 // the 1st response byte from the server. 721 return true 722 } 723 if err == errServerClosedIdle { 724 // The server replied with io.EOF while we were trying to 725 // read the response. Probably an unfortunately keep-alive 726 // timeout, just as the client was writing a request. 727 return true 728 } 729 return false // conservatively 730 } 731 732 // ErrSkipAltProtocol is a sentinel error value defined by Transport.RegisterProtocol. 733 var ErrSkipAltProtocol = errors.New("net/http: skip alternate protocol") 734 735 // RegisterProtocol registers a new protocol with scheme. 736 // The Transport will pass requests using the given scheme to rt. 737 // It is rt's responsibility to simulate HTTP request semantics. 738 // 739 // RegisterProtocol can be used by other packages to provide 740 // implementations of protocol schemes like "ftp" or "file". 741 // 742 // If rt.RoundTrip returns ErrSkipAltProtocol, the Transport will 743 // handle the RoundTrip itself for that one request, as if the 744 // protocol were not registered. 745 func (t *Transport) RegisterProtocol(scheme string, rt RoundTripper) { 746 t.altMu.Lock() 747 defer t.altMu.Unlock() 748 oldMap, _ := t.altProto.Load().(map[string]RoundTripper) 749 if _, exists := oldMap[scheme]; exists { 750 panic("protocol " + scheme + " already registered") 751 } 752 newMap := make(map[string]RoundTripper) 753 for k, v := range oldMap { 754 newMap[k] = v 755 } 756 newMap[scheme] = rt 757 t.altProto.Store(newMap) 758 } 759 760 // CloseIdleConnections closes any connections which were previously 761 // connected from previous requests but are now sitting idle in 762 // a "keep-alive" state. It does not interrupt any connections currently 763 // in use. 764 func (t *Transport) CloseIdleConnections() { 765 t.nextProtoOnce.Do(t.onceSetNextProtoDefaults) 766 t.idleMu.Lock() 767 m := t.idleConn 768 t.idleConn = nil 769 t.closeIdle = true // close newly idle connections 770 t.idleLRU = connLRU{} 771 t.idleMu.Unlock() 772 for _, conns := range m { 773 for _, pconn := range conns { 774 pconn.close(errCloseIdleConns) 775 } 776 } 777 if t2 := t.h2transport; t2 != nil { 778 t2.CloseIdleConnections() 779 } 780 } 781 782 // CancelRequest cancels an in-flight request by closing its connection. 783 // CancelRequest should only be called after RoundTrip has returned. 784 // 785 // Deprecated: Use Request.WithContext to create a request with a 786 // cancelable context instead. CancelRequest cannot cancel HTTP/2 787 // requests. 788 func (t *Transport) CancelRequest(req *Request) { 789 t.cancelRequest(cancelKey{req}, errRequestCanceled) 790 } 791 792 // Cancel an in-flight request, recording the error value. 793 // Returns whether the request was canceled. 794 func (t *Transport) cancelRequest(key cancelKey, err error) bool { 795 // This function must not return until the cancel func has completed. 796 // See: https://golang.org/issue/34658 797 t.reqMu.Lock() 798 defer t.reqMu.Unlock() 799 cancel := t.reqCanceler[key] 800 delete(t.reqCanceler, key) 801 if cancel != nil { 802 cancel(err) 803 } 804 805 return cancel != nil 806 } 807 808 // 809 // Private implementation past this point. 810 // 811 812 var ( 813 // proxyConfigOnce guards proxyConfig 814 envProxyOnce sync.Once 815 envProxyFuncValue func(*url.URL) (*url.URL, error) 816 ) 817 818 // defaultProxyConfig returns a ProxyConfig value looked up 819 // from the environment. This mitigates expensive lookups 820 // on some platforms (e.g. Windows). 821 func envProxyFunc() func(*url.URL) (*url.URL, error) { 822 envProxyOnce.Do(func() { 823 envProxyFuncValue = httpproxy.FromEnvironment().ProxyFunc() 824 }) 825 return envProxyFuncValue 826 } 827 828 // resetProxyConfig is used by tests. 829 func resetProxyConfig() { 830 envProxyOnce = sync.Once{} 831 envProxyFuncValue = nil 832 } 833 834 func (t *Transport) connectMethodForRequest(treq *transportRequest) (cm connectMethod, err error) { 835 cm.targetScheme = treq.URL.Scheme 836 cm.targetAddr = canonicalAddr(treq.URL) 837 if t.Proxy != nil { 838 cm.proxyURL, err = t.Proxy(treq.Request) 839 } 840 cm.onlyH1 = treq.requiresHTTP1() 841 return cm, err 842 } 843 844 // proxyAuth returns the Proxy-Authorization header to set 845 // on requests, if applicable. 846 func (cm *connectMethod) proxyAuth() string { 847 if cm.proxyURL == nil { 848 return "" 849 } 850 if u := cm.proxyURL.User; u != nil { 851 username := u.Username() 852 password, _ := u.Password() 853 return "Basic " + basicAuth(username, password) 854 } 855 return "" 856 } 857 858 // error values for debugging and testing, not seen by users. 859 var ( 860 errKeepAlivesDisabled = errors.New("http: putIdleConn: keep alives disabled") 861 errConnBroken = errors.New("http: putIdleConn: connection is in bad state") 862 errCloseIdle = errors.New("http: putIdleConn: CloseIdleConnections was called") 863 errTooManyIdle = errors.New("http: putIdleConn: too many idle connections") 864 errTooManyIdleHost = errors.New("http: putIdleConn: too many idle connections for host") 865 errCloseIdleConns = errors.New("http: CloseIdleConnections called") 866 errReadLoopExiting = errors.New("http: persistConn.readLoop exiting") 867 errIdleConnTimeout = errors.New("http: idle connection timeout") 868 869 // errServerClosedIdle is not seen by users for idempotent requests, but may be 870 // seen by a user if the server shuts down an idle connection and sends its FIN 871 // in flight with already-written POST body bytes from the client. 872 // See https://github.com/golang/go/issues/19943#issuecomment-355607646 873 errServerClosedIdle = errors.New("http: server closed idle connection") 874 ) 875 876 // transportReadFromServerError is used by Transport.readLoop when the 877 // 1 byte peek read fails and we're actually anticipating a response. 878 // Usually this is just due to the inherent keep-alive shut down race, 879 // where the server closed the connection at the same time the client 880 // wrote. The underlying err field is usually io.EOF or some 881 // ECONNRESET sort of thing which varies by platform. But it might be 882 // the user's custom net.Conn.Read error too, so we carry it along for 883 // them to return from Transport.RoundTrip. 884 type transportReadFromServerError struct { 885 err error 886 } 887 888 func (e transportReadFromServerError) Unwrap() error { return e.err } 889 890 func (e transportReadFromServerError) Error() string { 891 return fmt.Sprintf("net/http: Transport failed to read from server: %v", e.err) 892 } 893 894 func (t *Transport) putOrCloseIdleConn(pconn *persistConn) { 895 if err := t.tryPutIdleConn(pconn); err != nil { 896 pconn.close(err) 897 } 898 } 899 900 func (t *Transport) maxIdleConnsPerHost() int { 901 if v := t.MaxIdleConnsPerHost; v != 0 { 902 return v 903 } 904 return DefaultMaxIdleConnsPerHost 905 } 906 907 // tryPutIdleConn adds pconn to the list of idle persistent connections awaiting 908 // a new request. 909 // If pconn is no longer needed or not in a good state, tryPutIdleConn returns 910 // an error explaining why it wasn't registered. 911 // tryPutIdleConn does not close pconn. Use putOrCloseIdleConn instead for that. 912 func (t *Transport) tryPutIdleConn(pconn *persistConn) error { 913 if t.DisableKeepAlives || t.MaxIdleConnsPerHost < 0 { 914 return errKeepAlivesDisabled 915 } 916 if pconn.isBroken() { 917 return errConnBroken 918 } 919 pconn.markReused() 920 921 t.idleMu.Lock() 922 defer t.idleMu.Unlock() 923 924 // HTTP/2 (pconn.alt != nil) connections do not come out of the idle list, 925 // because multiple goroutines can use them simultaneously. 926 // If this is an HTTP/2 connection being “returned,” we're done. 927 if pconn.alt != nil && t.idleLRU.m[pconn] != nil { 928 return nil 929 } 930 931 // Deliver pconn to goroutine waiting for idle connection, if any. 932 // (They may be actively dialing, but this conn is ready first. 933 // Chrome calls this socket late binding. 934 // See https://www.chromium.org/developers/design-documents/network-stack#TOC-Connection-Management.) 935 key := pconn.cacheKey 936 if q, ok := t.idleConnWait[key]; ok { 937 done := false 938 if pconn.alt == nil { 939 // HTTP/1. 940 // Loop over the waiting list until we find a w that isn't done already, and hand it pconn. 941 for q.len() > 0 { 942 w := q.popFront() 943 if w.tryDeliver(pconn, nil) { 944 done = true 945 break 946 } 947 } 948 } else { 949 // HTTP/2. 950 // Can hand the same pconn to everyone in the waiting list, 951 // and we still won't be done: we want to put it in the idle 952 // list unconditionally, for any future clients too. 953 for q.len() > 0 { 954 w := q.popFront() 955 w.tryDeliver(pconn, nil) 956 } 957 } 958 if q.len() == 0 { 959 delete(t.idleConnWait, key) 960 } else { 961 t.idleConnWait[key] = q 962 } 963 if done { 964 return nil 965 } 966 } 967 968 if t.closeIdle { 969 return errCloseIdle 970 } 971 if t.idleConn == nil { 972 t.idleConn = make(map[connectMethodKey][]*persistConn) 973 } 974 idles := t.idleConn[key] 975 if len(idles) >= t.maxIdleConnsPerHost() { 976 return errTooManyIdleHost 977 } 978 for _, exist := range idles { 979 if exist == pconn { 980 log.Fatalf("dup idle pconn %p in freelist", pconn) 981 } 982 } 983 t.idleConn[key] = append(idles, pconn) 984 t.idleLRU.add(pconn) 985 if t.MaxIdleConns != 0 && t.idleLRU.len() > t.MaxIdleConns { 986 oldest := t.idleLRU.removeOldest() 987 oldest.close(errTooManyIdle) 988 t.removeIdleConnLocked(oldest) 989 } 990 991 // Set idle timer, but only for HTTP/1 (pconn.alt == nil). 992 // The HTTP/2 implementation manages the idle timer itself 993 // (see idleConnTimeout in h2_bundle.go). 994 if t.IdleConnTimeout > 0 && pconn.alt == nil { 995 if pconn.idleTimer != nil { 996 pconn.idleTimer.Reset(t.IdleConnTimeout) 997 } else { 998 pconn.idleTimer = time.AfterFunc(t.IdleConnTimeout, pconn.closeConnIfStillIdle) 999 } 1000 } 1001 pconn.idleAt = time.Now() 1002 return nil 1003 } 1004 1005 // queueForIdleConn queues w to receive the next idle connection for w.cm. 1006 // As an optimization hint to the caller, queueForIdleConn reports whether 1007 // it successfully delivered an already-idle connection. 1008 func (t *Transport) queueForIdleConn(w *wantConn) (delivered bool) { 1009 if t.DisableKeepAlives { 1010 return false 1011 } 1012 1013 t.idleMu.Lock() 1014 defer t.idleMu.Unlock() 1015 1016 // Stop closing connections that become idle - we might want one. 1017 // (That is, undo the effect of t.CloseIdleConnections.) 1018 t.closeIdle = false 1019 1020 if w == nil { 1021 // Happens in test hook. 1022 return false 1023 } 1024 1025 // If IdleConnTimeout is set, calculate the oldest 1026 // persistConn.idleAt time we're willing to use a cached idle 1027 // conn. 1028 var oldTime time.Time 1029 if t.IdleConnTimeout > 0 { 1030 oldTime = time.Now().Add(-t.IdleConnTimeout) 1031 } 1032 1033 // Look for most recently-used idle connection. 1034 if list, ok := t.idleConn[w.key]; ok { 1035 stop := false 1036 delivered := false 1037 for len(list) > 0 && !stop { 1038 pconn := list[len(list)-1] 1039 1040 // See whether this connection has been idle too long, considering 1041 // only the wall time (the Round(0)), in case this is a laptop or VM 1042 // coming out of suspend with previously cached idle connections. 1043 tooOld := !oldTime.IsZero() && pconn.idleAt.Round(0).Before(oldTime) 1044 if tooOld { 1045 // Async cleanup. Launch in its own goroutine (as if a 1046 // time.AfterFunc called it); it acquires idleMu, which we're 1047 // holding, and does a synchronous net.Conn.Close. 1048 go pconn.closeConnIfStillIdle() 1049 } 1050 if pconn.isBroken() || tooOld { 1051 // If either persistConn.readLoop has marked the connection 1052 // broken, but Transport.removeIdleConn has not yet removed it 1053 // from the idle list, or if this persistConn is too old (it was 1054 // idle too long), then ignore it and look for another. In both 1055 // cases it's already in the process of being closed. 1056 list = list[:len(list)-1] 1057 continue 1058 } 1059 delivered = w.tryDeliver(pconn, nil) 1060 if delivered { 1061 if pconn.alt != nil { 1062 // HTTP/2: multiple clients can share pconn. 1063 // Leave it in the list. 1064 } else { 1065 // HTTP/1: only one client can use pconn. 1066 // Remove it from the list. 1067 t.idleLRU.remove(pconn) 1068 list = list[:len(list)-1] 1069 } 1070 } 1071 stop = true 1072 } 1073 if len(list) > 0 { 1074 t.idleConn[w.key] = list 1075 } else { 1076 delete(t.idleConn, w.key) 1077 } 1078 if stop { 1079 return delivered 1080 } 1081 } 1082 1083 // Register to receive next connection that becomes idle. 1084 if t.idleConnWait == nil { 1085 t.idleConnWait = make(map[connectMethodKey]wantConnQueue) 1086 } 1087 q := t.idleConnWait[w.key] 1088 q.cleanFront() 1089 q.pushBack(w) 1090 t.idleConnWait[w.key] = q 1091 return false 1092 } 1093 1094 // removeIdleConn marks pconn as dead. 1095 func (t *Transport) removeIdleConn(pconn *persistConn) bool { 1096 t.idleMu.Lock() 1097 defer t.idleMu.Unlock() 1098 return t.removeIdleConnLocked(pconn) 1099 } 1100 1101 // t.idleMu must be held. 1102 func (t *Transport) removeIdleConnLocked(pconn *persistConn) bool { 1103 if pconn.idleTimer != nil { 1104 pconn.idleTimer.Stop() 1105 } 1106 t.idleLRU.remove(pconn) 1107 key := pconn.cacheKey 1108 pconns := t.idleConn[key] 1109 var removed bool 1110 switch len(pconns) { 1111 case 0: 1112 // Nothing 1113 case 1: 1114 if pconns[0] == pconn { 1115 delete(t.idleConn, key) 1116 removed = true 1117 } 1118 default: 1119 for i, v := range pconns { 1120 if v != pconn { 1121 continue 1122 } 1123 // Slide down, keeping most recently-used 1124 // conns at the end. 1125 copy(pconns[i:], pconns[i+1:]) 1126 t.idleConn[key] = pconns[:len(pconns)-1] 1127 removed = true 1128 break 1129 } 1130 } 1131 return removed 1132 } 1133 1134 func (t *Transport) setReqCanceler(key cancelKey, fn func(error)) { 1135 t.reqMu.Lock() 1136 defer t.reqMu.Unlock() 1137 if t.reqCanceler == nil { 1138 t.reqCanceler = make(map[cancelKey]func(error)) 1139 } 1140 if fn != nil { 1141 t.reqCanceler[key] = fn 1142 } else { 1143 delete(t.reqCanceler, key) 1144 } 1145 } 1146 1147 // replaceReqCanceler replaces an existing cancel function. If there is no cancel function 1148 // for the request, we don't set the function and return false. 1149 // Since CancelRequest will clear the canceler, we can use the return value to detect if 1150 // the request was canceled since the last setReqCancel call. 1151 func (t *Transport) replaceReqCanceler(key cancelKey, fn func(error)) bool { 1152 t.reqMu.Lock() 1153 defer t.reqMu.Unlock() 1154 _, ok := t.reqCanceler[key] 1155 if !ok { 1156 return false 1157 } 1158 if fn != nil { 1159 t.reqCanceler[key] = fn 1160 } else { 1161 delete(t.reqCanceler, key) 1162 } 1163 return true 1164 } 1165 1166 var zeroDialer net.Dialer 1167 1168 func (t *Transport) dial(ctx context.Context, network, addr string) (net.Conn, error) { 1169 if t.DialContext != nil { 1170 return t.DialContext(ctx, network, addr) 1171 } 1172 if t.Dial != nil { 1173 c, err := t.Dial(network, addr) 1174 if c == nil && err == nil { 1175 err = errors.New("net/http: Transport.Dial hook returned (nil, nil)") 1176 } 1177 return c, err 1178 } 1179 return zeroDialer.DialContext(ctx, network, addr) 1180 } 1181 1182 // A wantConn records state about a wanted connection 1183 // (that is, an active call to getConn). 1184 // The conn may be gotten by dialing or by finding an idle connection, 1185 // or a cancellation may make the conn no longer wanted. 1186 // These three options are racing against each other and use 1187 // wantConn to coordinate and agree about the winning outcome. 1188 type wantConn struct { 1189 cm connectMethod 1190 key connectMethodKey // cm.key() 1191 ctx context.Context // context for dial 1192 ready chan struct{} // closed when pc, err pair is delivered 1193 1194 // hooks for testing to know when dials are done 1195 // beforeDial is called in the getConn goroutine when the dial is queued. 1196 // afterDial is called when the dial is completed or canceled. 1197 beforeDial func() 1198 afterDial func() 1199 1200 mu sync.Mutex // protects pc, err, close(ready) 1201 pc *persistConn 1202 err error 1203 } 1204 1205 // waiting reports whether w is still waiting for an answer (connection or error). 1206 func (w *wantConn) waiting() bool { 1207 select { 1208 case <-w.ready: 1209 return false 1210 default: 1211 return true 1212 } 1213 } 1214 1215 // tryDeliver attempts to deliver pc, err to w and reports whether it succeeded. 1216 func (w *wantConn) tryDeliver(pc *persistConn, err error) bool { 1217 w.mu.Lock() 1218 defer w.mu.Unlock() 1219 1220 if w.pc != nil || w.err != nil { 1221 return false 1222 } 1223 1224 w.pc = pc 1225 w.err = err 1226 if w.pc == nil && w.err == nil { 1227 panic("net/http: internal error: misuse of tryDeliver") 1228 } 1229 close(w.ready) 1230 return true 1231 } 1232 1233 // cancel marks w as no longer wanting a result (for example, due to cancellation). 1234 // If a connection has been delivered already, cancel returns it with t.putOrCloseIdleConn. 1235 func (w *wantConn) cancel(t *Transport, err error) { 1236 w.mu.Lock() 1237 if w.pc == nil && w.err == nil { 1238 close(w.ready) // catch misbehavior in future delivery 1239 } 1240 pc := w.pc 1241 w.pc = nil 1242 w.err = err 1243 w.mu.Unlock() 1244 1245 if pc != nil { 1246 t.putOrCloseIdleConn(pc) 1247 } 1248 } 1249 1250 // A wantConnQueue is a queue of wantConns. 1251 type wantConnQueue struct { 1252 // This is a queue, not a deque. 1253 // It is split into two stages - head[headPos:] and tail. 1254 // popFront is trivial (headPos++) on the first stage, and 1255 // pushBack is trivial (append) on the second stage. 1256 // If the first stage is empty, popFront can swap the 1257 // first and second stages to remedy the situation. 1258 // 1259 // This two-stage split is analogous to the use of two lists 1260 // in Okasaki's purely functional queue but without the 1261 // overhead of reversing the list when swapping stages. 1262 head []*wantConn 1263 headPos int 1264 tail []*wantConn 1265 } 1266 1267 // len returns the number of items in the queue. 1268 func (q *wantConnQueue) len() int { 1269 return len(q.head) - q.headPos + len(q.tail) 1270 } 1271 1272 // pushBack adds w to the back of the queue. 1273 func (q *wantConnQueue) pushBack(w *wantConn) { 1274 q.tail = append(q.tail, w) 1275 } 1276 1277 // popFront removes and returns the wantConn at the front of the queue. 1278 func (q *wantConnQueue) popFront() *wantConn { 1279 if q.headPos >= len(q.head) { 1280 if len(q.tail) == 0 { 1281 return nil 1282 } 1283 // Pick up tail as new head, clear tail. 1284 q.head, q.headPos, q.tail = q.tail, 0, q.head[:0] 1285 } 1286 w := q.head[q.headPos] 1287 q.head[q.headPos] = nil 1288 q.headPos++ 1289 return w 1290 } 1291 1292 // peekFront returns the wantConn at the front of the queue without removing it. 1293 func (q *wantConnQueue) peekFront() *wantConn { 1294 if q.headPos < len(q.head) { 1295 return q.head[q.headPos] 1296 } 1297 if len(q.tail) > 0 { 1298 return q.tail[0] 1299 } 1300 return nil 1301 } 1302 1303 // cleanFront pops any wantConns that are no longer waiting from the head of the 1304 // queue, reporting whether any were popped. 1305 func (q *wantConnQueue) cleanFront() (cleaned bool) { 1306 for { 1307 w := q.peekFront() 1308 if w == nil || w.waiting() { 1309 return cleaned 1310 } 1311 q.popFront() 1312 cleaned = true 1313 } 1314 } 1315 1316 func (t *Transport) customDialTLS(ctx context.Context, network, addr string) (conn net.Conn, err error) { 1317 if t.DialTLSContext != nil { 1318 conn, err = t.DialTLSContext(ctx, network, addr) 1319 } else { 1320 conn, err = t.DialTLS(network, addr) 1321 } 1322 if conn == nil && err == nil { 1323 err = errors.New("net/http: Transport.DialTLS or DialTLSContext returned (nil, nil)") 1324 } 1325 return 1326 } 1327 1328 // getConn dials and creates a new persistConn to the target as 1329 // specified in the connectMethod. This includes doing a proxy CONNECT 1330 // and/or setting up TLS. If this doesn't return an error, the persistConn 1331 // is ready to write requests to. 1332 func (t *Transport) getConn(treq *transportRequest, cm connectMethod) (pc *persistConn, err error) { 1333 req := treq.Request 1334 trace := treq.trace 1335 ctx := req.Context() 1336 if trace != nil && trace.GetConn != nil { 1337 trace.GetConn(cm.addr()) 1338 } 1339 1340 w := &wantConn{ 1341 cm: cm, 1342 key: cm.key(), 1343 ctx: ctx, 1344 ready: make(chan struct{}, 1), 1345 beforeDial: testHookPrePendingDial, 1346 afterDial: testHookPostPendingDial, 1347 } 1348 defer func() { 1349 if err != nil { 1350 w.cancel(t, err) 1351 } 1352 }() 1353 1354 // Queue for idle connection. 1355 if delivered := t.queueForIdleConn(w); delivered { 1356 pc := w.pc 1357 // Trace only for HTTP/1. 1358 // HTTP/2 calls trace.GotConn itself. 1359 if pc.alt == nil && trace != nil && trace.GotConn != nil { 1360 trace.GotConn(pc.gotIdleConnTrace(pc.idleAt)) 1361 } 1362 // set request canceler to some non-nil function so we 1363 // can detect whether it was cleared between now and when 1364 // we enter roundTrip 1365 t.setReqCanceler(treq.cancelKey, func(error) {}) 1366 return pc, nil 1367 } 1368 1369 cancelc := make(chan error, 1) 1370 t.setReqCanceler(treq.cancelKey, func(err error) { cancelc <- err }) 1371 1372 // Queue for permission to dial. 1373 t.queueForDial(w) 1374 1375 // Wait for completion or cancellation. 1376 select { 1377 case <-w.ready: 1378 // Trace success but only for HTTP/1. 1379 // HTTP/2 calls trace.GotConn itself. 1380 if w.pc != nil && w.pc.alt == nil && trace != nil && trace.GotConn != nil { 1381 trace.GotConn(httptrace.GotConnInfo{Conn: w.pc.conn, Reused: w.pc.isReused()}) 1382 } 1383 if w.err != nil { 1384 // If the request has been canceled, that's probably 1385 // what caused w.err; if so, prefer to return the 1386 // cancellation error (see golang.org/issue/16049). 1387 select { 1388 case <-req.Cancel: 1389 return nil, errRequestCanceledConn 1390 case <-req.Context().Done(): 1391 return nil, req.Context().Err() 1392 case err := <-cancelc: 1393 if err == errRequestCanceled { 1394 err = errRequestCanceledConn 1395 } 1396 return nil, err 1397 default: 1398 // return below 1399 } 1400 } 1401 return w.pc, w.err 1402 case <-req.Cancel: 1403 return nil, errRequestCanceledConn 1404 case <-req.Context().Done(): 1405 return nil, req.Context().Err() 1406 case err := <-cancelc: 1407 if err == errRequestCanceled { 1408 err = errRequestCanceledConn 1409 } 1410 return nil, err 1411 } 1412 } 1413 1414 // queueForDial queues w to wait for permission to begin dialing. 1415 // Once w receives permission to dial, it will do so in a separate goroutine. 1416 func (t *Transport) queueForDial(w *wantConn) { 1417 w.beforeDial() 1418 if t.MaxConnsPerHost <= 0 { 1419 go t.dialConnFor(w) 1420 return 1421 } 1422 1423 t.connsPerHostMu.Lock() 1424 defer t.connsPerHostMu.Unlock() 1425 1426 if n := t.connsPerHost[w.key]; n < t.MaxConnsPerHost { 1427 if t.connsPerHost == nil { 1428 t.connsPerHost = make(map[connectMethodKey]int) 1429 } 1430 t.connsPerHost[w.key] = n + 1 1431 go t.dialConnFor(w) 1432 return 1433 } 1434 1435 if t.connsPerHostWait == nil { 1436 t.connsPerHostWait = make(map[connectMethodKey]wantConnQueue) 1437 } 1438 q := t.connsPerHostWait[w.key] 1439 q.cleanFront() 1440 q.pushBack(w) 1441 t.connsPerHostWait[w.key] = q 1442 } 1443 1444 // dialConnFor dials on behalf of w and delivers the result to w. 1445 // dialConnFor has received permission to dial w.cm and is counted in t.connCount[w.cm.key()]. 1446 // If the dial is canceled or unsuccessful, dialConnFor decrements t.connCount[w.cm.key()]. 1447 func (t *Transport) dialConnFor(w *wantConn) { 1448 defer w.afterDial() 1449 1450 pc, err := t.dialConn(w.ctx, w.cm) 1451 delivered := w.tryDeliver(pc, err) 1452 if err == nil && (!delivered || pc.alt != nil) { 1453 // pconn was not passed to w, 1454 // or it is HTTP/2 and can be shared. 1455 // Add to the idle connection pool. 1456 t.putOrCloseIdleConn(pc) 1457 } 1458 if err != nil { 1459 t.decConnsPerHost(w.key) 1460 } 1461 } 1462 1463 // decConnsPerHost decrements the per-host connection count for key, 1464 // which may in turn give a different waiting goroutine permission to dial. 1465 func (t *Transport) decConnsPerHost(key connectMethodKey) { 1466 if t.MaxConnsPerHost <= 0 { 1467 return 1468 } 1469 1470 t.connsPerHostMu.Lock() 1471 defer t.connsPerHostMu.Unlock() 1472 n := t.connsPerHost[key] 1473 if n == 0 { 1474 // Shouldn't happen, but if it does, the counting is buggy and could 1475 // easily lead to a silent deadlock, so report the problem loudly. 1476 panic("net/http: internal error: connCount underflow") 1477 } 1478 1479 // Can we hand this count to a goroutine still waiting to dial? 1480 // (Some goroutines on the wait list may have timed out or 1481 // gotten a connection another way. If they're all gone, 1482 // we don't want to kick off any spurious dial operations.) 1483 if q := t.connsPerHostWait[key]; q.len() > 0 { 1484 done := false 1485 for q.len() > 0 { 1486 w := q.popFront() 1487 if w.waiting() { 1488 go t.dialConnFor(w) 1489 done = true 1490 break 1491 } 1492 } 1493 if q.len() == 0 { 1494 delete(t.connsPerHostWait, key) 1495 } else { 1496 // q is a value (like a slice), so we have to store 1497 // the updated q back into the map. 1498 t.connsPerHostWait[key] = q 1499 } 1500 if done { 1501 return 1502 } 1503 } 1504 1505 // Otherwise, decrement the recorded count. 1506 if n--; n == 0 { 1507 delete(t.connsPerHost, key) 1508 } else { 1509 t.connsPerHost[key] = n 1510 } 1511 } 1512 1513 // Add TLS to a persistent connection, i.e. negotiate a TLS session. If pconn is already a TLS 1514 // tunnel, this function establishes a nested TLS session inside the encrypted channel. 1515 // The remote endpoint's name may be overridden by TLSClientConfig.ServerName. 1516 func (pconn *persistConn) addTLS(ctx context.Context, name string, trace *httptrace.ClientTrace) error { 1517 // Initiate TLS and check remote host name against certificate. 1518 cfg := cloneTLSConfig(pconn.t.TLSClientConfig) 1519 if cfg.ServerName == "" { 1520 cfg.ServerName = name 1521 } 1522 if pconn.cacheKey.onlyH1 { 1523 cfg.NextProtos = nil 1524 } 1525 plainConn := pconn.conn 1526 tlsConn := tls.Client(plainConn, cfg) 1527 errc := make(chan error, 2) 1528 var timer *time.Timer // for canceling TLS handshake 1529 if d := pconn.t.TLSHandshakeTimeout; d != 0 { 1530 timer = time.AfterFunc(d, func() { 1531 errc <- tlsHandshakeTimeoutError{} 1532 }) 1533 } 1534 go func() { 1535 if trace != nil && trace.TLSHandshakeStart != nil { 1536 trace.TLSHandshakeStart() 1537 } 1538 err := tlsConn.HandshakeContext(ctx) 1539 if timer != nil { 1540 timer.Stop() 1541 } 1542 errc <- err 1543 }() 1544 if err := <-errc; err != nil { 1545 plainConn.Close() 1546 if trace != nil && trace.TLSHandshakeDone != nil { 1547 trace.TLSHandshakeDone(tls.ConnectionState{}, err) 1548 } 1549 return err 1550 } 1551 cs := tlsConn.ConnectionState() 1552 if trace != nil && trace.TLSHandshakeDone != nil { 1553 trace.TLSHandshakeDone(cs, nil) 1554 } 1555 pconn.tlsState = &cs 1556 pconn.conn = tlsConn 1557 return nil 1558 } 1559 1560 type erringRoundTripper interface { 1561 RoundTripErr() error 1562 } 1563 1564 func (t *Transport) dialConn(ctx context.Context, cm connectMethod) (pconn *persistConn, err error) { 1565 pconn = &persistConn{ 1566 t: t, 1567 cacheKey: cm.key(), 1568 reqch: make(chan requestAndChan, 1), 1569 writech: make(chan writeRequest, 1), 1570 closech: make(chan struct{}), 1571 writeErrCh: make(chan error, 1), 1572 writeLoopDone: make(chan struct{}), 1573 } 1574 trace := httptrace.ContextClientTrace(ctx) 1575 wrapErr := func(err error) error { 1576 if cm.proxyURL != nil { 1577 // Return a typed error, per Issue 16997 1578 return &net.OpError{Op: "proxyconnect", Net: "tcp", Err: err} 1579 } 1580 return err 1581 } 1582 if cm.scheme() == "https" && t.hasCustomTLSDialer() { 1583 var err error 1584 pconn.conn, err = t.customDialTLS(ctx, "tcp", cm.addr()) 1585 if err != nil { 1586 return nil, wrapErr(err) 1587 } 1588 if tc, ok := pconn.conn.(*tls.Conn); ok { 1589 // Handshake here, in case DialTLS didn't. TLSNextProto below 1590 // depends on it for knowing the connection state. 1591 if trace != nil && trace.TLSHandshakeStart != nil { 1592 trace.TLSHandshakeStart() 1593 } 1594 if err := tc.HandshakeContext(ctx); err != nil { 1595 go pconn.conn.Close() 1596 if trace != nil && trace.TLSHandshakeDone != nil { 1597 trace.TLSHandshakeDone(tls.ConnectionState{}, err) 1598 } 1599 return nil, err 1600 } 1601 cs := tc.ConnectionState() 1602 if trace != nil && trace.TLSHandshakeDone != nil { 1603 trace.TLSHandshakeDone(cs, nil) 1604 } 1605 pconn.tlsState = &cs 1606 } 1607 } else { 1608 conn, err := t.dial(ctx, "tcp", cm.addr()) 1609 if err != nil { 1610 return nil, wrapErr(err) 1611 } 1612 pconn.conn = conn 1613 if cm.scheme() == "https" { 1614 var firstTLSHost string 1615 if firstTLSHost, _, err = net.SplitHostPort(cm.addr()); err != nil { 1616 return nil, wrapErr(err) 1617 } 1618 if err = pconn.addTLS(ctx, firstTLSHost, trace); err != nil { 1619 return nil, wrapErr(err) 1620 } 1621 } 1622 } 1623 1624 // Proxy setup. 1625 switch { 1626 case cm.proxyURL == nil: 1627 // Do nothing. Not using a proxy. 1628 case cm.proxyURL.Scheme == "socks5": 1629 conn := pconn.conn 1630 d := socksNewDialer("tcp", conn.RemoteAddr().String()) 1631 if u := cm.proxyURL.User; u != nil { 1632 auth := &socksUsernamePassword{ 1633 Username: u.Username(), 1634 } 1635 auth.Password, _ = u.Password() 1636 d.AuthMethods = []socksAuthMethod{ 1637 socksAuthMethodNotRequired, 1638 socksAuthMethodUsernamePassword, 1639 } 1640 d.Authenticate = auth.Authenticate 1641 } 1642 if _, err := d.DialWithConn(ctx, conn, "tcp", cm.targetAddr); err != nil { 1643 conn.Close() 1644 return nil, err 1645 } 1646 case cm.targetScheme == "http": 1647 pconn.isProxy = true 1648 if pa := cm.proxyAuth(); pa != "" { 1649 pconn.mutateHeaderFunc = func(h Header) { 1650 h.Set("Proxy-Authorization", pa) 1651 } 1652 } 1653 case cm.targetScheme == "https": 1654 conn := pconn.conn 1655 var hdr Header 1656 if t.GetProxyConnectHeader != nil { 1657 var err error 1658 hdr, err = t.GetProxyConnectHeader(ctx, cm.proxyURL, cm.targetAddr) 1659 if err != nil { 1660 conn.Close() 1661 return nil, err 1662 } 1663 } else { 1664 hdr = t.ProxyConnectHeader 1665 } 1666 if hdr == nil { 1667 hdr = make(Header) 1668 } 1669 if pa := cm.proxyAuth(); pa != "" { 1670 hdr = hdr.Clone() 1671 hdr.Set("Proxy-Authorization", pa) 1672 } 1673 connectReq := &Request{ 1674 Method: "CONNECT", 1675 URL: &url.URL{Opaque: cm.targetAddr}, 1676 Host: cm.targetAddr, 1677 Header: hdr, 1678 } 1679 1680 // If there's no done channel (no deadline or cancellation 1681 // from the caller possible), at least set some (long) 1682 // timeout here. This will make sure we don't block forever 1683 // and leak a goroutine if the connection stops replying 1684 // after the TCP connect. 1685 connectCtx := ctx 1686 if ctx.Done() == nil { 1687 newCtx, cancel := context.WithTimeout(ctx, 1*time.Minute) 1688 defer cancel() 1689 connectCtx = newCtx 1690 } 1691 1692 didReadResponse := make(chan struct{}) // closed after CONNECT write+read is done or fails 1693 var ( 1694 resp *Response 1695 err error // write or read error 1696 ) 1697 // Write the CONNECT request & read the response. 1698 go func() { 1699 defer close(didReadResponse) 1700 err = connectReq.Write(conn) 1701 if err != nil { 1702 return 1703 } 1704 // Okay to use and discard buffered reader here, because 1705 // TLS server will not speak until spoken to. 1706 br := bufio.NewReader(conn) 1707 resp, err = ReadResponse(br, connectReq) 1708 }() 1709 select { 1710 case <-connectCtx.Done(): 1711 conn.Close() 1712 <-didReadResponse 1713 return nil, connectCtx.Err() 1714 case <-didReadResponse: 1715 // resp or err now set 1716 } 1717 if err != nil { 1718 conn.Close() 1719 return nil, err 1720 } 1721 if resp.StatusCode != 200 { 1722 _, text, ok := strings.Cut(resp.Status, " ") 1723 conn.Close() 1724 if !ok { 1725 return nil, errors.New("unknown status code") 1726 } 1727 return nil, errors.New(text) 1728 } 1729 } 1730 1731 if cm.proxyURL != nil && cm.targetScheme == "https" { 1732 if err := pconn.addTLS(ctx, cm.tlsHost(), trace); err != nil { 1733 return nil, err 1734 } 1735 } 1736 1737 if s := pconn.tlsState; s != nil && s.NegotiatedProtocolIsMutual && s.NegotiatedProtocol != "" { 1738 if next, ok := t.TLSNextProto[s.NegotiatedProtocol]; ok { 1739 alt := next(cm.targetAddr, pconn.conn.(*tls.Conn)) 1740 if e, ok := alt.(erringRoundTripper); ok { 1741 // pconn.conn was closed by next (http2configureTransports.upgradeFn). 1742 return nil, e.RoundTripErr() 1743 } 1744 return &persistConn{t: t, cacheKey: pconn.cacheKey, alt: alt}, nil 1745 } 1746 } 1747 1748 pconn.br = bufio.NewReaderSize(pconn, t.readBufferSize()) 1749 pconn.bw = bufio.NewWriterSize(persistConnWriter{pconn}, t.writeBufferSize()) 1750 1751 go pconn.readLoop() 1752 go pconn.writeLoop() 1753 return pconn, nil 1754 } 1755 1756 // persistConnWriter is the io.Writer written to by pc.bw. 1757 // It accumulates the number of bytes written to the underlying conn, 1758 // so the retry logic can determine whether any bytes made it across 1759 // the wire. 1760 // This is exactly 1 pointer field wide so it can go into an interface 1761 // without allocation. 1762 type persistConnWriter struct { 1763 pc *persistConn 1764 } 1765 1766 func (w persistConnWriter) Write(p []byte) (n int, err error) { 1767 n, err = w.pc.conn.Write(p) 1768 w.pc.nwrite += int64(n) 1769 return 1770 } 1771 1772 // ReadFrom exposes persistConnWriter's underlying Conn to io.Copy and if 1773 // the Conn implements io.ReaderFrom, it can take advantage of optimizations 1774 // such as sendfile. 1775 func (w persistConnWriter) ReadFrom(r io.Reader) (n int64, err error) { 1776 n, err = io.Copy(w.pc.conn, r) 1777 w.pc.nwrite += n 1778 return 1779 } 1780 1781 var _ io.ReaderFrom = (*persistConnWriter)(nil) 1782 1783 // connectMethod is the map key (in its String form) for keeping persistent 1784 // TCP connections alive for subsequent HTTP requests. 1785 // 1786 // A connect method may be of the following types: 1787 // 1788 // connectMethod.key().String() Description 1789 // ------------------------------ ------------------------- 1790 // |http|foo.com http directly to server, no proxy 1791 // |https|foo.com https directly to server, no proxy 1792 // |https,h1|foo.com https directly to server w/o HTTP/2, no proxy 1793 // http://proxy.com|https|foo.com http to proxy, then CONNECT to foo.com 1794 // http://proxy.com|http http to proxy, http to anywhere after that 1795 // socks5://proxy.com|http|foo.com socks5 to proxy, then http to foo.com 1796 // socks5://proxy.com|https|foo.com socks5 to proxy, then https to foo.com 1797 // https://proxy.com|https|foo.com https to proxy, then CONNECT to foo.com 1798 // https://proxy.com|http https to proxy, http to anywhere after that 1799 type connectMethod struct { 1800 _ incomparable 1801 proxyURL *url.URL // nil for no proxy, else full proxy URL 1802 targetScheme string // "http" or "https" 1803 // If proxyURL specifies an http or https proxy, and targetScheme is http (not https), 1804 // then targetAddr is not included in the connect method key, because the socket can 1805 // be reused for different targetAddr values. 1806 targetAddr string 1807 onlyH1 bool // whether to disable HTTP/2 and force HTTP/1 1808 } 1809 1810 func (cm *connectMethod) key() connectMethodKey { 1811 proxyStr := "" 1812 targetAddr := cm.targetAddr 1813 if cm.proxyURL != nil { 1814 proxyStr = cm.proxyURL.String() 1815 if (cm.proxyURL.Scheme == "http" || cm.proxyURL.Scheme == "https") && cm.targetScheme == "http" { 1816 targetAddr = "" 1817 } 1818 } 1819 return connectMethodKey{ 1820 proxy: proxyStr, 1821 scheme: cm.targetScheme, 1822 addr: targetAddr, 1823 onlyH1: cm.onlyH1, 1824 } 1825 } 1826 1827 // scheme returns the first hop scheme: http, https, or socks5 1828 func (cm *connectMethod) scheme() string { 1829 if cm.proxyURL != nil { 1830 return cm.proxyURL.Scheme 1831 } 1832 return cm.targetScheme 1833 } 1834 1835 // addr returns the first hop "host:port" to which we need to TCP connect. 1836 func (cm *connectMethod) addr() string { 1837 if cm.proxyURL != nil { 1838 return canonicalAddr(cm.proxyURL) 1839 } 1840 return cm.targetAddr 1841 } 1842 1843 // tlsHost returns the host name to match against the peer's 1844 // TLS certificate. 1845 func (cm *connectMethod) tlsHost() string { 1846 h := cm.targetAddr 1847 if hasPort(h) { 1848 h = h[:strings.LastIndex(h, ":")] 1849 } 1850 return h 1851 } 1852 1853 // connectMethodKey is the map key version of connectMethod, with a 1854 // stringified proxy URL (or the empty string) instead of a pointer to 1855 // a URL. 1856 type connectMethodKey struct { 1857 proxy, scheme, addr string 1858 onlyH1 bool 1859 } 1860 1861 func (k connectMethodKey) String() string { 1862 // Only used by tests. 1863 var h1 string 1864 if k.onlyH1 { 1865 h1 = ",h1" 1866 } 1867 return fmt.Sprintf("%s|%s%s|%s", k.proxy, k.scheme, h1, k.addr) 1868 } 1869 1870 // persistConn wraps a connection, usually a persistent one 1871 // (but may be used for non-keep-alive requests as well) 1872 type persistConn struct { 1873 // alt optionally specifies the TLS NextProto RoundTripper. 1874 // This is used for HTTP/2 today and future protocols later. 1875 // If it's non-nil, the rest of the fields are unused. 1876 alt RoundTripper 1877 1878 t *Transport 1879 cacheKey connectMethodKey 1880 conn net.Conn 1881 tlsState *tls.ConnectionState 1882 br *bufio.Reader // from conn 1883 bw *bufio.Writer // to conn 1884 nwrite int64 // bytes written 1885 reqch chan requestAndChan // written by roundTrip; read by readLoop 1886 writech chan writeRequest // written by roundTrip; read by writeLoop 1887 closech chan struct{} // closed when conn closed 1888 isProxy bool 1889 sawEOF bool // whether we've seen EOF from conn; owned by readLoop 1890 readLimit int64 // bytes allowed to be read; owned by readLoop 1891 // writeErrCh passes the request write error (usually nil) 1892 // from the writeLoop goroutine to the readLoop which passes 1893 // it off to the res.Body reader, which then uses it to decide 1894 // whether or not a connection can be reused. Issue 7569. 1895 writeErrCh chan error 1896 1897 writeLoopDone chan struct{} // closed when write loop ends 1898 1899 // Both guarded by Transport.idleMu: 1900 idleAt time.Time // time it last become idle 1901 idleTimer *time.Timer // holding an AfterFunc to close it 1902 1903 mu sync.Mutex // guards following fields 1904 numExpectedResponses int 1905 closed error // set non-nil when conn is closed, before closech is closed 1906 canceledErr error // set non-nil if conn is canceled 1907 broken bool // an error has happened on this connection; marked broken so it's not reused. 1908 reused bool // whether conn has had successful request/response and is being reused. 1909 // mutateHeaderFunc is an optional func to modify extra 1910 // headers on each outbound request before it's written. (the 1911 // original Request given to RoundTrip is not modified) 1912 mutateHeaderFunc func(Header) 1913 } 1914 1915 func (pc *persistConn) maxHeaderResponseSize() int64 { 1916 if v := pc.t.MaxResponseHeaderBytes; v != 0 { 1917 return v 1918 } 1919 return 10 << 20 // conservative default; same as http2 1920 } 1921 1922 func (pc *persistConn) Read(p []byte) (n int, err error) { 1923 if pc.readLimit <= 0 { 1924 return 0, fmt.Errorf("read limit of %d bytes exhausted", pc.maxHeaderResponseSize()) 1925 } 1926 if int64(len(p)) > pc.readLimit { 1927 p = p[:pc.readLimit] 1928 } 1929 n, err = pc.conn.Read(p) 1930 if err == io.EOF { 1931 pc.sawEOF = true 1932 } 1933 pc.readLimit -= int64(n) 1934 return 1935 } 1936 1937 // isBroken reports whether this connection is in a known broken state. 1938 func (pc *persistConn) isBroken() bool { 1939 pc.mu.Lock() 1940 b := pc.closed != nil 1941 pc.mu.Unlock() 1942 return b 1943 } 1944 1945 // canceled returns non-nil if the connection was closed due to 1946 // CancelRequest or due to context cancellation. 1947 func (pc *persistConn) canceled() error { 1948 pc.mu.Lock() 1949 defer pc.mu.Unlock() 1950 return pc.canceledErr 1951 } 1952 1953 // isReused reports whether this connection has been used before. 1954 func (pc *persistConn) isReused() bool { 1955 pc.mu.Lock() 1956 r := pc.reused 1957 pc.mu.Unlock() 1958 return r 1959 } 1960 1961 func (pc *persistConn) gotIdleConnTrace(idleAt time.Time) (t httptrace.GotConnInfo) { 1962 pc.mu.Lock() 1963 defer pc.mu.Unlock() 1964 t.Reused = pc.reused 1965 t.Conn = pc.conn 1966 t.WasIdle = true 1967 if !idleAt.IsZero() { 1968 t.IdleTime = time.Since(idleAt) 1969 } 1970 return 1971 } 1972 1973 func (pc *persistConn) cancelRequest(err error) { 1974 pc.mu.Lock() 1975 defer pc.mu.Unlock() 1976 pc.canceledErr = err 1977 pc.closeLocked(errRequestCanceled) 1978 } 1979 1980 // closeConnIfStillIdle closes the connection if it's still sitting idle. 1981 // This is what's called by the persistConn's idleTimer, and is run in its 1982 // own goroutine. 1983 func (pc *persistConn) closeConnIfStillIdle() { 1984 t := pc.t 1985 t.idleMu.Lock() 1986 defer t.idleMu.Unlock() 1987 if _, ok := t.idleLRU.m[pc]; !ok { 1988 // Not idle. 1989 return 1990 } 1991 t.removeIdleConnLocked(pc) 1992 pc.close(errIdleConnTimeout) 1993 } 1994 1995 // mapRoundTripError returns the appropriate error value for 1996 // persistConn.roundTrip. 1997 // 1998 // The provided err is the first error that (*persistConn).roundTrip 1999 // happened to receive from its select statement. 2000 // 2001 // The startBytesWritten value should be the value of pc.nwrite before the roundTrip 2002 // started writing the request. 2003 func (pc *persistConn) mapRoundTripError(req *transportRequest, startBytesWritten int64, err error) error { 2004 if err == nil { 2005 return nil 2006 } 2007 2008 // Wait for the writeLoop goroutine to terminate to avoid data 2009 // races on callers who mutate the request on failure. 2010 // 2011 // When resc in pc.roundTrip and hence rc.ch receives a responseAndError 2012 // with a non-nil error it implies that the persistConn is either closed 2013 // or closing. Waiting on pc.writeLoopDone is hence safe as all callers 2014 // close closech which in turn ensures writeLoop returns. 2015 <-pc.writeLoopDone 2016 2017 // If the request was canceled, that's better than network 2018 // failures that were likely the result of tearing down the 2019 // connection. 2020 if cerr := pc.canceled(); cerr != nil { 2021 return cerr 2022 } 2023 2024 // See if an error was set explicitly. 2025 req.mu.Lock() 2026 reqErr := req.err 2027 req.mu.Unlock() 2028 if reqErr != nil { 2029 return reqErr 2030 } 2031 2032 if err == errServerClosedIdle { 2033 // Don't decorate 2034 return err 2035 } 2036 2037 if _, ok := err.(transportReadFromServerError); ok { 2038 if pc.nwrite == startBytesWritten { 2039 return nothingWrittenError{err} 2040 } 2041 // Don't decorate 2042 return err 2043 } 2044 if pc.isBroken() { 2045 if pc.nwrite == startBytesWritten { 2046 return nothingWrittenError{err} 2047 } 2048 return fmt.Errorf("net/http: HTTP/1.x transport connection broken: %v", err) 2049 } 2050 return err 2051 } 2052 2053 // errCallerOwnsConn is an internal sentinel error used when we hand 2054 // off a writable response.Body to the caller. We use this to prevent 2055 // closing a net.Conn that is now owned by the caller. 2056 var errCallerOwnsConn = errors.New("read loop ending; caller owns writable underlying conn") 2057 2058 func (pc *persistConn) readLoop() { 2059 closeErr := errReadLoopExiting // default value, if not changed below 2060 defer func() { 2061 pc.close(closeErr) 2062 pc.t.removeIdleConn(pc) 2063 }() 2064 2065 tryPutIdleConn := func(trace *httptrace.ClientTrace) bool { 2066 if err := pc.t.tryPutIdleConn(pc); err != nil { 2067 closeErr = err 2068 if trace != nil && trace.PutIdleConn != nil && err != errKeepAlivesDisabled { 2069 trace.PutIdleConn(err) 2070 } 2071 return false 2072 } 2073 if trace != nil && trace.PutIdleConn != nil { 2074 trace.PutIdleConn(nil) 2075 } 2076 return true 2077 } 2078 2079 // eofc is used to block caller goroutines reading from Response.Body 2080 // at EOF until this goroutines has (potentially) added the connection 2081 // back to the idle pool. 2082 eofc := make(chan struct{}) 2083 defer close(eofc) // unblock reader on errors 2084 2085 // Read this once, before loop starts. (to avoid races in tests) 2086 testHookMu.Lock() 2087 testHookReadLoopBeforeNextRead := testHookReadLoopBeforeNextRead 2088 testHookMu.Unlock() 2089 2090 alive := true 2091 for alive { 2092 pc.readLimit = pc.maxHeaderResponseSize() 2093 _, err := pc.br.Peek(1) 2094 2095 pc.mu.Lock() 2096 if pc.numExpectedResponses == 0 { 2097 pc.readLoopPeekFailLocked(err) 2098 pc.mu.Unlock() 2099 return 2100 } 2101 pc.mu.Unlock() 2102 2103 rc := <-pc.reqch 2104 trace := httptrace.ContextClientTrace(rc.req.Context()) 2105 2106 var resp *Response 2107 if err == nil { 2108 resp, err = pc.readResponse(rc, trace) 2109 } else { 2110 err = transportReadFromServerError{err} 2111 closeErr = err 2112 } 2113 2114 if err != nil { 2115 if pc.readLimit <= 0 { 2116 err = fmt.Errorf("net/http: server response headers exceeded %d bytes; aborted", pc.maxHeaderResponseSize()) 2117 } 2118 2119 select { 2120 case rc.ch <- responseAndError{err: err}: 2121 case <-rc.callerGone: 2122 return 2123 } 2124 return 2125 } 2126 pc.readLimit = maxInt64 // effectively no limit for response bodies 2127 2128 pc.mu.Lock() 2129 pc.numExpectedResponses-- 2130 pc.mu.Unlock() 2131 2132 bodyWritable := resp.bodyIsWritable() 2133 hasBody := rc.req.Method != "HEAD" && resp.ContentLength != 0 2134 2135 if resp.Close || rc.req.Close || resp.StatusCode <= 199 || bodyWritable { 2136 // Don't do keep-alive on error if either party requested a close 2137 // or we get an unexpected informational (1xx) response. 2138 // StatusCode 100 is already handled above. 2139 alive = false 2140 } 2141 2142 if !hasBody || bodyWritable { 2143 replaced := pc.t.replaceReqCanceler(rc.cancelKey, nil) 2144 2145 // Put the idle conn back into the pool before we send the response 2146 // so if they process it quickly and make another request, they'll 2147 // get this same conn. But we use the unbuffered channel 'rc' 2148 // to guarantee that persistConn.roundTrip got out of its select 2149 // potentially waiting for this persistConn to close. 2150 alive = alive && 2151 !pc.sawEOF && 2152 pc.wroteRequest() && 2153 replaced && tryPutIdleConn(trace) 2154 2155 if bodyWritable { 2156 closeErr = errCallerOwnsConn 2157 } 2158 2159 select { 2160 case rc.ch <- responseAndError{res: resp}: 2161 case <-rc.callerGone: 2162 return 2163 } 2164 2165 // Now that they've read from the unbuffered channel, they're safely 2166 // out of the select that also waits on this goroutine to die, so 2167 // we're allowed to exit now if needed (if alive is false) 2168 testHookReadLoopBeforeNextRead() 2169 continue 2170 } 2171 2172 waitForBodyRead := make(chan bool, 2) 2173 body := &bodyEOFSignal{ 2174 body: resp.Body, 2175 earlyCloseFn: func() error { 2176 waitForBodyRead <- false 2177 <-eofc // will be closed by deferred call at the end of the function 2178 return nil 2179 2180 }, 2181 fn: func(err error) error { 2182 isEOF := err == io.EOF 2183 waitForBodyRead <- isEOF 2184 if isEOF { 2185 <-eofc // see comment above eofc declaration 2186 } else if err != nil { 2187 if cerr := pc.canceled(); cerr != nil { 2188 return cerr 2189 } 2190 } 2191 return err 2192 }, 2193 } 2194 2195 resp.Body = body 2196 if rc.addedGzip && ascii.EqualFold(resp.Header.Get("Content-Encoding"), "gzip") { 2197 resp.Body = &gzipReader{body: body} 2198 resp.Header.Del("Content-Encoding") 2199 resp.Header.Del("Content-Length") 2200 resp.ContentLength = -1 2201 resp.Uncompressed = true 2202 } 2203 2204 select { 2205 case rc.ch <- responseAndError{res: resp}: 2206 case <-rc.callerGone: 2207 return 2208 } 2209 2210 // Before looping back to the top of this function and peeking on 2211 // the bufio.Reader, wait for the caller goroutine to finish 2212 // reading the response body. (or for cancellation or death) 2213 select { 2214 case bodyEOF := <-waitForBodyRead: 2215 replaced := pc.t.replaceReqCanceler(rc.cancelKey, nil) // before pc might return to idle pool 2216 alive = alive && 2217 bodyEOF && 2218 !pc.sawEOF && 2219 pc.wroteRequest() && 2220 replaced && tryPutIdleConn(trace) 2221 if bodyEOF { 2222 eofc <- struct{}{} 2223 } 2224 case <-rc.req.Cancel: 2225 alive = false 2226 pc.t.CancelRequest(rc.req) 2227 case <-rc.req.Context().Done(): 2228 alive = false 2229 pc.t.cancelRequest(rc.cancelKey, rc.req.Context().Err()) 2230 case <-pc.closech: 2231 alive = false 2232 } 2233 2234 testHookReadLoopBeforeNextRead() 2235 } 2236 } 2237 2238 func (pc *persistConn) readLoopPeekFailLocked(peekErr error) { 2239 if pc.closed != nil { 2240 return 2241 } 2242 if n := pc.br.Buffered(); n > 0 { 2243 buf, _ := pc.br.Peek(n) 2244 if is408Message(buf) { 2245 pc.closeLocked(errServerClosedIdle) 2246 return 2247 } else { 2248 log.Printf("Unsolicited response received on idle HTTP channel starting with %q; err=%v", buf, peekErr) 2249 } 2250 } 2251 if peekErr == io.EOF { 2252 // common case. 2253 pc.closeLocked(errServerClosedIdle) 2254 } else { 2255 pc.closeLocked(fmt.Errorf("readLoopPeekFailLocked: %v", peekErr)) 2256 } 2257 } 2258 2259 // is408Message reports whether buf has the prefix of an 2260 // HTTP 408 Request Timeout response. 2261 // See golang.org/issue/32310. 2262 func is408Message(buf []byte) bool { 2263 if len(buf) < len("HTTP/1.x 408") { 2264 return false 2265 } 2266 if string(buf[:7]) != "HTTP/1." { 2267 return false 2268 } 2269 return string(buf[8:12]) == " 408" 2270 } 2271 2272 // readResponse reads an HTTP response (or two, in the case of "Expect: 2273 // 100-continue") from the server. It returns the final non-100 one. 2274 // trace is optional. 2275 func (pc *persistConn) readResponse(rc requestAndChan, trace *httptrace.ClientTrace) (resp *Response, err error) { 2276 if trace != nil && trace.GotFirstResponseByte != nil { 2277 if peek, err := pc.br.Peek(1); err == nil && len(peek) == 1 { 2278 trace.GotFirstResponseByte() 2279 } 2280 } 2281 num1xx := 0 // number of informational 1xx headers received 2282 const max1xxResponses = 5 // arbitrary bound on number of informational responses 2283 2284 continueCh := rc.continueCh 2285 for { 2286 resp, err = ReadResponse(pc.br, rc.req) 2287 if err != nil { 2288 return 2289 } 2290 resCode := resp.StatusCode 2291 if continueCh != nil { 2292 if resCode == 100 { 2293 if trace != nil && trace.Got100Continue != nil { 2294 trace.Got100Continue() 2295 } 2296 continueCh <- struct{}{} 2297 continueCh = nil 2298 } else if resCode >= 200 { 2299 close(continueCh) 2300 continueCh = nil 2301 } 2302 } 2303 is1xx := 100 <= resCode && resCode <= 199 2304 // treat 101 as a terminal status, see issue 26161 2305 is1xxNonTerminal := is1xx && resCode != StatusSwitchingProtocols 2306 if is1xxNonTerminal { 2307 num1xx++ 2308 if num1xx > max1xxResponses { 2309 return nil, errors.New("net/http: too many 1xx informational responses") 2310 } 2311 pc.readLimit = pc.maxHeaderResponseSize() // reset the limit 2312 if trace != nil && trace.Got1xxResponse != nil { 2313 if err := trace.Got1xxResponse(resCode, textproto.MIMEHeader(resp.Header)); err != nil { 2314 return nil, err 2315 } 2316 } 2317 continue 2318 } 2319 break 2320 } 2321 if resp.isProtocolSwitch() { 2322 resp.Body = newReadWriteCloserBody(pc.br, pc.conn) 2323 } 2324 2325 resp.TLS = pc.tlsState 2326 return 2327 } 2328 2329 // waitForContinue returns the function to block until 2330 // any response, timeout or connection close. After any of them, 2331 // the function returns a bool which indicates if the body should be sent. 2332 func (pc *persistConn) waitForContinue(continueCh <-chan struct{}) func() bool { 2333 if continueCh == nil { 2334 return nil 2335 } 2336 return func() bool { 2337 timer := time.NewTimer(pc.t.ExpectContinueTimeout) 2338 defer timer.Stop() 2339 2340 select { 2341 case _, ok := <-continueCh: 2342 return ok 2343 case <-timer.C: 2344 return true 2345 case <-pc.closech: 2346 return false 2347 } 2348 } 2349 } 2350 2351 func newReadWriteCloserBody(br *bufio.Reader, rwc io.ReadWriteCloser) io.ReadWriteCloser { 2352 body := &readWriteCloserBody{ReadWriteCloser: rwc} 2353 if br.Buffered() != 0 { 2354 body.br = br 2355 } 2356 return body 2357 } 2358 2359 // readWriteCloserBody is the Response.Body type used when we want to 2360 // give users write access to the Body through the underlying 2361 // connection (TCP, unless using custom dialers). This is then 2362 // the concrete type for a Response.Body on the 101 Switching 2363 // Protocols response, as used by WebSockets, h2c, etc. 2364 type readWriteCloserBody struct { 2365 _ incomparable 2366 br *bufio.Reader // used until empty 2367 io.ReadWriteCloser 2368 } 2369 2370 func (b *readWriteCloserBody) Read(p []byte) (n int, err error) { 2371 if b.br != nil { 2372 if n := b.br.Buffered(); len(p) > n { 2373 p = p[:n] 2374 } 2375 n, err = b.br.Read(p) 2376 if b.br.Buffered() == 0 { 2377 b.br = nil 2378 } 2379 return n, err 2380 } 2381 return b.ReadWriteCloser.Read(p) 2382 } 2383 2384 // nothingWrittenError wraps a write errors which ended up writing zero bytes. 2385 type nothingWrittenError struct { 2386 error 2387 } 2388 2389 func (pc *persistConn) writeLoop() { 2390 defer close(pc.writeLoopDone) 2391 for { 2392 select { 2393 case wr := <-pc.writech: 2394 startBytesWritten := pc.nwrite 2395 err := wr.req.Request.write(pc.bw, pc.isProxy, wr.req.extra, pc.waitForContinue(wr.continueCh)) 2396 if bre, ok := err.(requestBodyReadError); ok { 2397 err = bre.error 2398 // Errors reading from the user's 2399 // Request.Body are high priority. 2400 // Set it here before sending on the 2401 // channels below or calling 2402 // pc.close() which tears down 2403 // connections and causes other 2404 // errors. 2405 wr.req.setError(err) 2406 } 2407 if err == nil { 2408 err = pc.bw.Flush() 2409 } 2410 if err != nil { 2411 if pc.nwrite == startBytesWritten { 2412 err = nothingWrittenError{err} 2413 } 2414 } 2415 pc.writeErrCh <- err // to the body reader, which might recycle us 2416 wr.ch <- err // to the roundTrip function 2417 if err != nil { 2418 pc.close(err) 2419 return 2420 } 2421 case <-pc.closech: 2422 return 2423 } 2424 } 2425 } 2426 2427 // maxWriteWaitBeforeConnReuse is how long the a Transport RoundTrip 2428 // will wait to see the Request's Body.Write result after getting a 2429 // response from the server. See comments in (*persistConn).wroteRequest. 2430 const maxWriteWaitBeforeConnReuse = 50 * time.Millisecond 2431 2432 // wroteRequest is a check before recycling a connection that the previous write 2433 // (from writeLoop above) happened and was successful. 2434 func (pc *persistConn) wroteRequest() bool { 2435 select { 2436 case err := <-pc.writeErrCh: 2437 // Common case: the write happened well before the response, so 2438 // avoid creating a timer. 2439 return err == nil 2440 default: 2441 // Rare case: the request was written in writeLoop above but 2442 // before it could send to pc.writeErrCh, the reader read it 2443 // all, processed it, and called us here. In this case, give the 2444 // write goroutine a bit of time to finish its send. 2445 // 2446 // Less rare case: We also get here in the legitimate case of 2447 // Issue 7569, where the writer is still writing (or stalled), 2448 // but the server has already replied. In this case, we don't 2449 // want to wait too long, and we want to return false so this 2450 // connection isn't re-used. 2451 t := time.NewTimer(maxWriteWaitBeforeConnReuse) 2452 defer t.Stop() 2453 select { 2454 case err := <-pc.writeErrCh: 2455 return err == nil 2456 case <-t.C: 2457 return false 2458 } 2459 } 2460 } 2461 2462 // responseAndError is how the goroutine reading from an HTTP/1 server 2463 // communicates with the goroutine doing the RoundTrip. 2464 type responseAndError struct { 2465 _ incomparable 2466 res *Response // else use this response (see res method) 2467 err error 2468 } 2469 2470 type requestAndChan struct { 2471 _ incomparable 2472 req *Request 2473 cancelKey cancelKey 2474 ch chan responseAndError // unbuffered; always send in select on callerGone 2475 2476 // whether the Transport (as opposed to the user client code) 2477 // added the Accept-Encoding gzip header. If the Transport 2478 // set it, only then do we transparently decode the gzip. 2479 addedGzip bool 2480 2481 // Optional blocking chan for Expect: 100-continue (for send). 2482 // If the request has an "Expect: 100-continue" header and 2483 // the server responds 100 Continue, readLoop send a value 2484 // to writeLoop via this chan. 2485 continueCh chan<- struct{} 2486 2487 callerGone <-chan struct{} // closed when roundTrip caller has returned 2488 } 2489 2490 // A writeRequest is sent by the caller's goroutine to the 2491 // writeLoop's goroutine to write a request while the read loop 2492 // concurrently waits on both the write response and the server's 2493 // reply. 2494 type writeRequest struct { 2495 req *transportRequest 2496 ch chan<- error 2497 2498 // Optional blocking chan for Expect: 100-continue (for receive). 2499 // If not nil, writeLoop blocks sending request body until 2500 // it receives from this chan. 2501 continueCh <-chan struct{} 2502 } 2503 2504 type httpError struct { 2505 err string 2506 timeout bool 2507 } 2508 2509 func (e *httpError) Error() string { return e.err } 2510 func (e *httpError) Timeout() bool { return e.timeout } 2511 func (e *httpError) Temporary() bool { return true } 2512 2513 var errTimeout error = &httpError{err: "net/http: timeout awaiting response headers", timeout: true} 2514 2515 // errRequestCanceled is set to be identical to the one from h2 to facilitate 2516 // testing. 2517 var errRequestCanceled = http2errRequestCanceled 2518 var errRequestCanceledConn = errors.New("net/http: request canceled while waiting for connection") // TODO: unify? 2519 2520 func nop() {} 2521 2522 // testHooks. Always non-nil. 2523 var ( 2524 testHookEnterRoundTrip = nop 2525 testHookWaitResLoop = nop 2526 testHookRoundTripRetried = nop 2527 testHookPrePendingDial = nop 2528 testHookPostPendingDial = nop 2529 2530 testHookMu sync.Locker = fakeLocker{} // guards following 2531 testHookReadLoopBeforeNextRead = nop 2532 ) 2533 2534 func (pc *persistConn) roundTrip(req *transportRequest) (resp *Response, err error) { 2535 testHookEnterRoundTrip() 2536 if !pc.t.replaceReqCanceler(req.cancelKey, pc.cancelRequest) { 2537 pc.t.putOrCloseIdleConn(pc) 2538 return nil, errRequestCanceled 2539 } 2540 pc.mu.Lock() 2541 pc.numExpectedResponses++ 2542 headerFn := pc.mutateHeaderFunc 2543 pc.mu.Unlock() 2544 2545 if headerFn != nil { 2546 headerFn(req.extraHeaders()) 2547 } 2548 2549 // Ask for a compressed version if the caller didn't set their 2550 // own value for Accept-Encoding. We only attempt to 2551 // uncompress the gzip stream if we were the layer that 2552 // requested it. 2553 requestedGzip := false 2554 if !pc.t.DisableCompression && 2555 req.Header.Get("Accept-Encoding") == "" && 2556 req.Header.Get("Range") == "" && 2557 req.Method != "HEAD" { 2558 // Request gzip only, not deflate. Deflate is ambiguous and 2559 // not as universally supported anyway. 2560 // See: https://zlib.net/zlib_faq.html#faq39 2561 // 2562 // Note that we don't request this for HEAD requests, 2563 // due to a bug in nginx: 2564 // https://trac.nginx.org/nginx/ticket/358 2565 // https://golang.org/issue/5522 2566 // 2567 // We don't request gzip if the request is for a range, since 2568 // auto-decoding a portion of a gzipped document will just fail 2569 // anyway. See https://golang.org/issue/8923 2570 requestedGzip = true 2571 req.extraHeaders().Set("Accept-Encoding", "gzip") 2572 } 2573 2574 var continueCh chan struct{} 2575 if req.ProtoAtLeast(1, 1) && req.Body != nil && req.expectsContinue() { 2576 continueCh = make(chan struct{}, 1) 2577 } 2578 2579 if pc.t.DisableKeepAlives && 2580 !req.wantsClose() && 2581 !isProtocolSwitchHeader(req.Header) { 2582 req.extraHeaders().Set("Connection", "close") 2583 } 2584 2585 gone := make(chan struct{}) 2586 defer close(gone) 2587 2588 defer func() { 2589 if err != nil { 2590 pc.t.setReqCanceler(req.cancelKey, nil) 2591 } 2592 }() 2593 2594 const debugRoundTrip = false 2595 2596 // Write the request concurrently with waiting for a response, 2597 // in case the server decides to reply before reading our full 2598 // request body. 2599 startBytesWritten := pc.nwrite 2600 writeErrCh := make(chan error, 1) 2601 pc.writech <- writeRequest{req, writeErrCh, continueCh} 2602 2603 resc := make(chan responseAndError) 2604 pc.reqch <- requestAndChan{ 2605 req: req.Request, 2606 cancelKey: req.cancelKey, 2607 ch: resc, 2608 addedGzip: requestedGzip, 2609 continueCh: continueCh, 2610 callerGone: gone, 2611 } 2612 2613 var respHeaderTimer <-chan time.Time 2614 cancelChan := req.Request.Cancel 2615 ctxDoneChan := req.Context().Done() 2616 pcClosed := pc.closech 2617 canceled := false 2618 for { 2619 testHookWaitResLoop() 2620 select { 2621 case err := <-writeErrCh: 2622 if debugRoundTrip { 2623 req.logf("writeErrCh resv: %T/%#v", err, err) 2624 } 2625 if err != nil { 2626 pc.close(fmt.Errorf("write error: %v", err)) 2627 return nil, pc.mapRoundTripError(req, startBytesWritten, err) 2628 } 2629 if d := pc.t.ResponseHeaderTimeout; d > 0 { 2630 if debugRoundTrip { 2631 req.logf("starting timer for %v", d) 2632 } 2633 timer := time.NewTimer(d) 2634 defer timer.Stop() // prevent leaks 2635 respHeaderTimer = timer.C 2636 } 2637 case <-pcClosed: 2638 pcClosed = nil 2639 if canceled || pc.t.replaceReqCanceler(req.cancelKey, nil) { 2640 if debugRoundTrip { 2641 req.logf("closech recv: %T %#v", pc.closed, pc.closed) 2642 } 2643 return nil, pc.mapRoundTripError(req, startBytesWritten, pc.closed) 2644 } 2645 case <-respHeaderTimer: 2646 if debugRoundTrip { 2647 req.logf("timeout waiting for response headers.") 2648 } 2649 pc.close(errTimeout) 2650 return nil, errTimeout 2651 case re := <-resc: 2652 if (re.res == nil) == (re.err == nil) { 2653 panic(fmt.Sprintf("internal error: exactly one of res or err should be set; nil=%v", re.res == nil)) 2654 } 2655 if debugRoundTrip { 2656 req.logf("resc recv: %p, %T/%#v", re.res, re.err, re.err) 2657 } 2658 if re.err != nil { 2659 return nil, pc.mapRoundTripError(req, startBytesWritten, re.err) 2660 } 2661 return re.res, nil 2662 case <-cancelChan: 2663 canceled = pc.t.cancelRequest(req.cancelKey, errRequestCanceled) 2664 cancelChan = nil 2665 case <-ctxDoneChan: 2666 canceled = pc.t.cancelRequest(req.cancelKey, req.Context().Err()) 2667 cancelChan = nil 2668 ctxDoneChan = nil 2669 } 2670 } 2671 } 2672 2673 // tLogKey is a context WithValue key for test debugging contexts containing 2674 // a t.Logf func. See export_test.go's Request.WithT method. 2675 type tLogKey struct{} 2676 2677 func (tr *transportRequest) logf(format string, args ...any) { 2678 if logf, ok := tr.Request.Context().Value(tLogKey{}).(func(string, ...any)); ok { 2679 logf(time.Now().Format(time.RFC3339Nano)+": "+format, args...) 2680 } 2681 } 2682 2683 // markReused marks this connection as having been successfully used for a 2684 // request and response. 2685 func (pc *persistConn) markReused() { 2686 pc.mu.Lock() 2687 pc.reused = true 2688 pc.mu.Unlock() 2689 } 2690 2691 // close closes the underlying TCP connection and closes 2692 // the pc.closech channel. 2693 // 2694 // The provided err is only for testing and debugging; in normal 2695 // circumstances it should never be seen by users. 2696 func (pc *persistConn) close(err error) { 2697 pc.mu.Lock() 2698 defer pc.mu.Unlock() 2699 pc.closeLocked(err) 2700 } 2701 2702 func (pc *persistConn) closeLocked(err error) { 2703 if err == nil { 2704 panic("nil error") 2705 } 2706 pc.broken = true 2707 if pc.closed == nil { 2708 pc.closed = err 2709 pc.t.decConnsPerHost(pc.cacheKey) 2710 // Close HTTP/1 (pc.alt == nil) connection. 2711 // HTTP/2 closes its connection itself. 2712 if pc.alt == nil { 2713 if err != errCallerOwnsConn { 2714 pc.conn.Close() 2715 } 2716 close(pc.closech) 2717 } 2718 } 2719 pc.mutateHeaderFunc = nil 2720 } 2721 2722 var portMap = map[string]string{ 2723 "http": "80", 2724 "https": "443", 2725 "socks5": "1080", 2726 } 2727 2728 // canonicalAddr returns url.Host but always with a ":port" suffix 2729 func canonicalAddr(url *url.URL) string { 2730 addr := url.Hostname() 2731 if v, err := idnaASCII(addr); err == nil { 2732 addr = v 2733 } 2734 port := url.Port() 2735 if port == "" { 2736 port = portMap[url.Scheme] 2737 } 2738 return net.JoinHostPort(addr, port) 2739 } 2740 2741 // bodyEOFSignal is used by the HTTP/1 transport when reading response 2742 // bodies to make sure we see the end of a response body before 2743 // proceeding and reading on the connection again. 2744 // 2745 // It wraps a ReadCloser but runs fn (if non-nil) at most 2746 // once, right before its final (error-producing) Read or Close call 2747 // returns. fn should return the new error to return from Read or Close. 2748 // 2749 // If earlyCloseFn is non-nil and Close is called before io.EOF is 2750 // seen, earlyCloseFn is called instead of fn, and its return value is 2751 // the return value from Close. 2752 type bodyEOFSignal struct { 2753 body io.ReadCloser 2754 mu sync.Mutex // guards following 4 fields 2755 closed bool // whether Close has been called 2756 rerr error // sticky Read error 2757 fn func(error) error // err will be nil on Read io.EOF 2758 earlyCloseFn func() error // optional alt Close func used if io.EOF not seen 2759 } 2760 2761 var errReadOnClosedResBody = errors.New("http: read on closed response body") 2762 2763 func (es *bodyEOFSignal) Read(p []byte) (n int, err error) { 2764 es.mu.Lock() 2765 closed, rerr := es.closed, es.rerr 2766 es.mu.Unlock() 2767 if closed { 2768 return 0, errReadOnClosedResBody 2769 } 2770 if rerr != nil { 2771 return 0, rerr 2772 } 2773 2774 n, err = es.body.Read(p) 2775 if err != nil { 2776 es.mu.Lock() 2777 defer es.mu.Unlock() 2778 if es.rerr == nil { 2779 es.rerr = err 2780 } 2781 err = es.condfn(err) 2782 } 2783 return 2784 } 2785 2786 func (es *bodyEOFSignal) Close() error { 2787 es.mu.Lock() 2788 defer es.mu.Unlock() 2789 if es.closed { 2790 return nil 2791 } 2792 es.closed = true 2793 if es.earlyCloseFn != nil && es.rerr != io.EOF { 2794 return es.earlyCloseFn() 2795 } 2796 err := es.body.Close() 2797 return es.condfn(err) 2798 } 2799 2800 // caller must hold es.mu. 2801 func (es *bodyEOFSignal) condfn(err error) error { 2802 if es.fn == nil { 2803 return err 2804 } 2805 err = es.fn(err) 2806 es.fn = nil 2807 return err 2808 } 2809 2810 // gzipReader wraps a response body so it can lazily 2811 // call gzip.NewReader on the first call to Read 2812 type gzipReader struct { 2813 _ incomparable 2814 body *bodyEOFSignal // underlying HTTP/1 response body framing 2815 zr *gzip.Reader // lazily-initialized gzip reader 2816 zerr error // any error from gzip.NewReader; sticky 2817 } 2818 2819 func (gz *gzipReader) Read(p []byte) (n int, err error) { 2820 if gz.zr == nil { 2821 if gz.zerr == nil { 2822 gz.zr, gz.zerr = gzip.NewReader(gz.body) 2823 } 2824 if gz.zerr != nil { 2825 return 0, gz.zerr 2826 } 2827 } 2828 2829 gz.body.mu.Lock() 2830 if gz.body.closed { 2831 err = errReadOnClosedResBody 2832 } 2833 gz.body.mu.Unlock() 2834 2835 if err != nil { 2836 return 0, err 2837 } 2838 return gz.zr.Read(p) 2839 } 2840 2841 func (gz *gzipReader) Close() error { 2842 return gz.body.Close() 2843 } 2844 2845 type tlsHandshakeTimeoutError struct{} 2846 2847 func (tlsHandshakeTimeoutError) Timeout() bool { return true } 2848 func (tlsHandshakeTimeoutError) Temporary() bool { return true } 2849 func (tlsHandshakeTimeoutError) Error() string { return "net/http: TLS handshake timeout" } 2850 2851 // fakeLocker is a sync.Locker which does nothing. It's used to guard 2852 // test-only fields when not under test, to avoid runtime atomic 2853 // overhead. 2854 type fakeLocker struct{} 2855 2856 func (fakeLocker) Lock() {} 2857 func (fakeLocker) Unlock() {} 2858 2859 // cloneTLSConfig returns a shallow clone of cfg, or a new zero tls.Config if 2860 // cfg is nil. This is safe to call even if cfg is in active use by a TLS 2861 // client or server. 2862 func cloneTLSConfig(cfg *tls.Config) *tls.Config { 2863 if cfg == nil { 2864 return &tls.Config{} 2865 } 2866 return cfg.Clone() 2867 } 2868 2869 type connLRU struct { 2870 ll *list.List // list.Element.Value type is of *persistConn 2871 m map[*persistConn]*list.Element 2872 } 2873 2874 // add adds pc to the head of the linked list. 2875 func (cl *connLRU) add(pc *persistConn) { 2876 if cl.ll == nil { 2877 cl.ll = list.New() 2878 cl.m = make(map[*persistConn]*list.Element) 2879 } 2880 ele := cl.ll.PushFront(pc) 2881 if _, ok := cl.m[pc]; ok { 2882 panic("persistConn was already in LRU") 2883 } 2884 cl.m[pc] = ele 2885 } 2886 2887 func (cl *connLRU) removeOldest() *persistConn { 2888 ele := cl.ll.Back() 2889 pc := ele.Value.(*persistConn) 2890 cl.ll.Remove(ele) 2891 delete(cl.m, pc) 2892 return pc 2893 } 2894 2895 // remove removes pc from cl. 2896 func (cl *connLRU) remove(pc *persistConn) { 2897 if ele, ok := cl.m[pc]; ok { 2898 cl.ll.Remove(ele) 2899 delete(cl.m, pc) 2900 } 2901 } 2902 2903 // len returns the number of items in the cache. 2904 func (cl *connLRU) len() int { 2905 return len(cl.m) 2906 }